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Abstract

Given a planar polygonal subdivision S, the point lo-
cation problem is to preprocess S into a data structure
so that the cell of the subdivision that contains a given
query point can be reported efficiently. Suppose that
we are given for each cell z € S the probability p, that
a query point lies in z. The entropy H of the result-
ing discrete probability distribution is a lower bound
on the expected-case query time. Further it is known
that it is possible to construct a data structure that
answers point-location queries in H + 2v2H + o(v/H)
expected number of comparisons. A fundamental ques-
tion is how close to the entropy lower bound H the exact
optimal expected query time can reach. In this paper
we show that there exists a query distibution @ over
S such that even when we are given complete informa-
tion on @, the optimal expected query time must be at
least H + Q(vH), which differs just by a constant fac-
tor in the second order term from the best known upper
bound.

1 Introduction

Planar point location is among the important two-
dimensional search problems. Given a polygonal sub-
division S of linear complexity in n, the goal is to pre-
process S so that, given any query point ¢, the cell con-
taining ¢ can be computed efficiently. During the last
twenty-five years a number of elegant techniques have
been developed that solve the problem in asymptoti-
cally worst-case optimal O(log n) query time using O(n)
space [14]. In [7] Goodrich, Orletsky and Ramaiyer
posed the question of determining the exact constant
factor in the query time. The question was answered by
Seidel and Adamy [13] who presented a method with
logn + 2y/Togn + o(y/Togn) time (where log denotes
base-two logarithm) and O(n) space and proved a nearly
matching lower bound.

In many applications query points exhibit a highly
non-uniform distribution among the cells. This raises
the question of minimizing the expected-case query
time. Suppose that we are given for each cell z € S
the probability p, that z contains a query point. (For
simplicity, we assume that the probability that a query
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point lies on a segment or vertex of S is zero.) The
entropy of S, denoted H throughout, is defined as
H =3 ¢p-log(1/p.). For the one-dimensional re-
striction of this problem, a classic result by Shannon
implies that the expected number of comparisons for a
query is at least as large as the entropy of the probability
distribution [9]. Mehlhorn [12] showed that it is possible
to construct a binary search tree whose expected query
time is at most H + 2.

The entropy lower bound H clearly applies to the
two-dimensional case as well, nonetheless only recently
methods have been proposed whose query time can be
upper bounded by a function of entropy. Arya et al. [1]
showed that for subdivisions consisting of convex poly-
gons, O(H) expected query time can be achieved as-
suming a certain restricted class of query distributions.
Arya, Malamatos, and Mount [2] for the case of polyg-
onal subdivisions consisting of cells of constant com-
binatorial complexity and for any query distribution
presented a method that answers queries in at most
H + 2v2H + o(v/H) time using O(n'*¢) space. The
space of this method was subsequently improved to
O(nlog” n) by the same authors [3] and eventually to
the optimal O(n) by Arya et al. [5] while preserving
the H + O(vVH + 1) query time. In related work Arya,
Malamatos and Mount [4] presented a simple and prac-
tical randomized algorithm with O(H) time and O(n)
space and Tacono [8] developed a similar deterministic
method achieving the same bounds.

It is natural to ask what the exact expected case query
complexity of planar point location is. Can we achieve
the entropy lower bound H (within some small addi-
tive constant) similarly to the one-dimensional case [12]
or can we justify the presence of the vH term in the
upper bound of [2]? In this paper we present the fol-
lowing result: Let @ be a query distribution over some
subdivision S and assume that @ is given completely
at construction time. Then there exists a query distri-
bution @ such that the expected query time is at least
H + &VH — O(1). This result shows that in two di-
mensions the entropy lower bound cannot be reached
exactly and it implies that the upper bound in [2] is at
most a multiplicative factor in the second order term
far from optimal. We mention that a lower bound of
H ++/H — O(1) has been shown in [11] assuming that
the query distribution within the cells of .S is unknown
but the main (adversary) idea behind this bound does
not apply when complete information on () is available.



2 Preliminaries

Our results are established in the trapezoidal search
graph model (TSG model, for short) introduced by Sei-
del and Adamy [13] which forms the basis of (nearly)
all point-location algorithms. In this model two stan-
dard types of comparisons are used in order to locate
a query point. The first type determines whether the
query point lies to the left or right of a vertical line pass-
ing through a vertex in the subdivision S. The other
determines whether the query point lies above or be-
low a segment of S. This second type of comparison
is only performed after we have determined that the
x-coordinate of the query point lies between the two x-
coordinates of the endpoints of the segment. (For sim-
plicity we assume that no segment in S is vertical.) The
query time is measured in terms of the total number of
comparisons used.

For the purposes of analysing the query time, any
comparison-based point location method can be repre-
sented as binary space partition (BSP) tree [6]. (Note
that the search structure associated with a method may
be a dag instead of a tree, but this only affects the space
requirements and not the query time.) In the remainder
we always describe a method in terms of its correspond-
ing BSP tree. Given a BSP tree for S, answering a query
translates to locating by a simple descent the leaf of the
BSP tree which the query point lies in and reporting the
cell in S associated with this leaf. Observe that in the
TSG model each tree node is related to a planar region
which is a vertically aligned trapezoid.

Seidel and Adamy [13] gave an example subdivision
for which any method in the TSG model has worst-case
query time at least logn + 2v/Togn — (1/2)loglogn —
O(1). Our analysis for the expected-case has similarities
to that in [13] but there is an important distinction. For
the worst case, it suffices to show that the depth of some
leaf in the BSP tree is large. However, this is not enough
to give a good bound on the weighted external path
length [9], which is the relevant quantity for expected
query time. To establish a good lower bound on this
quantity, we need to show the existence of leaves deep
in the tree that have a large total weight.

3 The Lower Bound

Let S be a planar subdivision and @ be a query distri-
bution over S. We assume that @ is fully known dur-
ing preprocessing. Consider a point-location method
for S in the TSG model. In this section we give a lower
bound on the expected query time which the method
must have.

Let n = 2 where k > 0 is any integer. Let S,
be the subdivision consisting of the segments in the
sets {[(0,4), (4,9)] |0 < i <n},{[(z,1),(n,9)]]0 < i <
0} {1(0,1), (0,6 + 1] [0 < i < n}, {[(m1), (m,i+1)] [0 <
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Figure 1: Subdivision .S,, and its rows and columns.

i <n}, and {[(4,7), (i + 1,i4+ 1)]| 0 < i < n}. See Fig-
ure 3. Clearly there are 2n horizontally aligned trape-
zoidal cells in S,,. Note that the number of rows is n
and that the number of segments in 5, is bounded by
O(n). We assume that no query point lies in the outer
face of S,, and therefore we can ignore the vertical seg-
ments. We also assume wlog that no query point lies on
the boundary of any column or row of 5.

Before describing the query distribution @), we intro-
duce some notations. Let r be a region in S,,. Through-
out, we denote by p(r) the probability that a query lies
in r given that it lies in some region ' C S,. When
" = S, we use P(r) instead of p(r). Assume that we
are given that the query point ¢ lies in a region r. Then
we denote by E(r) the minimum expected number of
comparisons to locate the cell of S,, containing ¢. An
axis-aligned square region b in S,, which has all its four
corners at integer coordinates is called a boz. We say
that a box b has size n, where n; is the number of
columns it intersects. A diagonal box is a box whose
diagonal is contained in the diagonal of S,,.

We define the query distribution @ = Q(n,p) over
Sy, where p > 0 is a real parameter. First we will form
a hierchical partition P of S;, into certain regions and
then we will specify the query distribution over each of
these regions. Place a 2 x 2 grid over S,,. This generates
four identical boxes. Assign these boxes to level zero.
We call as D-box any of the boxes in P that intersects
the diagonal of S,. (Note that a D-box is also a diag-
onal box.) Set n < n/2 and increase the level by one.
Recurse this process on each of the two D-boxes, unless
n = 1 in which case we stop. This completes the parti-
tion P of S,, into a number of boxes. We describe now
how the queries are distributed in S,. Let x and A be
two real numbers, such that K+ A =1 and A\/k = p. To
each of the n D-boxes at the last level in P, we assign
a query probability equal to k/n. (For the next lemma,
within such a D-box we may choose any arbitrary query
distribution.) For 0 < i < logn, let F; be the set of non-
diagonal boxes at level i. We set P(Fp) = 0. Within
each F; for i > 1 we set the query point to be uniformly
distributed with probability P(F;) = A/log(n/2). It is



easy to see that P(S,) = 1. We now state the main
lemma of this section on which Theorem 5 is based.

Lemma 1 Let S = S,, be a planar subdivision and let
Q = Q(n,p) be the query distribution over S, where
n = 2% for any integer k > 1 and 0 < p < 6—14. Let
R C S be a diagonal box of size n' where 281 < n/ <
2k Consider a point-location method in the TSG model.
Then any such method for R must have expected query

time at least

1
logn’ + g\/p-logn’ — 1.

Proof. The proof is by induction on k. Clearly, for
k < 4 the induction basis is true if the negative term
in the hypothesis is at least 5. With some more care,
we can show that in fact 1 suffices. (We omit this proof
here.) So let k > 4. Let 7 be the BSP tree constructed
by the method on box R. Let 7’ be the subtree of 7
consisting of all nodes that can be reached from the root
of 7 using only vertical comparisons. The leaves of 7"
partition the box R into a number of vertical slabs. Let
X denote the set of these slabs. (Note that for n’ > 1
the first comparison on R must be a vertical one.)

Let ng denote the number of columns in a slab s € X.
We have >y ns =n'. Let p(s) denote the probability
of the query point lying in s given that it lies in R. Let
H7+ denote the entropy of the leaves in 7’. By linearity
of expectation, the expected query time F(R) using 7
satisfies

E(R) > Hr + ) p(s)E(s),
seX

where E(s) is the expected query time of locating the
query point given that it lies in s. Note that Hy» =

Y scx P(s)log(1/p(s)) and thus

E(R) =) p(s)log(1/p(s) + Y p(s)E(s). (1)

seX seX

We show next how to compute a lower bound for
p(s)E(s). Here is a brief overview. For each such slab
s, we find a region vy C s where it is possible to use
the induction hypothesis. Then we find a second region
us C s, disjoint from v, which we analyse directly. Af-
ter computing independently lower bounds for vs and
ug, by linearity of expectation we combine them to get
a lower bound for s.

We distinguish two cases depending on the size of
s and its placement in S,,. The first case is when s
intersects at most two 1-level D-boxes. Let ws be the
diagonal box of size ns that is contained in s. (See
Figure 2.) Let n/ be the smallest power of 2 which is
at least equal to ns. (Note that ny < nj < 2ns.) We
define vs to be the intersection of w, with the union of
all D-boxes of size n /2.

0 —»

Figure 2: Regions R, s, ws and boxes in P at levels
0, 1, and 2. For clarity, the segments of S,, have been
omitted.

By definition of 77, the next comparison after reach-
ing slab s must be a comparison with a horizontal seg-
ment crossing s. Note that this segment lies outside
region vg. Thus, by linearity of expectation, we can
write

p(s)E(s) = p(vs)(1 + E(vs)) + p(us) E(us),

and by summing up over all slabs in X,

D p(s)E(s) =D p(vs)(1+ E(vy))
seX seX

+ 3 ) Blu). (2)

seX

Since by definition any 0-level non-diagonal box con-
tains ¢ with zero probability, we may consider v, as
a diagonal box R’ of size n, over a subdivision St
where the query distribution is Q(nl,p’) with p/ =
(\log(n!,/2)/ log(n/2))(1/k) = plog(n’/2)/10g(n/2).
(Note that n/2 < ns < n/2.) Thus, by induction we
get that E(vs) > logn, + £+/p' logns — 1.

Next we compute a lower bound on p(vs). Let P(R)
be the probability that ¢ lies in R given that it lies in
Sn- Set a =1/P(R).

Alog(8n/ns)
Lemma 2 p(vs) > (ang/n) (1 — W) .

Lemma 3 The contribution to the expected query time
from region vs is at least

pw)(1+ E(vy)) > 22 <1°g”s + % plogn’ — %
Alog(n'/ns) 1+ A P ,
oV L ¥ opmg — 1 s) |-
log(n/2) oen 8 log(n/2) og(n'/ns)

The proof of Lemma 3 follows from the above bound
on E(vs) and Lemma 2.

The second case is when a slab s intersects three or
four 1-level D-boxes (s has large width). In this case we
can also show a similar bound with that of Lemma 3.
Due to lack of space most proofs of the paper including
this one are given in [10].



We now focus on region us. We select a set I of D-
boxes lying inside R. This set is chosen as follows. Tra-
verse the tree corresponding to the hierachical partition
P top-down visiting only nodes that are associated with
D-boxes. If a D-box which lies completely in R is vis-
ited then we include it in set I and backtrack. Clearly
this process gives a set of disjoint D-boxes whose union
covers the diagonal of R.

In the following we assume that a slab s intersects at
most one box b € I. (The case where a slab intersects
two or more such boxes is handled in [10].) We define
us = {sN F;|log(n/npy) < i < log(n/2n.)}. Note that
us and vg are disjoint.

Fix a subregion C; = sNF; for some value 7 in the pre-
vious range. Observe that any column in Cj is the same
point-location subdivision (and has the same query dis-
tribution) with any other column in Cj;, expect that it
is permutated. Also for a single column of C;, point lo-
cation reduces to searching in the one-dimensional case.
Since each column in C; covers n/2i"1 rows of S, and
the query distribution within F; is uniform, it follows
that E(C;) > log (n/2"T') > logn — i — 1. Clearly
p(C;) = (ang/n)(A/log(n/2)). Now by linearity of ex-
pectation for C;’s we can compute a lower bound on
p(us)E(us).

Lemma 4 The contribution to expected query time
from regions us for s € X is at least

Z p(us)E(Us) Z Z (#7(17;/2)) 10g(n’/ns)

seX seX

1
-(logn + logns) — T

Finally to show the induction we apply Lemmas 3
and 4 in Eq. (2) and then we substitute the result in
Eq. (1). Using some simple bounds for p(s), a and A,
and simplifying completes the proof. (See in [10].)

O

Let S =5, @ = Q(n, 6%1) and adjust the query dis-
tribution at the last level of P so that each cell receives
(1/2n) probability. It follows that H = logn + 1. Also
note that for any subdivision of O(n) size, we always
have H < logn + O(1). By applying Lemma 1 for
R = 5, we can easily obtain the following theorem:

Theorem 5 For any n > 2 there is a subdivision S
consisting of n cells of bounded complexity and a query
distribution Q over S which is fully known such that any
point-location method for S in the TSG model must use
at least H + GL\/E — O(1) expected number of compar-

1
isons, where H is the entropy of S.
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