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Abstract

We show that re-triangulating a terrain in order to min-
imize its total absolute Gaussian curvature, under the
constraint that we fix the vertex set and boundary of
the terrain, is NP-hard.

1 Introduction

In contrast to the total Gaussian curvature of a sur-
face embedded in R®, which is a topological invariant of
the surface (Gauss-Bonnet theorem), the total absolute
Gaussian curvature encodes a lot of information about
the embedding. The first to realize that the total abso-
lute Gaussian curvature might be important in surface
processing were Alboul and van Damme [1]. They sug-
gested to post-process a surface mesh (polyhedral sur-
face) such that the topology and the vertex set of the
polyhedral surface is kept while the total absolute Gaus-
sian curvature is minimized. In order to minimize the
total absolute curvature they use a simple flip heuristic
for which they can prove that it gives the optimal re-
sult if the vertex set is in convex position, which in this
case is the convex hull of the vertex set. In the non-
convex case, which from the application point of view
is the interesting one, it is easy to see that the heuristic
can get stuck in a local minimum. Nevertheless, even
in the non-convex case the heuristic improves the visual
appearance of the mesh significantly, see Figure 1.

It remained an open question, whether an efficient al-
gorithm exists which always finds the global minimum.
Here we show that, at least in the case of terrains, min-
imizing the total absolute curvature is NP-hard.

2 Definitions and Motivation

Polyhedral surface. The object of our study are poly-
hedral surfaces, which are the geometric realizations of
simplicial complexes in R®, whose underlying topolog-
ical space is a surface with or without boundary. We
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Figure 1: A triangle mesh before (left) and after (right)
applying the flip heuristic to minimize the total absolute
Gaussian curvature. Pictures courtesy of P. Gehr [3].

refer to polyhedral surfaces without boundary also as
closed surfaces.

A terrain is a polyhedral surface with boundary whose
vertices have two coordinates in a common hyperplane
and the orthogonal projection of the surface onto this
hyperplane is one-to-one.

Tight surface. A closed polyhedral surface is called
tight if any hyperplane cuts it in at most two pieces (two-
piece-property). Note that convex surfaces are always
tight. Since a surface of higher genus, e.g., a torus,
cannot be convex, the notion of tightness can be seen as
a generalization of the concept of convexity to surfaces
of higher genus.

Total absolute Gaussian curvature. The Gaussian
curvature of a polyhedral surface S is defined at its ver-
tices. Let v be a vertex of S. For any triangle T; in S
incident to v let a; be the angle of T; at v. The Gaussian
curvature K, of S at v is defined as K, = 27 — )", ;.
For the total Gaussian curvature the famous Gauss-
Bonnet theorem holds:

Z K, = 271')((8),

where x(9) is the Euler characteristic of S. Also the
absolute Gaussian curvature is defined at the vertices
of S. For this we consider the positive curvature K
and negative curvature K, at a vertex v of S. Let
us first define the positive curvature. We distinguish
two kinds of vertices v depending on whether S has a



Figure 2: A set of line segments, construction of the terrain and re-triangulation of the terrain.

local supporting hyperplane at v or not. We say that
S has a local supporting hyperplane at v if there exists
a neighborhood U of v in S such that U is completely
contained in one of the two closed half-spaces bounded
by the hyperplane. If S does not have a local supporting
hyperplane at v we set K7 = 0. Otherwise, let T; be a
triangle on the boundary of the convex hull of v and all
vertices of S incident to v. Let 3; be the angle of T} at v.
One defines Kf = 2m — 37, B;. The negative curvature
at any vertex v of S is now defined as K, = K} — K,
and the absolute Gaussian curvature of S at v is defined
as |K,| = K+ K.

For polyhedral surfaces with boundary we define the
curvatures only at interior vertices, i.e., at vertices
which have a neighborhood homeomorphic to a disk.

Theorem 1 The following are equivalent [5]:
(1) S is a tight closed surface.

(2) The total absolute Gaussian curvature is the same
as the total Gaussian curvature, i.e., 2mx(S).

In surface post-processing, as described in the intro-
duction, the notion of tightness is a promising approach.
Sharp edges of a model are often reconstructed in a
jaggy pattern, as in Figure 1 (left). For such a jaggy pat-
tern there is a hyperplane that cuts it into many pieces,
i.e. the surface is very far from being tight. Hence one
might try to compute the ’tightest’ re-triangulation of
the surface. This leads to two constrained optimiza-
tion problems, the constraints in both cases are that
S’ shares the vertex set V with S and has the same
topology as S (and boundary in the case of terrains):

(1) Compute S’ that minimizes the maximum number
of components it can be cut into by a hyperplane.

(2) Compute S’ that minimizes the total absolute
Gaussian curvature.

3 NP-Hardness

In this section we prove the NP-hardness of the problem
of minimizing the total absolute Gaussian curvature of
a terrain. We do so by giving a reduction from the non-
intersecting line segments problem, which is known to be
NP-hard, if the segments lie in at least three directions
and any two parallel segments are disjoint [4].

Non-intersecting line segments. An instance of the
non-intersecting line segments problem consists of a set
of n line segments L = {ly,...,l,} whose endpoints
have rational coordinates and a positive integer m. The
question is whether there exists a subset L' C L s.t.
|L'| > m and none of the segments in L' intersect.

Now we can state and prove the main theorem.

Theorem 2 Minimizing the total absolute Gaussian
curvature in o terrain is NP-hard.

Proof. For the hardness proof we consider the decision
problem: Given a terrain S and a number k. Is there
a terrain with the same vertex set as S that has total
absolute Gaussian curvature less than «? This problem
is in NP since the total absolute Gaussian curvature for
a terrain can be computed in polynomial time.

We give a reduction from the non-intersecting line
segments problem. The reduction is similar to a re-
duction given in a proof showing that minimizing the
number of minima in a terrain is hard [2].

Given an instance (L, m) of the non-intersecting line
segments problem we have to compute in polynomial
time a terrain S and a bound on the total Gaussian
curvature k of S such that there exists a re-triangulation
of S (retaining the boundary and the vertex set of S)
with curvature less than k if and only if L has a subset
of at least m pairwise non-intersecting line segments.

Construction of the terrain The idea of the construc-
tion is, that we use the endpoints of the segments as
height points of our terrain and add further points at



Figure 3: The curvature of connected height points
(right) is much smaller than for not connected height
points (left).

height 0 such that only height points of the same seg-
ment may be connected and this only if no height points
of intersecting segments have been connected. At con-
nected height points the Gaussian curvature is much
smaller than at not connected height points, see Fig-
ure 3. In particular, it is smallest if we can connect as
many segments as possible.

More explicitly, we construct S as follows (compare
with Figure 2): Let n := |L| and assume that all line seg-
ments in L lie in the quadrilateral (Q with corner points
(0,0),(0,1),(1,0) and (1,1) in the zy-plane. The ver-
tex set of S contains all endpoints of line segments in
L lifted to a height h in the z-direction, the value of h
we will specify later. For each endpoint, we add 2n + 3
points on a small “horseshoe” around them in the zy-
plane, which prevent the lifted endpoints of different
segments to be connected. Note that these connections
are only prevented because we demand that any valid
re-triangulation of the point set has to be a terrain over
the zy-plane. Each horshoe is a polyline with five ver-
tices that all have rational coordiantes, see Figure 4. To
compute the horseshoes, we first compute the minimal
distance d between a segment and a non corresponding
endpoint or the quadrilateral . Then we know that
the if we “blow-up” all segments by a radius r < d/2,
i.e. replace each segment by the Minkowski sum of it-
self with a ball of radius r, the “blown-up” segments
do not intersect. The horseshoes are situated on the
boundary of these “blown-up” segments. We place at
most 2(n — 1) points at the intersection of the horse-
shoe with lines from the segment endpoint to all non
corresponding segment endpoints. We might need to
“compress” the horseshoes such that all these lines in-
tersect the horseshoe. If we compress one horseshoe we
do so also with the other horseshoe of the segment. If
a non corresponding endpoint is collinear with the seg-
ment and lies behind the other endpoint we can ignore
it. Placing the points on the horseshoes can be done in
polynomial time as there are only a polynomial number
of distance computations necessary and the intersection
point of two line segments whose endpoints have ratio-
nal coordinates can be computed in time polynomial in
the bit description length of the endpoints.

As fixed boundary points of the terrain S we choose
the corner points of the quadrilateral (). Around each
corner point we put 2n points on a line segment that

Figure 4: The horseshoe construction. A normal horse-
shoe (left) and a compressed horseshoe (right).

separates the corner points from all other points in the
zy-plane. We do so to prevent the lifted endpoints of
the segments to be connected to the corner points (sim-
ilarly as with the points on the horseshoes). We do this
because we do not consider the curvature at the bound-
ary i.e. the corner points and therefore allow the corner
points to be connected only to points at height 0.

Now we have defined the vertex set of .S, which can be
computed in polynomial time. It remains to triangulate
this vertex set. We choose S to be the following triangu-
lation: We connect all lifted segment endpoints to the
points of their corresponding horseshoes. We connect
the points on the horseshoe along the horseshoe and we
connect the two endpoints of each horseshoe with each
other. Finally we choose an arbitrary triangulation of
the enclosing quadrilateral in the regions between the
horseshoes. Note that the whole triangulation can be
computed in polynomial time in the size of L.

Next we determine the value of k¥ depending on m:
Putting a copy of the boundary quadrilateral below (in
the z-direction) the original one and triangulating in
the canonical way gives us for any terrain on the given
point set a triangulated topological sphere. For any
such sphere, the corner points of the two quadrilaterals
(the boundary of the terrain and its copy) are convex
vertices and the angles of triangles incident to such a
corner point sum up to 37 /2. That is, any such corner
point v has K, = K = w/2. Furthermore, for any
vertex v it holds

|K,| =K} +K, =K} + (K -K,) =2K} - K,

and ), K, is constant for a topological sphere by the
Gauss-Bonnet theorem. Hence minimizing the total ab-
solute Gaussian curvature in terrains as we consider
them here is equivalent to minimizing the total posi-
tive curvature. We choose k = (2n —m)2w as bound on
the total positive curvature.

Finally we compute the value of the height h. We
choose it such that we get sufficient lower bounds for
the positive curvature both at a connected lifted seg-
ment endpoint v; and at a not connected lifted segment
endpoint vs. Let us first consider v;. We have a trivial
upper bound of 7 on the positive curvature at vy, be-
cause we definitely have ) §; > =, where the j3; are as
in the definition of the positive curvature. We can lower
bound this curvature by the positive curvature of the



apex of the half-cone, whose apex (1, %, h) is connected

with the pOintS (_%7 ]-7 0)7 (_%7 05 0)7 (%) 07 0)7 (%, 0; 0)
and (2,1,0) in the zy-plane as shown in Figure 5. Note
that the triangle with vertices (1, %,h),(—%,1,0) and
(2,1,0) does not belong to the half-cone.
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Figure 5: Bounding the positive curvature at a lifted
segment, endpoint

0)

The positive curvature of this half-cone is 7 — 4a,
where a is the angle at the apex (1,1, h) in its incident
triangles. Using the law of cosine we get cos? a = (h? +
1)/(h?+2). Similarly we get a trivial upper bound of 27
and a lower bound of 2(w—4a/) for the positive curvature
at vo. A simple calculation shows that if we choose h >

4(2n—m+1)/m then it holds 4da < w/(2n—m+1) =: €.

Finding a triangulation with small positive curvature
Assume now that L has a subset L' of non-intersecting
line segments of size at least m. We have to show
that a re-triangulation of S exists whose total positive
curvature is less than k. For this we consider the re-
triangulation where the lifted endpoints of all segments
in the subset L' are connected and all other segments are
not connected. Of course, the endpoints of the horse-
shoes at the connected segment endpoints have to be
reconnected, see Figure 2. We partition the vertex set
of S in three parts, V; contains all segment endpoints
that are connected with their matching endpoint, V5
contains all segment endpoints that stay not connected
and V3 contains the remaining vertices that are not on
the boundary. We then have

SNkF = Y KF+ > KF+ > Kf
v

veEWV; vEVa vEV3
< 2mm+2(n—m)27r +0
= (2n—m)27 = &,

where the bounds for the first two sums follow immedi-
ately from the trivial upper bounds for the curvatures at
v1 and v that we derived earlier. The third sum equals
0 because all vertices in V3 have positive curvature 0.
Either they lie in the convex hull of their neighbors,
which is planar, and therefore have positive curvature
0. Or they lie on a straight edge, e.g., in the relative
interior of a strictly straight part of a horseshoe, and
also have positive curvature 0.

This shows that if L has a subset L' of non-
intersecting segments of size |L'| > m, then there exists

a re-triangulation of S with total positive curvature less
than k = (2n — m)2mw.

Finding a large subset of non-intersecting segments
It remains to show that if there is a re-triangulation of
the terrain S with total positive curvature not larger
than k = (2n — m)2rn then L has to have a subset of
at least m non-intersecting segments. Let 2m be the
number of lifted segment endpoints that are connected
in the triangulation. Then we can bound the total posi-
tive curvature of the re-triangulation from below as fol-
lows: Again we partition the vertex set of S in three
parts, V; contains all lifted segment endpoints that are
connected with their matching endpoint, V5 contains
all lifted segment endpoints that are not connected and
V3 contains the remaining vertices that are not on the
boundary. Remember that by our construction a lifted
segment endpoint can only be connected to its matching
lifted endpoint and to no other lifted endpoint. Thus
mm is the number of segments whose lifted endpoints are
connected and has to be an integer. Using the lower
bounds on the positive curvature at v; and v, which we
derived earlier and the trivial lower bound of 0 for all
other vertices, we get

NokF = Y KF+ Y KF+ Y K}
v

veVy veEVS vEV3
2m(m —€) +2(n —m)2(r —¢) +0
= (2n—m)2(7 —¢).

v

By assumption ), K < & = (2n—m)2n and therefore
(2n —m)2m > (2n — m)2(w — €). Solving for m we get
> m - e(Zn—m)_

T—€
For € < w/(2n—m+1) the last term is smaller than 1 and
as 1 is an integer this yields m > m. Thus L contains
a subset of at least m non-intersecting segments. |
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