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Abstract

In this paper, we study the problem of how to tile a
layout with dominoes. For non-coloured dominoes, this
can be determined easily by testing whether the layout
graph has a perfect matching. We study here tiling with
coloured dominoes, where colours of adjacent dominoes
must match.

It was known that coloured domino tiling is NP-hard
when the layout graph is a tree. We first strengthen
this NP-hardness result in two ways: (1) we can use a
path instead of a tree, or (2) we can force that exactly
all given dominoes are used. However, both these re-
ductions (as well as the existing one) use an unbounded
numbers of colours, which is not realistic for domino
tiling. As our main interest, we hence study domino
tiling with a constant number of colours. We show that
this is NP-hard even with 3 colours. We prove these
results by relating domino tiling to a graph homomor-
phism problem, which may be of independent interest.

1 Introduction

In this paper, we consider the problem of tiling a given
layout with dominoes. A layout L is an integral or-
thogonal polygon, i.e., a polygon for which all edges are
horizontal or vertical and vertices are placed with inte-
ger coordinates. The layout may have holes. A domino
is a 1 x 2-rectangle. A domino tiling of L is a placement
of dominoes inside L such that no two dominoes inter-
sect in the interior and every point of L is covered by a
domino.

A layout L can be described via the layout graph G*,
which is defined by adding one vertex for every inte-
gral 1 x 1-square of the layout and connecting adjacent
squares by an edge. See also Figure 1. It is folklore that
a layout L has a domino tiling if and only if GT has a
perfect matching, i.e., a set of edges M such that every
vertex is incident to exactly one edge in M, and this
can be tested efficiently [4].

In this paper, we study domino tiling while consid-
ering colours of dominoes; this was introduced in [5].
Let C = {c1,...,¢} be a finite set of [ colours. A
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Figure 1: (a) A layout and its layout graph with a per-
fect matching (bold.) (b) A tiling with coloured domi-
noes; vertices with the same symbol must be coloured
the same.

coloured domino is an unordered pair (c;,c¢;). Uni-
coloured dominoes, i.e., dominoes for which ¢; = ¢;, are
not expressively forbidden, but will not be used in our
NP-hardness reductions.

A coloured domino tiling of a layout graph G* is sim-
ilar to a domino tiling, except that colours of dominoes
must match up. Thus, given a multi-set D of coloured
dominoes, a coloured domino tiling of G with D is a
perfect matching M in G* and a colouring ¢ : V — C
such that

e if (v,w) is an edge in M, then (c¢(v),c(w)) is a

domino in D,
o if (v,w) is an edge not in M, then c¢(v) = ¢(w), and
e every domino is used at most once, i.e., there is an
injective mapping from {(c(v), c(w)) : (v,w) € M}
onto D.

See also Figure 1(b). In what follows, we never con-
sider non-coloured dominoes and/or tilings, and hence
drop “coloured” from now on.

We can distinguish domino tilings by whether they
are using all given dominoes. In the EXAcT DOMINO
TILING problem every domino must be used exactly
once in the tiling, so the number of dominoes must equal
half the number of vertices of the layout graph. In the
PARTIAL DOMINO TILING problem we can have arbi-
trarily many dominoes. Watson and Worman [5] showed
the following results:

e ExacTt DoOMINO TILING is solvable if the layout
graph is a path or a cycle.

e PARTIAL DoMINO TILING is NP-hard, even if the
layout graph is a tree.



Watson and Worman left as an open question whether
ExacT DOMINO TILING is NP-hard. We prove this, and
strengthen their NP-hardness results, as follows:

e We show that ExacT DoMINO TILING is NP-hard,
even if the layout graph is a caterpillar, i.e., a tree
that consists of a path with degree-1 vertices at-
tached.

o We show that PARTIAL DomINO TILING is NP-
hard, even if the layout graph is a cycle or a path.

Both our NP-hardness proofs and the one in [5] use an
unbounded number of colours. This is unrealistic, since
normally dominoes are “coloured” with between 0 and 9
dots. We hence next study dominoes with few colours.
We show that coloured domino tiling is NP-hard even
if only 3 colours are used for more complicated layouts.

We are generally only concerned with proving NP-
hardness; the domino tiling problems are clearly veri-
fiable in polynomial time, and hence our results really
prove NP-completeness.

2 Paths, Cycles, Trees

Domino tilings can also be described in terms of graph
homomorphisms. We need some definitions first. As-
sume we are given a layout graph G and a perfect
matching M in it. The contracted graph G€(M) re-
sults from contracting every edge that is not in M. For
cycles and trees, all perfect matchings give the same
contracted graph, and we write G instead of GC(M).

A multi-set of dominoes can conveniently be ex-
pressed via the domino graph, which is a multi-graph
that has a vertex for every colour, and for every domino
(ci,cj) an edge between the vertices for ¢; and c;.

A graph homomorphism from graph G to graph H
is a mapping from V(G) to V(H) such that edges are
mapped to edges. It is vertez-injective if no two vertices
in G are mapped to the same vertex of H, and edge-
injective if the mapping of the edges is injective. See [2]
for more on graph homomorphisms. For domino tiling,
we are interested in edge-injective (but not necessarily
vertex-injective) homomorphisms. To our knowledge,
this topic has not been studied before.

The equivalence of edge-injective homomorphisms
and domino tiling follows from translating the condi-
tion on the colouring function of a domino tiling to the
mapping function of the homomorphism. We omit the
details here for space reasons.

Observation 1 A layout L has a domino tiling if and
only if the layout graph G* has a perfect matching M
such that GC(M) has an edge-injective homomorphism
to the domino graph.

For our NP-hardness results, we now study the com-
plexity of edge-injective homomorphisms.

Theorem 1 Testing whether G has an edge-injective
homomorphism to H is NP-hard, even if

(a) G is a cycle, or

(b) G is a path, or

(¢) G is a caterpillar and G and H have equally many
edges.

Proof. (Sketch) The reduction in all cases is from
Hamiltonian Cycle or Hamiltonian Path: Given a 3-
regular graph H with n vertices, does it have a cy-
cle/path that visits every vertex exactly once? This
is known to be NP-hard [1].

For (a), note that H has a Hamiltonian cycle if and
only if a cycle with n vertices has an edge-injective ho-
momorphism to H. (Since H has maximum degree 3,
edge-injective implies vertex-injective.)

For (b), let G be a path with n + 2 vertices
V0,V1,--.,Un,Unt1- For any edge-injective homomor-
phism, the images of vy, ...,v, must be distinct, again
since H has maximum degree 3, so this gives a Hamil-
tonian path of H. Conversely, any Hamiltonian path of
H can easily be extended into a path of length n + 2
since H is 3-regular, so then G has an edge-injective
homomorphism to H.

The reduction for (c) is the most complicated. As-
sume H' is a 3-regular graph with n vertices in which
we are searching for a Hamiltonian path. Graph H is
obtained from H' by subdividing all edges. H' has n
edges, so H has 3n edges.

Graph G consists of a backbone by,a1,bs,...,0,_1,bp
and n + 2 legs attached to by,...,b, such that each b;
has degree 3. See Figure 2. Clearly G has 3n edges,
so |E(G)| = |E(H)| as desired. Also note that G is a
caterpillar.

by bo br,

ai as H(J.TIl\-
lo . ln+1

l1 l2 n

Figure 2: The graph G used for the reduction.

Since H' is 3-regular, any edge-injective homomor-
phism of G to H must map vertices b; to original ver-
tices of H', and vertices a; to subdivision vertices of
H, i.e., edges of H'. The image of the backbone hence
yields a path in H', and it must be Hamiltonian since
H has maximum degree 3. On the other hand, if H'
has a Hamiltonian path, then we map the backbone to
the corresponding path in H. The legs are mapped to
subdivision vertices of edges in H' that are not in the
Hamiltonian path, and hence use up all the remaining
dominoes. O

Now we are ready for our first NP-hardness results
for domino tiling,.



Theorem 2 PARTIAL DoOMINO TILING ¢s NP-hard,
even if the layout graph is a path or a cycle. EXACT
DoMINO TILING is NP-hard, even if the layout graph is
a caterpillar.

Proof. By Theorem 1 and Observation 1, all that re-
mains to do is to show that the path/cycle/caterpillar is
indeed the contracted graph of a layout graph. This is
trivial for a path and for a cycle with at least 4 vertices;
for the caterpillar we show the layout in Figure 3. O

Figure 3: A layout graph that is a caterpillar, and con-
tracting every edge not in the unique perfect matching
(bold) gives graph G from Figure 2.

3 Few colours

We now study the more realistic case of dominoes with
a small number of colours. As our main result, we show
that the problem then still remains NP-hard, even with
only 3 colours.

Note that a constant number of colours corresponds
to a target graph H (for the edge-injective homomor-
phism) that has a constant number of vertices. It is
well-known that testing the existence of a graph ho-
momorphism from G to H is NP-hard even if H is a
3-cycle. This does not immediately imply NP-hardness
for domino tiling for two reasons: (1) We must restrict
graph G to be a graph that is the contracted graph of
some layout graph, regardless of how the perfect match-
ing is chosen. (2) The layout graph must in fact be the
the graph of a layout, i.e., a subgraph of the rectangular
grid. To ease presentation, we defer this part to later,
and first show NP-hardness of coloured domino tiling
for graphs that need not be graphs of layouts.!

The reduction, as for graph homomorphism, is from
3-colouring, i.e., given a graph G, can the vertices be
coloured with 3 colours such that no two endpoints of
an edge have the same colour? This remains NP-hard
even if every vertex of G has at least three incident edges
[1]. We create the layout graph G from G by modifying
the vicinity of every vertex v. We first replace v by a
path of length deg(v), where each vertex of the path is
incident to one of the edges of v. Then we subdivide
each edge of the path and add a vertex of degree 1 on
it. See Figure 4.

For space reasons, we omit the (simple) proofs of this
and all following claims.

INote that the definition of coloured domino tiling does not
require any geometry of a layout.

Figure 4: Replacing each vertex by a path. and the
unique perfect matching (bold).

Claim 1 G has a unique perfect matching.

Claim 2 G© is 3-colourable if and only if G is 3-
colourable.

Theorem 3 Testing whether a graph (not necessarily
resulting from a layout) can be tiled with a given set of
dominoes is NP-hard, even if only 3 colours are used by
the dominoes.

Proof. Let G be a graph for which we want to test the
existence of a 3-colouring. Define the graph G as de-
scribed above. Let D be a set of dominoes with three
colours ¢y, ¢, c3, and for each ¢; # ¢;, add sufficiently
many dominoes (c¢;,c;).> Assume G has a domino
tiling, with colouring function c¢. Any vertex v in G¢ is
obtained by contracting some vertices wy,. .., w of G¥
that are connected by edges not in the perfect matching
M. Thus wy,...,w all must have the same colour; set
c(v) = ¢(w). Any edge in GY corresponds to a domino
in the tiling; since there are no uni-coloured dominoes
therefore this colouring of G is a 3-colouring of G.
By Claim 2 G is 3-colourable. The other direction is
similar. If G is 3-colourable, then so is G¢. Assign to
each vertex in GT the colour of the vertex in G into
which it was contracted. Then all matching edges have
differently coloured endpoints, and thus correspond to
a domino. This gives a valid domino tiling, since every
type of domino exists sufficiently often. d

Now we extend Theorem 3 to graphs that result from
a layout. The basic idea is the same, but we need to
modify our graph further and apply some graph drawing
results to find the layout.

Recall that G was the graph which we wanted to 3-
colour. We now choose G to be a planar graph, i.e.,
G can be drawn without crossing in the plane. Fur-
thermore, we assume that G has maximum degree 4.
It is known that 3-colouring remains NP-hard even for
planar graphs with maximum degree 4 [1].

Now we create a planar orthogonal drawing of G, i.e.,
a crossing-free drawing of G' on the 2D rectangular grid
such that every edge is routed as a sequence of hori-
zontal and vertical line segments. Such drawings exist

2«Sufficiently many” means “enough copies such that we can
never run out of dominoes.” More precisely, if the layout graph
has 2n vertices, then n dominoes are needed in the tiling; adding
n dominoes of every kind is hence sufficient.



for any planar graph with maximum degree 4, see for
example [3]. Furthermore, the total edge-length is poly-
nomial.

We obtain the layout by expanding the planar orthog-
onal drawing of G. To do so, we first scale the drawing,
i.e., we replace each row/column of the grid by many
rows/columns (20 should be enough), to achieve suffi-
ciently much separation between parallel edge segments.
Then we replace each vertex, line segment, and bend
(place where an edge changes direction) with one of the
gadgets in Figure 5.
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Figure 5: Gadgets used in the reduction.

Claim 3 Assume there are no uni-coloured dominoes.
Then any gadget has only one perfect matching (the
one shown in Figure 5) that could be used in a coloured
domino tiling.

Claim 4 Assume we have a domino tiling of the gad-
gets without uni-coloured dominoes. Then within any
gadget, all squares marked with the same symbol in Fig-
ure § must have the same colour. Moreover, squares
marked x have a different colour than squares marked +
or o. Squares marked + and o can, but need not, have
the same colour.

Direct the edges of G such that every vertex has at
most two outgoing edges and at most two incoming
edges. (For example, make G Eulerian by adding edges
between vertices of odd degree, direct all edges while
walking along an Eulerian circuit, and then delete the
added edges.) Now replace the drawing by gadgets as
follows. Replace each bend with the bend-gadget, ro-
tated if needed such that the lines marked with * co-
incide with the drawing of the incident edge segments.

Each vertex v is replaced with either the straight-gadget
or the turn-gadget, rotated if needed, such that outgo-
ing edges of v are on lines marked with . Finally add
line gadgets to replace horizontal or vertical line seg-
ments; note that a line gadget can be made arbitrar-
ily long. However, inserting a line gadget may lead to
a 2 x 2-square where it attaches to a bend-gadget or
vertex-gadget. In this case, replace part of the line gad-
get by the switch gadget, which changes how dominoes
attach (relative to the “line”), and hence avoids creation
of a 2 x 2-square.

This finishes the description of our layout L. The
dominoes D have three colours ci,cs,c3, and for
each ¢; # c¢;, we have sufficiently many dominoes
(¢i,cj). Note that we have no uni-coloured dominoes,
so Claims 3 and 4 hold and we need to consider only one
perfect matching and contracted graph G¢. This con-
tracted graph contains graph G as an induced subgraph,
hence if G¢ has an edge-injective homomorphism into
a 3-cycle, then G can be 3-coloured as desired.

On the other hand, given a 3-coloring of G, we can
obtain a domino tiling by letting * at the gadget of v be
the colour of v; this requires no uni-coloured dominoes
and is a domino tiling since we have sufficiently many
dominoes of all types.

Finally, note that since the drawing of G had polyno-
mial total edge length, the construction is polynomial
in the size of G, which finishes the NP-hardness proof.

Theorem 4 PARTIAL DOMINO TILING is NP-hard,
even if only & colours are used.

We can extend this result to ExAcT DoMINO TILING,
by using three copies of the previous layout and adding
a connection gadget.

Corollary 5 ExacTt DoMINO TILING is NP-hard,
even if only 8 colours are used.
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