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Abstract

In this paper we show lower and upper bounds for a gen-
eralization of Heilbronn’s triangle problem to d dimen-
sions. Namely, we show that there exists a set S (resp.,
S3) of n points in the d-dimensional unit cube such
that the minimum-area triangle (embedded in d dimen-
sions) defined by some three points of Sy (resp., S2) has
an area of Q(d'—1/(2(d=1) /p2/(d=1)) (resp., O(d/n?/%)).
We then generalize the applied methods and show that
there exists a set S3 (resp., Sy4) of n points in the d-
dimensional unit cube such that the minimum-volume
k-dimensional simplex (embedded in d dimensions, for
2 < k < d) defined by some k + 1 points of Sz (resp.,
S4) has volume Q(f (k,d)/n*/(¢=*+D)) where f(k,d) is
independent of n (resp., O(k*/?d*/2 / (k! n*/?))).

Keywords: Heilbronn’s triangle problem, proba-
bilistic method.

1 Introduction

Heilbronn’s famous triangle problem, posed in the
1950s, posits the following;:

Problem 1 Given n points in the d-dimensional unit
cube, what is Hy,q4(n), the mazimum possible volume of
the smallest k-dimensional simplex defined by some k+1
(for integral 2 < k < d) of these points?

Heilbronn was interested in the area of triangles de-
fined by points located in the unit square, that is, in
the special case when K = d = 2. Erdés [9, ap-
pendix] showed that Hao(n) = Q(1/n?) by a sim-
ple example (points on the moment curve). Thirty
years later, Komlds, Pintz, and Szemerédi [5] showed
by a rather involved probabilistic construction that
Ha,2(n) = Qlogn/n?). A simpler construction (which
we followed in [2] and also in the present paper) by
Alon and Spencer [1] proves a weaker lower bound of
Q(1/n?). Tt is trivial to show that H22(n) = O(1/n):
any triangulation of any point set (in general position)
in the unit square admits ©(n) triangles. Currently,
the best known upper bound for the triangle problem,
Ha2(n) = O(1/nt142+), is due to Komlds, Pintz, and
Szemerédi [4]. A comprehensive survey of the history of
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this problem (excluding the results of Komlés et al.) is
given by Roth in [10].

In [2] we investigated Hq,q(n). Specifically, we showed
that Haa(n) = Q(1/n?) for a fixed value of d. This
lower bound was achieved by both a specific example
(points on the d-dimensional moment curve) and a prob-
abilistic argument. (In fact, the moment-curve exam-
ple shows that H44(n) = Q(1/(d'n?)).) Lefmann [6]
slightly improved this bound, showing, by using un-
crowded hypergraphs, that Hgqa(n) = Q(logn/n?)
(again, for a fixed value of d). Bertram-Kretzberg,
Hofmeister, and Lefmann [3] showed that a specific
point set that realizes the lower bound in two dimen-
sions can be found in time polynomial in n. Lefmann
and Schmitt [8] proved a similar result for three dimen-
sions.

In the current paper we provide lower and up-
per bounds on Hjyg4(n). Namely, we attempt to
maximize the volume of the minimum-volume k-
dimensional simplex in a d-dimensional unit cube.!
As mentioned above, in the plane there is a large
gap between the trivial lower and upper bounds
for Hso(n), namely, Q(1/n?) and O(1/n). In
this paper we show by two different methods that
Hoa(n) is Q(d*—1/(d=1) /p2/(@=1)y and O(d/n?/?)
(Q(1/n?/(@=1)Yy and O(1/n?/?) for a fixed value of d). We
then generalize these methods and show that Hy 4(n)
(for 2 < k < d) is Q(f(k,d)/n*/(¢=*+1)) (where
f(k,d) is independent of n) and O(k*/¢d*/? [(k!nk/?))
(Q(1/n*/(@=k+1)Y and O(1/n*/?) for fixed values of k
and d).

The rest of this paper is organized as follows. In Sec-
tions 2 and 3 we prove the lower and upper bounds, re-
spectively, on Hy, 4(n). We end in Section 4 with some
concluding remarks.

2 The Lower Bound

2.1 A Probabilistic Lemma

We first prove a lemma, which is a generalization of a
probabilistic argument of Alon and Spencer [1, p. 30]. A
slightly weaker version of this lemma was proven in [2],

1To avoid confusion, we call the generalization of Heilbronn’s
problem to higher dimensions the “simplex problem,” and reserve
the term “triangle problem” for instances of the problem in which
the sought simplex is two-dimensional.



so for completeness we provide the modified (and short)
proof here.

Lemma 1 Let H(Py,Ps,...,Py) be a mapping from
m-tuples of points Py, Py, ..., Py in some domain D
to R U {0}. If there emist constants ¢; > 0, ca
such that Prob[H (Py, Py, ..., Pp) <e] < 1%, where
Py, Py, ..., Py, are chosen randomly, uniformly, and in-
dependently in D, then there exists a set S of n points

in D and a constant cg = (%)1/02 > 0 such that
—1

minp, p. P,-mGSH(Pz'pPim-'- 7Pz'm) > c3n <2 .

i1 +Pig s
Proof. Let P;,P,,...,P,, be a set of 2n points
selected randomly, uniformly, and independently in
D. Fix 3 = (g8, Let the ran-
dom wvariable X count the number of m-tuples

P,,P,,...,P, for which H(P, P, ...,P.) <
_m-—1 m—1

csn” <2 . Then, E[X] < (*")ei(esn™ =2 )2 <

(2"),m - == = pn. Therefore, there exists a spe-

m! 2mn

cific set of 2n points with fewer than n m-tuples
PszZ, .., P, for which H(P,,P,,...,P,) <
c3n” "5 . TRemove one point of the set from each
such m-tuple. (The same point may be deleted more
than once but this only helps.) This leaves at least

n points and now all m- tuples P,I,P,27 .., B;,, satisfy
H(P,,P,,...,P; )>csn” = O

Alon and Spencer [1, p. 30] proved the special case of
Lemma 1 in which ¢ = 1 and m = 3, and used it for
showing that Ha 2 (n) = Q(1/n?). The generalization of
the lemma in [2] unnecessarily linked m, the number of
arguments of the function H, and d, the dimension of
the space in which the points are located, by assuming
m=d+ 1.

2.2 Triangles in d Dimensions

We introduce our technique by first using it for planar
simplices, that is, triangles.

Theorem 2 Hj 4(n) = Q(d'~1/((d=1) /p2/(d=1))

Proof. Let A(P,O,P,I,P,Z) be the area of the triangle
defined by P;,, F;,, and P;,. We first upper bound
Prob[A(P;,, P;,, P;,) <€]. Let z be the distance from
P;, to P;,. Then,

Prob[b < z < b+ db] < d(x%/2b¢/T'(d/2 + 1))
= (7¥2db41/T(d/2 + 1)) db,

the difference? between the volumes of the correspond-
ing balls in ®¢.3 Given P;, and P;, at distance b, the

%0

2We use the non-italicized symbol ‘d’ to denote the differen-
tiation operator, in order to avoid confusion with the italicized
7 . .
symbol ‘d’ that denotes the dimension.
3Recall that the volume of a d-dimensional ball, with radius r,

altitude h from P;, to the line defined by P;, and P;,
satisfies bh/2 < ¢, i.e., h < 2¢/b. Thus, P;, must lie
within a d-dimensional cylinder whose height is at most
v/d and whose cross-section is a (d — 1)-dimensional ball
whose volume is 7(?=1)/2(2¢/b)4=1 /T((d + 1)/2). This
occurs with probability at most w(?=1)/2/d(2¢/b)4~"/
T'((d +1)/2). Since 0 < b < Vd,

Prob[A(P,, Py, Py) < €]
/2 gpd—1 wd=1/2/4(2¢ /p)? 1
< fo (F(d/2+1) ) ( T((d+1)/2) ) db
d 1/22d 1d2 d—1
= M@EFTED /D)
Now apply Lemma 1 with ¢; = 79=1/22¢-14% /(T'(d/2 +
1IT((d + 1)/2)), co = d — 1, and m = 3, and conclude
that there exists a set S C [0,1]? of n points for which
InlnP P, ,Pi, €S A(P’ll ) -Pwv P ) > C3/n2/(d_1)7 where

igsligy

¢ = (3!r(d/2+1)r((d+1)/2))ﬁ

9d+2,;d—1/242
= @(dl—l/(2(d—1)))

(by applying Stirling’s asymptotic approximation
I(z + 1) ~ V2rz(xz/e)*). That is, Haqa(n) =
Q(dt— 1/ Rd=1) p2/(d=1)), 0

2.3 k-Dimensional Simplices

We now use the technique of Section 2.2 to show our
main result:

Theorem 3 Hy q(n) = Q(f(k,d)/n*/(@=k+1)) where
f(k,d) is a function of only k and d that is independent
of n.

Proof. Let Py, P,...,P;, be k + 1 points in the d-
dimensional unit cube, and let V (P, Py,...,Py) de-
note the volume of the k-dimensional simplex defined
by these points. Also denote by z; (for 1 < i < k) the
distance from P; to E;_1, the (i — 1)-dimensional flat
defined by Po,Pl, - 7Pi—1-
Let us begin with

Prob[V(P, P,. .., Py) < ¢]. First,

upper bounding

N\Q.
= Q.‘

Problby < 1 < by +dby] < d(F52ks)

r(

[NI1Y

+1)
it
= (g P
the difference between the volumes of the corresponding
balls. Second,

e
Prob[by < 25 < by + dby] < d@/&ﬁ)

= \/—_7r 2(5(11—1’_)11)_) db27

is m%/2r® /T'(d/241), where T'(-) is the continuous generalization of
the factorial function, for which I'(z) = (z — 1)I'(z — 1), ['(1/2) =
V7, and T'(1) = 1. It is easy to see that vol(B2*F) = 7% /k! and
vol(B2k+1) = gk+1/2)T(k 4 3/2) (where B? denotes the unit
d-dimensional ball), for an integral k > 1.



the difference between the volumes of the corre-
sponding cylindrical shapes obtained by sweeping
(d — 1)-dimensional balls along a straight path whose
length is at most that of the main diagonal of the unit
cube. The general probability term is thus

i1 ﬂ,d_;"*'l pd—i+l
PrOb[bi S xX; S bi + dbz] S d(d 2 W)

i—1 72 (d—it1)bd
=l —1 ;
= d 2 F(d_;.+1+1) L dbz
For the second-to-last point we have
Prob[by—1 < 2p—1 < bp—1 + dbp—1]
koo TE pd
< 4@ i)
=4 75 (@ k2Tt
= F(d—k+2+1)

dbg_1.

For the last point we have the condition ]_[z 1 ,;, <,
that is, by < Hk'—b Therefore, P, must lie in a shape
i=1 Y

whose volume is at most

5= = k!
CT(EEL) (s
(the product of a (k—1)-dimensional slab, each of whose
dimensions is at most v/d, and a (d — k4 1)-dimensional
ball).

The probability of obtaining a k-dimensional simplex
of volume at most ¢ is thus upper bounded by

vavd  Vd &

// / ri=d— k+17 .di§1§ . d! (1)

k— 1 integrations

)d*k-l-l
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. (k!)d7k+1 . gd*k+1)

d :
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i=d—k+1
dbydby ... dbg_1.

By Stirling’s approximation,

I rG+y~ 11

d - iNd
(vori-9) @
i=d—k+1 i=d—k+1 e2
d

(Qe)k(2d k= 1)/4

1) (d—k+1))

ol
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After substituting Eq. (2) in Eq. (1) and integrating
k—1 times, we conclude that the probability of obtaining
a k-dimensional simplex of volume at most ¢ is at most

7r1¢(2d—1c—1)/4dk(k—1)/4\/a(%))e(zaz—kﬂ)/‘;(k!)az—le+1

]‘[ lz'(d—k—i-l)\/(d—k)!(k—l)!

i=d—k+

=kt

Finally, set
7rk(2d—k—1)/4.dk(k—l)/4.m.(ze)k(zd—k+1)/4.(k!)d—k+1

VIl g - (d—k+1)-/(d= k)1 (k—1)! ’

C1 =

ca =d—k+1,and m = k+1, and apply Lemma 1. The
lemma tells us that there exists a set of n points of which
every subset of k + 1 points defines a k-dimensional
simplex whose volume is at least cz/n*/(3=%+1) where

1/(d—k+1)
c3 = (éfjllc)l' Let us finally give a lower
bound on c¢3. By substituting ¢; in the above term,
we see that
d—k+1
ik 3)
(k+1)1(k—1)!
T (RN)I-RFT

d
(d—k+1) T
i=d—k+1
" Qkt1tk(2d—k+1)/4gk(2d—k+1)/4  k(2d—k—1)/4gk(k—1)/4
1
d

i
i=d—k+1
We write
(k+1)U(k—1)! _ k41

TR =R
and
(k!)dfk—l ~
z(d—k—1)/27T(d—k—1)/2e—k(d—k—1)k(2k+1)(d—k—1)/2’

) (k!)dl—k—l 2 (k!)dl—k—l

and so,

(k+1)!(k—1)!
T(RDIRFT
>

1
Z Q@—k—1)/2 g (d—k—1)/2g—k(d—k—1) (PkF1)(d—k—1)/2 *

In addition,
H:'i:d—k—i-l it > (d — k4 1)kd—k+1)/2

and

- o
Hz’:d—k+1 i <dz.
Substituting all these terms in Equation (3), we obtain

that
cg—k+1 >

ek(2d—3k—5)/4(d —k+ 1)k(2d—k+1)/4+1/
(2(2kd—k2+2d+3k+2)/47r(2kd—k2+2d—3k—2)/4
k(2kd72k2+d73k71)/2dk(k71)/4)’

concluding that

k_ _k(k+T) k. k+5
> 2~ A(d—k+1) (d— k+1)2 4(d k+1)
3 2 kti, k(E£3) ki1 +BADGR=9) 1 2641 k(k—1)
2 2 4(d—k+1) 4(d—k+1) g 2 d-k+1g 4
k k
_ e2(d k+1)2
- k(k—1)
(2m) " F K3
1
d—k+1
. (d— k+1) 2 2kt
LICEE) k(k+7) GEDE=D :
2 4
This completes the proof. |

Note that substituting ¥ = 2 in this bound yields
Ha a(n) = Q(d/2+7/(4d=1)) /p2/(d=1)) " wwhich is a bit
weaker than the bound Q(d"'~'/(2(d=1)) /p2/(d=1)) shown
in the previous section.



3 The Upper Bound

Again, we first demonstrate the argument for k = 2:
Theorem 4 Hj 4(n) = O(d/n?/?).

Proof. The upper bound is set by a pigeonhole argu-
ment. Cover the d-dimensional unit cube with a regular
grid whose step is 1/m'/¢, where m = (n—1)/2. This di-
vides the d-dimensional unit cube into exactly m small
grid cubes. Put n = 2m + 1 points in the unit cube.
There is at least one grid cube that contains at least
three points. Since the length of the main diagonal of
a grid cube is v/d/m!/?, the area of the triangle defined
by these three points is O(d/m?*/?) = 0(22/%d/n*/?) =
O(d/n*/?). O

We use a similar argument for a general value of k:
Theorem 5 Hy, g = O(k*/4d*/? J (k! nk/4)),

Proof. Again, cover the d-dimensional unit cube with
a regular grid whose step is 1/m1/ 4 where this time
m = (n — 1)/k. This divides the d-dimensional unit
cube into exactly m small grid cubes. Put n = km + 1
points into the unit cube. There is at least one grid cube
that contains at least & + 1 points. Since the length
of the main diagonal of a grid cube is v/d/m'/?, the
volume of the simplex defined by these k + 1 points is
O(d*/? | (k! mF/ 4)) = O(k*/4dk/2? | (k! nk/ 1)), O

4 Conclusion

In this paper we set lower and upper bounds
on Hp,a(n), the maximum possible volume of the
minimum-volume simplex defined by any k points
that belong to a set of n points located in the d-
dimensional unit cube. For Hs4(n), the obtained
bounds are Q(d'—'/((d=1) /p2/(d=1)) and O(d/n*?).
(For a fixed value of d, these bounds are (1/n?/(4-1)
and O(1/n?/?), respectively.) For the general case,
we obtain that Hpgq(n) (for 2 < k < d) is
Q(f(k,d)/n*/(@=F+1) (where f(k,d) is a function
that is independent of n) and O(kF/4d*/? [ (k! nk/4)).
(For fixed values of k& and d, these bounds are
Q(1/nk/(@=k+1)) and O(1/n*/9), respectively.)

Recently, Lefmann [7] announced similar re-
sults for £ = 2 by showing that Haq4(n) =
Q((logn)t/(@=1) /n2/(@=1)) and Hy 4(n) = O(1/n?/?).
His lower bound is an improvement over our bound by a
factor of (logn)'/(4=1)_ The upper bound is identical to
ours but is obtained by using a more difficult method.
Both bounds do not specify the asymptotic dependence
on d.
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