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Abstract

We consider the problem of triangulating a simple poly-
gon with a small number of different edge lengths using
Steiner points. Given a parameter o, where 0 < a < 1,
we shall present an algorithm for finding an almost uni-
form triangular mesh with 2% + o(Z;) different edge
lengths such that every edge length is between [ and
2[. We shall also give experimental results of this algo-

rithm.

1 Introduction

The problem of triangulating a specified domain has
various applications such as computer aided design or
finite element methods, and has been extensively stud-
ied; see e.g. the survey article by Bern and Eppstein [3].

In the field of architecture, triangular mesh is often
used for structure truss such as a dome to cover a huge
space. In such a large scale structure, the lengths of
members and angles between consecutive members in-
cident to a joint are critical properties that determine
the structural performance. Furthermore, a cost to re-
alize such structure must be also evaluated. Construc-
tion costs heavily depends on the number of the dif-
ferent member lengths. From this standpoint, we are
concerned with how to realize a triangular mesh with a
limited number of different elements.

In this paper, we present a heuristic for constructing a
triangular mesh which consists of almost the same edge
lengths and no small angle using a constant number of
different edge lengths.

The following notation will be used throughout. For
two points z and y on the plane, let d(z,y) denote their
Euclidean distance. The minimum (non-zero) distance
between two point sets X and Y is defined as d(X,Y") =
min{d(z,y) | z € X,y € Y,z # y}. The problem is
defined as follows.

Input: A simple polygon P whose vertex set Vp is
such that | < d(Vp,Vp) < 2, and B is a parameter
between /3 and 2 which controls the edge lengths of
the approximated polygon.
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Output: A simple polygon () which approximates P,
and triangulation of ) such that the edge lengths and
the angles are uniform and the number of different edge
lengths is constant.

Since it is impossible in general to find a triangula-
tion for P such that the number of different edge lengths
is constant, we first appropriately approximate P by a
simple polygon @ so that all vertices of polygon P are
moved to points of a square grid of width al, where
0 < a <1 and [ is predetermined value. This implies
the set of possible edge lengths produced becomes con-
stant, if all edge lengths are bounded. Our algorithm
then finds a triangulation T of @) such that (i) every edge
of T is between [ and (2 + v/2a)l, and (ii) the number
of different edge lengths is 2% + o(Jz ), where o is a pa-
rameter between 0 and 1 which controls the number of
different edge lengths. And then, the angles of a trian-

. . B . 1 .
gulation T are at least min{arccos 5, arcsin ( 5T ﬁa) }if

the approximated polygon @) satisfies [ < d(Q, Q) < S1,
where V3 < < 2.

We use the notation G and Vi to denote square grid
of width al and a set of grid points respectively.

2 Approximation of the boundary

In this section, we consider the problem of approximat-
ing the boundary by using points of a square grid of
width al. We need to introduce the function which
measures the error between the original polygon and
the approximated one. In this paper, we consider the
minimization of Hausdorff distance defined as follows.

The Hausdorff distance between two polygons P and
@ is given by

H(P,Q) = max(h(P,Q), h(Q, P))

where
h(P = in d(a,b).
(P,Q) max min (a,b)
See [1] for more details about Hausdorff distance.

The problem is to find an approximated polygon @
such that Hausdorff distance with a given polygon P is
minimum satisfying every vertex is in Vg and every edge
length is between [ and BI. The algorithm of polygon
approximation consists of three steps. In the first step
we enumerate candidate grid points. Candidate grid



points are defined as C' = {p | d(p,P) < e,p € Vg},
where ¢ will be determined later. Next we construct a
network containing geometric information, and then we
solve the bottleneck shortest path problem.

Candidate grid points. For the computational effi-
ciency, it is necessary to enumerate candidate grid
points. From the following lemma, we set & to v/61.

Lemma 1 Let () be the approzimated polygon which
minimizes Housdorff distance. Then, h(Q,P) is less

than /6.

Consider finding all the candidate points on a line [ :
z = tal, where ¢ is an integer, we take the Voronoi-
diagram of P, Vor(P). Suppose that a point p moves
upward on [. Then the distance function between p and
P with respect to the y-coordinate of p is unimodal in
each Voronoi cell. Therefore, we can get candidate grid
points in each Voronoi cell in time proportional to the
number of candidate points in the Voronoi cell.

The number of Voronoi cells which intersect [ is
O(|Vp|), and each of such Voronoi cell contains O(e/al)
candidate grid points. Therefore, the number of can-
didate grid points on [ is O(e|Vp|/al). Total number
of lines to be considered is O(|Vp|/a) since horizontal
width of the original polygon is O(l|Vp|). Therefore, to-
tal number of the candidate grid points is O(%) =
0("z5).

By more precise analysis, we get that the candidate
grid points can be reduced to O('Z—Z‘)

Constructing a network. We create a node in the net-
work associated with every candidate point p. If points
p and q satisfy [ < d(p,q) < Bl, we draw an edge from
p to q. Fig.1 shows the edge weight of pq. Let p' and ¢’
be the nearest points from p and q respectively, and let
p'aias...arq be a polyline from p' to ¢’ of P. The edge
weight of pq is defined as the maximal value of d(p, p'),
d(q,q") and d(a;,pq) for all i = 1,2, ... k, (see Fig.1).
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Figure 1: The edge weight of Hausdorff distance mini-
mization problem between p and ¢

From Lemmal, there is at least one vertex of the op-
timal solution in the circle with radius v/61 + 6 (§ > 0)
centered at a point of P, where § can be arbitrarily
small. Therefore, we choose an arbitrary vertex v of
P and consider the set Vsqrt of candidate points in the
circle with radius v/61+6 centered at v as starting nodes

set of a network. We then create a copy of Viars as a
set of terminal nodes. Then, the path from a start node
to a terminal one corresponds to a sequence of edges of
a polygon which approximates P. The optimal approx-
imate polygon @) can be found by computing the bot-
tleneck shortest path from a starting node to a terminal
node on the network such that the maximum weight of
the path is minimum. It can be obtained by a variant
of the standard Dijkstra method.

Computational complexity for polygon approximation.
The total number of nodes which associated with candi-
date points is O(|Vp|/a?). Number of edges of the net-
work incident to one node is O(1/a?). Therefore, the
total number of edges is O(|Vp|/a*). For each starting

node of Viiars, it takes O ‘Z—i’l + “;—Z’l log @ time to
get a shortest path. Therefore the total time to get the
optimal solution is O (('Z—’Z‘) (% +log 2! ))

Ta

Optimal grid layout. The method that we stated
above produces a different solution depending on a po-
sition of the grid. If we slightly move the grid, H(P, Q)
may change. Suppose that the output polygon @ is al-
ready determined. This leads to the problem of finding
an optimal grid layout which minimizes H (P, Q), which
can be treated as a matching problem between two poly-
gons. An O((m + n)®log? mn) algorithm is known for
optimal matching under rigid motion by Chew et al.in
[5], where m, n are the members of vertices of two poly-
gons. Even after an optimal grid layout is found, the
optimal approximate polygon for P may be different
from @) for this grid layout. Thus, we have to repeat
this process until the solution converges. We do not
have any idea currently about how both shape and grid
layout can be optimized simultaneously.

3 Incremental Voronoi partition with square grid

In this section we present an algorithm for finding a uni-
form triangulation with a constant number of different
edges. Our method is based on the incremental Voronoi
partition used in [2, 6, 7].

Let @ be the approximate polygon, Vo be a point
set of (), and S be a set of Steiner points set. Let p;,
for i = 1,...,4, denote vertices of a grid square which
contains a vertex p.

Algorithm
Step 1: Initialize S := 0
Step 2: Compute the Voronoi diagram Vor(Vg U S).

Step 3: Find a point p} which is one of the vertices
of the grid square containing a Voronoi vertex p of
Vor(Vp U S) and is in the interior of @ such that
d(pf, Vo U S) is maximum.



Step 4: If d(p}) > [, let S := SUp} and return to Step
2. Else go to Step 5.

Step 5: Output the constrained Delaunay triangula-
tion for Vg U S

We shall analyse the algorithm by following the
ideas in [2, 6, 7]. Consider the Delaunay triangulation
DT (Vg US). Let us classify a triangle A of DT (Vg U S)
as either critical or non-critical depending on whether
the circumcenter of A is lies outside of the polygon @
or not. Critical triangles occur close to the boundary.
Consider some edge e of DT(Vg U S) on the boundary
of Q. Edge e cuts off some part of the Voronoi dia-
gram Vor(Vg U S) that lies outside of (). If that part
contains Voronoi vertices then we define the critical re-
gion, R(e), for e as the union of all the critical triangles
that are dual to these vertices. Each critical triangle of
DT(Vg U S) belongs to a unique critical region.

Lemma 2 No edge e of a non-critical triangle A of
DT(qgUS) is longer than (2++/2a)l. This upper bound
is tight.

Proof. Let r be the radius of circumcircle of A. We
assume that x; is nearest to the circumcenter x among
four vertices x;, for i = 1,...,4, of four vertices of a grid
square containing z. Then we obtain d(z;, ) < %ai.

(1)When z; lies inside of a Voronoi cell of Vor(VoUS)
whose generating point is one of three vertices of A, let p
denote the nearest point to 1 of A, we have d(x1,p) <1
from the terminal condition of algorithm. The triangle
inequality implies

r < d(z,z1) + d(z1,p) < <1 n %) L.

(2)When z; lies inside of a Voronoi cell whose gener-
ating point ¢ is other than three vertices of A, we get

r < (1 + %) ! in the same manner as above.

As all edges of A are less than 2r, an edge of non-
critical triangle is less than (2 + v2a)l. For @ = —L

mV?2’
where m is an integer, we can realize the upper bound
edge length. O

For a critical triangle, the lemma in [7] applies to our
algorithm.

Lemma 3 No edge f of a critical triangle in R(e) is
longer than e.

Theorem 4 Let T' denote the triangulation obtained
by the algorithm. Then, the length of every edge of T
is between I and (2 + v2a)l.

Next observation is for an angle of DT(Vg U S). In
the same way of analysis in [4, 8, 9], we can prove the
following lemmas.

Lemma 5 No angle of a non-critical triangle A is less
1
than arccos (m .

Proof. Let r be the radius of circumcircle A, and let e
be an edge of A, whose length is denoted by d(e), and let
0 be the angle opposite to e. It is a well-known geomet-

ric fact that 8 = arcsin %. From Theorem 4, we have

d(e) > 1. As remarked in Lemma 2, r < <1 + %)l

. . 1
Therefore, we obtain § > arcsin (m) |

Lemma 6 No angle of a critical triangle of A is less
than arccos g

Theorem 7 If the wvertex set of ) satisfies [ <
d(Q,Q) < Bl, where 8 < 2, the angles obtained by the

. . ﬁ . 1
algorithm are at least min{arccos 5, arcsin (2 - \/Ea) 1.

Computational complexity for triangulation. First
we count the number of Steiner points n. Let r* =

(1 + \%) I. The n + |Vp| circles with radius r centered

at the points in Vg US completely cover the polygon Q.
Then we get the upper bound for n,

Area(Q) 2
w{ (1 + \/%) é}

Steps2~4, of the algorithm has the same structure as
incremental Voronoi partition. Therefore, a runtime for
triangulation is O((n + |Vg|)?log(n + [Vg|)), (see [2]).

n <

- Vol

4 Experimental Results

We have implemented the proposed algorithm. We shall
show experimental results obtained by applying the al-
gorithm for the convex polygon, given by z2+(y/1.5)% =
4002 (see Fig.2(a)). We have tested the case of [ = 40,
B = 2.0. The relationship between a and the error of
boundary approximation is given in Tablel. The ta-
ble shows a clean trade-off between the number of edge
lengths and the closeness of the approximation of the
boundary. Results for a = 0.4 and a = 0.2 are shown
in Fig.2(b) and (¢). In Fig.2(c), it is hard to recognise
the difference between P and Q.

5 Conclusion and future work

We have presented an algorithm for generating a tri-
angular mesh with a constant number of different edge
lengths. In previous works [7, 10], the triangular mesh,
having O(|Vp|) different edge lengths, is presented. In
this paper, we obtain a triangular mesh such that the
number of different edge lengths is 2% + o(Jy) with a
boundary gap depending on «. This implies that we can



Table 1: Results for a convex polygon. Change with respect to a, for [ = 40.

a # of lengths | # of lengths Max length | Max length Min length | Min length t of angles Hausdorff
upper- upper- lower- distance
bound bound bound

0.1 153 84 85.7 79.7 40.0 40.2 432 1.3

0.2 50 29 91.3 79.2 40.0 43.3 181 2.7

04 18 11 102.6 86.2 40.0 45.3 50 6.0

0.6 10 6 113.9 86.5 40.0 48.0 12 9.3

(a)

Figure 2: (a)Initial boundary. (b)Approximated boundary and its triangular mesh, where a = 0.4. (¢)Approximated

boundary and its triangular mesh, where a = 0.2.

construct a triangular mesh with a constant number of
different edge lengths, depending on a permissible er-
ror of the boundary for a designer. This feature is very
useful in the case of application to the architecture.

We have also implemented the polygon approxima-
tion algorithm which minimizes the area of the symmet-
ric difference. Details will be reported at the conference.

We are interested in the following problems:

e Optimal grid layout
e Extension to curved surfaces

o Characterization of curved surfaces realized by a
constant number of edge lengths
Triangular mesh on curved surfaces with O(Z5) differ-
ent edge lengths will be obtained by using cubic grid.
However, it is difficult to find an approximation of the
initial boundary.
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