Dynamic Well-Separated Pair Decomposition Made Easy

John Fischer*

Abstract

We focus on making compressed quadtrees, particularly
those used in the implementation of well-separated pair
decomposition, into effective dynamic data structures.
We use random shifting to achieve logarithmic insertion
and deletion time per pair with high probability.

1 Introduction

Well-separated pair decomposition (WSPD), a means
of concisely encapsulating distances among members
of a finite point set in R?, has proved to be a use-
ful tool in computational geometry; using it, one can
readily obtain approximation algorithms for closest pair,
nearest neighbor, and spanner problems in low dimen-
sion. Callahan and Kosaraju [CK95] defined and im-
plemented WSPD using a fair split tree, arguably be-
cause this data structure lent itself to the design of ef-
fective parallel algorithms. However, the fair split tree
is an unecessarily complex data structure to realize the
WSPD of a point set. As an alternative, one can simply
use a compressed quadtree, a data structure represent-
ing a dyadic partition of a hypercube; the compressed
quadtree yields simpler WSPD algorithms.

Callahan [Cal95] developed methods for mantaining
the fair split tree and the WSPD dynamically. For
the fair split tree, Callahan appealed to Frederick-
son’s [Fre97a] topology tree technique for maintaining
binary trees dynamically. For the WSPD, the dummy
points are introduced to guarantee that when one inserts
or deletes points, the amount of change to the WSPD is
small; unforutunately, the maintenance of the dummy
points introduces a substantial level of complication into
the dynamic maintenance of WSPD. In this paper, we
show how this can be avoided.

Although a WSPD for a point set can be computed
using a simple algorithm run over the point set’s com-
pressed quadtree, this particular WSPD for the point
set may change significantly due the insertion of a new
point — an artifact of the rigid high-level boundaries
of quadtree cells. However, by randomly shifting our
quadtree’s boundaries, we can ensure that with high

*Department of Computer Science, University of Illinois,
jrfische@uiuc.edu

TDepartment of Computer Science, University of Illinois,
sariel@uiuc.edu

Sariel Har-Peledt

probability, insertion of a new point actually affects rel-
atively few pairs of the WSPD. In particular, we can
ensure that point insertion and deletion can be per-
formed in O([logn + loge ']e ?logn) time with high
probability. Random shifting is an old idea, used by
Arora [Aro98] for approximate Euclidean TSP, and in
the work of Bartal and others on embedding of finite
metric spaces [Bar96, Ind01]; however, this is the first
work we know of that applies random shifting to WSPD.

2 Preliminaries

Definition 1 Let H be a hypercube in R?. A quadtree
over H is a partition tree of H, defined recursively: the
root node r represents H, and the 2% children of r are
roots of quadtrees for each of the 2% identical hypercubes
obtained by making d axis-parallel cuts of H.

When a node v represents a region H of R?, we say
that H is the “cell” of v (since such regions lie within
grids). Given a quadtree T, a canonical cell relative to
T is a region of space that could serve as a cell of T
(regardless of whether the cell explicitly appears in T').

In a quadtree defined over a finite point set P, a node

v whose region contains at most one point of P has no
children.

Definition 2 Given a quadtree () over a finite point set
P, the compressed quadtree over P is obtained by (i) re-
moving all leaf nodes whose regions contain no points of
P; and then (ii) replacing any chain (mazimal sequence
of nodes with one child) with a single edge.

Henceforth, unless otherwise stated, quadtrees and
compressed quadtrees will be defined for d-dimensional
n-point sets P of diameter (1) lying within [0,1]%;
hence the cell corresponding to the root level of the
quadtree will be simply [0,1]¢. This can be achieved
by maintaining global translation and scaling factors,
which in addition allows for a random shift to be ap-
plied to the quadtree with ease.

Definition 3 The level of a quadtree node v, denoted
£(v), is the base two logarithm of the sidelength of its
corresponding cell.

The root has level zero, and all other nodes have neg-
ative level. Notice that in a compressed quadtree, the
level of a node does not generally correspond to the
node’s distance from the root.

WSPD(u,v, Q)
Assume £(u) > £(v) or (£(u) = £(v) and u < v)
(otherwise exchange u + v).
If 8v/d - 2% < ¢ - ||rep,rep, || then
Return {{u,v}}
Else
Denote by u1,... ,u, the children of u
Return {J;_, WSPD(u;,v, Q).
End WSPD

Figure 1: Algorithm for computing well-separated pair
decomposition.

Definition 4 Let P be a set of n points in R%, and
1/4 > &€ > 0 a parameter. A well-separated pair de-
composition (WSPD) with parameter e~' of P is a set
{{A41,B1}, ... , {As, Bs}} of “WS pairs” such that

1. A;, B; C P for every i;
2. A;NB; =0 for every i;
3. Uiz [Ai® Bl = P® P;

4. d(A4;, B;) > e+ maz{diam(A;), diam(B;)}, where
d(AzaBz) = min(p,q)E(Ai,Bi) pq”

Some WSPD involve fewer pairs than others; we thus
consider the size of a WSPD to be the number of its WS
pairs. Techniques for generating WSPD of small size
given a point set P typically involve the creation of a
partition tree of P; we use the compressed quadtree due
to its simplicity relative to the fair split tree of [CK95].

Theorem 5 Let P be an n-point set in R%. For 0 <
e < 1, one can construct, in O(nlogn +ne=9) time, an
e~ L-WSPD of size O(ne~?).

Proof. First, one constructs a compressed quadtree @
for P. One then traverses the tree to instill within each
node v a represenatative p = rep,; here p may be any
point p € P lying in v’s region. Given the root node of
@ is r, one then uses the algorithm given in Figure 1
by making the call WSPD(r,r,@). We omit the proof
of correctness, which resembles that of [CK95]. O

To efficiently maintain the WSPD dynamically, we
must modify not only the WS pair list itself, but also
the compressed quadtree. In the case of insertion, given
a compressed quadtree @@ built over the n-point set P,
we wish to add a new point p to P, updating the com-
pressed quadtree quickly. The addition of p can only
change @ in one of two minor ways: (¢) a leaf node x
representing p is simply hung from an existing node v;
or (i7) between some node w and its parent v, a new
node u is inserted, and z is hung from v (along with w).

In either case, were we to know the lowest node of
the tree whose cell contains p, these operations would
take constant time. One could simply descend from the
root of @@ to find this node; however, the compressed
quadtree of an m-point set can have depth linear in n.
Compressed quadtree point location can be improved to
O(log n) time by building a finger tree (as in [AMNT98],
for instance); however, it takes O(n) time to build such
a structure. We next address this problem.

3 Dynamic Compressed Quadtrees

3.1 Topology Trees

Frederickson ([Fre97a],[Fre97b])’s topology tree is de-
fined over any unrooted tree of maximum node degree
3 or less. We first consider topology trees over binary
(hence rooted) trees.

Binary Trees. To build a topology tree 7 over a
binary tree T, one creates a hierarchical set of ‘clusters’
of nodes within the tree. We consider a cluster within
T to be any contiguous set of nodes within 7. Notice
that a cluster has a “degree” — the number of edges with
exactly one endpoint within the cluster.

We cluster T is as follows: first, set Tp = T, and
consider each node of Ty to be a singleton cluster. Next,
maximally cluster adjacent pairs of nodes within Tp,
maintaining the invariant that no multinode cluster can
be of degree 3; then, replace each cluster with a single
node. This yields a new tree T7. Repeat this procedure
until for some k, T} consists of a single node. Given T'
is a binary tree over n leaf nodes, [Fre97a] shows that
k = O(logn).

The topology tree T for T is defined relative to this
sequence: the node r of T}, is the root of 7, the two
nodes of Tj_1 that were combined to form r are the
children of r in 7"; and so on recursively. 7, a partition
tree for the node set of T', has at most £k = O(logn)
levels; it is binary, and thus of linear size. Every cluster
of T is of degree 1 or 2; each such cluster corresponds
either to (i) a subtree S of T, or (ii) to a structure
obtained by removing from such an S one of its own
subtrees (the only unusual case is that of S =T).

Operations of edge insertion and edge deletion on un-
rooted trees T are defined in [Fre97a, Fre97b]: the for-
mer joins two trees into one by adding an edge to bridge
the trees, and the latter creates two trees from one by
removing an edge within the tree. The time required to
update (merge or split) the appropriate topology trees is
shown to be O(logm), where m is the number of nodes
of the original tree.

Trees of Bounded Degree. Defining topology trees
over trees of arbitrary bounded degree directly tends to
make updates baroque [Fre97a]. Instead, we adopt the
general approach employed by [Fre97a]: conceptually
replace each quadtree node with a complete d-level bi-

nary tree, with each level of this tree corresponding to a
split of the quadtree cell along a different principal axis;
then, define the topology tree over this binary variant
of the compressed quadtree.

3.2 Dynamic Maintenance Operations

Point Location. Given a point p, a compressed
quadtree @), and its topology tree 7, we wish to find,
in O(logn) time, the lowest-level node v of @ for which
the point p lies in the region of space corresponding to
v. We can do so by simply traversing 7 downward from
its root. The straightforward details are omitted.

Lemma 6 Suppose that T is the topology tree built over
a compressed quadtree T, and that the depth of T is h.
Given a point p € [0,1]¢, one can find the deepest node
of T whose region contains p in O(h) time.

Cell Queries. Though we often seek the smallest
compressed quadtree node whose region contains a given
point, we may also seek the opposite: given a canonical
cell C relative to a compressed quadtree @) defined over
an n-point set P, we wish to determine quickly whether
or not C' is devoid of points of P. We refer to this oper-
ation as a cell query; it can also be done by traversing
T downward from its root. The details are omitted.

Lemma 7 Given o compressed quadtiree) of an n-
point set P with corresponding topology tree T, and a
canonical cell C relative to Q, one can find, in O(logn)
time, the node w € @ whose region R satisfies R C C
and PNC = PNR.

Since edge insertions/deletions on a compressed
quadtree with topology tree can be performed in
O(logn) time, it suffices to describe point (i.e. leaf
node) insertions/deletions by a finite series of edge in-
sertions/deletions.

Insertion. We first use point location to find v, the
node from which we must hang a leaf node z repre-
senting p. (The topology tree over x can be created
in constant time.) The two scenarios described earlier
again apply. In the first, we simply hang z from v, by
performing a single edge insertion (from z to v). In the
second, we create a second new node u, use an edge
deletion and two edge insertions to place u between v
and its appropriate child w, determine from the coor-
dinates of p which subcell of u contains p, and hang z
from wu in the corresponding location.

Deletion. To remove a point p from within @, first
perform point location to find the lowest node v’ whose
space region contains p; then, perform an edge deletion
on the edge connecting v to its parent w. If w has
only one child, perform two edge deletions and an edge
insertion to cut w out of the quadtree.

4 Limiting WS Search by Random Shifting

Before building the compressed quadtree, we shift the
grid system to be placed over the point set randomly.
For instance, rather than having the root node of a
quadtree for P correspond to the cube [0, 1], we have it
instead correspond to ®?:1[t,~ —1,¢ + 1] for ¢; € [0,1].
(The actual implementation of this effect involves a sim-
ple update of the the global scale and shift factors pre-
viously mentioned.)

Path distance between a pair of nodes in a compressed
quadtree need not correspond, however approximately,
to actual distance between the nodes; but by shifting
the cells randomly, intuitively one expects it to become
less likely that a close pair of points will lie across a
boundary between large cells.

Lemma 8 Suppose a pair of points {p,q} is separated
by distance A. Upon randomly shifting a quadtree grid
of sidelength 2¢ over p and q, the probability that p and
q are separated by the quadtree cell boundary at level ¢
is at most d)\/2".

Proof. Let us instead translate the segment pg over a
fixed grid of sidelength 2¢. We consider positions of p for
which pg may intersect the grid. Supposing e1,... ,eq
are basis vectors aligned with the grid, consider a par-
ticular e;. Along this direction, we overestimate the
region R of a grid cell in which intersection might oc-
cur by making R of width A in the e;-direction, and
of width 2% along the d — 1 other principal directions.
With d such regions, one for each basis vector, we again
upper-bound the size of a grid cell’s intersection region
by simply adding the sizes of the d component regions.
Thus, the volume of the region within a grid cell within
which placement of p would lead to intersection of pg
with the grid is at most dA(2¢)?~!. Hence the probabil-
ity that a randomly placed p will effect an intersection
is at most [dA(2¢)471]/(28)¢ = d)\ /2% O

The probability that p and ¢ are separated by the
quadtree cell boundary at level i = IgA + 41gn is at
most d/n*. If p and g are cut by the boundary at level
i, then they will also be cut by all finer boundaries.
Hence the probability that lgA + 41gn is the highest
level on which p and ¢ are cut is also at most d/n*.

We may extend this observation to a statement about
the entire point set P. Given Y is the event that for
each pair {p, ¢}, p and g are cut on no level higher than
llgA+4lgn], PriY] < (3) -d/n* < d/n?.

Lemma 9 With high probability, for any given pair
{p,q} of points lying in the d-dimensional unit cube,
the highest level of a randomly shifted quadtree defined
over this cube on which p and q lie in separate canonical
cells is |lg X + 4lgn]|, where X = ||pg||.

5 Maintaining WSPD Dynamically

We have seen how to update the compressed quadtree
@ of an n-point set P upon removal or addition of a
point p to P. It remains to examine how the WSPD
changes due to these updates.

5.1 Insertion and WSPD Extraction

Given compressed quadtree @) rooted at r, the WSPD
creation algorithm of Figure 1 is run by calling
WSPD(r,r, Q). Recursion ends once a pair 7 of nodes is
found to be well-separated; this pair 7 is then output.
Recursing further is possible, but unnecessary; since 7 is
well-separated, any pair whose members are subsets of
the members of 7 must necessarily be a WS pair as well.
Given this, one can verify that the algorithm exhausts
all possible pairs of nodes within the tree.

We have seen that inserting a new point p into a
quadtree () yields a new quadtree Q that is almost iden-
tical to (). Recall the general scenario of inserting new
node z under existing node v: either z is hung directly
under v, or z is hung under a new node u inserted be-
tween v and its child w. Hence @ again contains all
the cells of (), except for the possible introduction of .
The cell of u subsumes the cell of w; hence the WSPD
algorithm given in Figure 1, when run on Q, will out-
put every WS pair output when the algorithm is run on
@, with the exception that some pairs in @ involving w
may now involve the more general node u instead, since
u is encountered before w when recursively testing for
WS pairs.

More formally, we seek to modify a list L of WS
pairs for P (which was generated by the algorithm of
Figure 1) in order to yield L, a list of WS pairs for
P = P U {p}. By the argument above, in order to do
this so that L matches exactly the list that would be
produced by Figure 1 on P, two modifications are re-
quired: (i) add to L all new WS pairs that involve p;
and (47) update every pair of L in which u should appear
in place of w.

5.2 Finding New Pairs

Suppose that the nearest neighbor to p in P is ¢, and
that ||pg|| = A. Two observations help us in our search
for new WS pairs (all of which somehow involve p).

Observation 10 Consider a quadtree cell n containing
p of sidelength ceX. For a sufficiently small positive
constant ¢, n will form a WS pair with any node of @
(i.e. any cell of @ containing a point of P) of level
llgA +1ge| or lower.

Observation 11 By Lemma 9, with high probability, a
quadtree node in which p appears alone can be of level
at most |1g A +41gn].

We therefore need only search for new WS pairs
among quadtree cells of level between |lgA + 1ge| and
|lgA + 4lgn|. This search can be performed exhaus-
tively using quadtree cell queries. The details of this
search, and of the maintenance of the list of WS pairs,
are omitted for lack of space; the result follows:

Theorem 12 Let L be a list of WS pairs for an n-
point set P, generated using randomly shifted com-
pressed quadtree () and topology tree T. With high prob-
ability, in time O([logn + loge~'le~?logn), one can
modify L to yield L, the list of WS pairs that is gener-
ated using the compressed quadiree @ and topology tree
T defined for the point set P = P U {p}.

Deletion involves similar searches to identify WS
pairs; again, the details are omitted for brevity.

Theorem 13 Let L be a list of WS pairs for an n-
point set P, generated using compressed quadtree Q)
and topology tree T'. With high probability, in time
O([logn + loge~t)e~logn), one can modify L to yield
ﬁ, the list of WS pairs that is generated using the com-
pressed quadtree Q and topology tree T defined for the
point set P = P\ {p}.

References

[AMNT98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Sil-
verman, and A. Y. Wu. An optimal algorithm
for approximate nearest neighbor searching in
fixed dimensions. J. ACM, 45(6), 1998.

S. Arora. Polynomial-time approximation
schemes for euclidean TSP and other geometric
problems. J. ACM, 45(5), 1998.

Y. Bartal. Probabilistic approximation of metric
spaces and its algorithmic applications. In Proc.
87th Annu. IEEE Symp. Found. Comput. Sci.,
pages 183-193, 1996.

P. B. Callahan. Dealing with Higher Dimensions:
The Well-Separated Pair Decomposition and Its
Applications. PhD thesis, Johns Hopkins Uni-
versity, 1995.

P. B. Callahan and S. R. Kosaraju. A decompo-
sition of multidimensional point sets with appli-
cations to k-nearest neighbors and n-body po-
tential fields. J. ACM, 42:67-90, 1995.

G. N. Frederickson. Ambivalent data structures
for dynamic 2-edge connectivity and k smallest
spanning trees. SIAM J. Comput., 26(2):484—
538, April 1997.

G. N. Frederickson. A data structure for dy-
namically maintaining rooted trees. Journal of
Algorithms, 24:37-65, 1997.

P. Indyk. Algorithmic applications of low-
distortion geometric embeddings. In Proc. 42nd
IEEE Symp. Found. Comput. Sci., pages 10-31,
2001.

[Aro98]

[Bar96]

[Cal95)]

[CK95]

[Fre97a]

[Fre97b]

[Ind01]

