
Computing the Boundary of a Class of Labeled-Leaf BSP Solids

Sherif Ghali∗ Chris Smith∗

Abstract

We describe an algorithm that computes the bound-
ary of the shadow volume cast by a collection of piece-
wise linear polyhedra in space using BSP trees. Unlike
boundary representations, representing solids in gen-
eral and shadow volumes in particular using BSP trees
makes it possible to implement boolean operations eas-
ily and robustly. Also, in contrast with operating in
Constructive Solid Geometry or on Nef polyhedra, no
neighborhood analysis is needed.

1 Introduction

Shadow computation is an important problem in com-
puter graphics. The relative depth of objects often can-
not be perceived by an observer unless shadows are
rendered. One popular method for computing shad-
ows is the shadow volume [5]. It has traditionally only
been used with ray tracing to produce accurate shad-
ows, but the availability of stencil buffers, a per-pixel
counter, made shadow volumes usable when rendering
using scanline algorithms as well [7].

The boundary of the shadow volume of one polyhe-
dron consists of the polyhedron’s polygons that face the
light, the projection of these polygons (after reversing
their orientation) on the ideal plane, and quadrangular
polygons joining the affine silhouette edges of the poly-
hedron to the corresponding ideal edges. The polygons
defining the boundary of the shadow volume are termed
shadow polygons.

A point in space is in shadow if it is inside one shadow
volume. If the shadow volumes of more than one poly-
hedron overlap, the boundary of the combined volume
does not need to be computed. It suffices instead to
count the number of independent shadow volumes a
point is in. If the number is one or more, the point
is in shadow.

But minimizing the combinatorial and the geometric
size of the shadow volumes reduces the rendering time.
In scanline rendering in particular, a reduction in the
total number of pixels that all shadow polygons rasterize
to will reduce the rendering time. An example in 2D is
shown in Figure 1.

We describe an algorithm that computes the bound-
ary of the union of the shadow volumes. We cannot

∗Department of Computing Science, University of Alberta,
{ghali,csmith}@cs.ualberta.ca

Figure 1: The three shadow volumes shown dashed on
the left are merged into the single volume shown on the
right – the shadow volumes extend to infinity, but are
shown finite in size for clarity. By reducing the geomet-
ric size of the polygons describing the boundary of the
shadow volume the polygons inside the view frustum
are minimized, which optimizes shadow rendering time.
The view frustum is shown as a finite triangle although
it also is infinite.

hope to perform this computation at every frame, but if
a scene consists of a combination of static and dynamic
polyhedra, and if, as is often the case, the number of
static polyhedra is large compared to the dynamic ones,
then it is sensible to preprocess the static polyhedra and
compute the union of their individual shadow volumes.
The shadow volume of the dynamic polyhedra can still
be generated independently.

2 Boolean Operations on Polyhedra

If two polyhedra A and B are described us-
ing their boundary Abrep and Bbrep, then
Cbrep = Abrep op Bbrep, the boundary of the
polyhedron C resulting from applying the operator
op on A and B, can be determined by computing and
classifying the pairwise intersection of faces from A
and B [8]. Although such algorithms are at the outset
simple, an implementation is usually quite intricate
since neighborhoods must be maintained and that gives
rise to many special cases.

An alternative representation of solids, Constructive
Solid Geometry, makes it easy to perform boolean op-
erations, but a conversion to boundary representation
remains necessary since many algorithms, such as those
for visualization, require boundaries as input. The con-
version in turn requires performing boolean operations

1



on the boundary of the primitive leaf nodes.
As with CSG, Nef polyhedra [1], the point sets rep-

resented by constructing boolean expressions on (open)
halfspaces, make it easy to perform set operations. Nef
polyhedra have the additional advantage that they de-
fine a closed algebra. The point sets they capture in-
clude dangling edges and faces as well as non-manifold
solids.

Although the first application of Binary Space Parti-
tioning trees was the computation of depth orders [6],
labeled-leaf BSP trees can be used to represent solids
and to perform boolean operations [11, 10]. In this rep-
resentation each interior node of the tree stores an ori-
ented plane that divides space into two open halfspaces
corresponding to its two children. Each leaf node repre-
sents the open convex polyhedron defined by the inter-
section of the corresponding halfspaces of its ancestors.
By storing a flag ’in’ or ’out’ at each leaf node, a poly-
hedron can be represented as the closure of the convex
polyhedra at the leaves marked ’in’.

An algorithm to determine the boundary of a labeled-
leaf BSP tree has been described [4], but that algorithm
first constructs the boundary of the convex polyhedra
at the leaves and then merges the resulting polyhedra.
The algorithm also appears to be too involved to be
practical.

We describe the first practical algorithm to compute
the boundary of a BSP tree representing a shadow vol-
ume. Because all visibility events occur along planes
defined by silhouette edges and the light, only one-
dimensional occlusion needs to be handled. Another
way of looking at it is that although each leaf of the
labeled-leaf BSP tree represents a convex unbounded
polyhedron, all splitting planes pass by the light. The
partition of space is thus a partition of a sphere cen-
tered at the light. Rather than introduce unnecessary
nodes in the tree storing the carrying planes of poly-
gons visible from the light, each such polygon is stored
in the tree at an ’out’ node. For this procedure to work,
the polygons need to be processed in front-to-back or-
der from the light using a secondary BSP tree. This
crucial observation has been made by the authors of an
algorithm that partitions a set of polygons into those
visible and those invisible from a light source [3].

3 The Boundary of the Set Union of Shadow Vol-
umes

We assume that the polygons defining each polyhedron
in the input are convex, though each polyhedron does
not need to be convex. A set of polygons defining the
boundary of each input polyhedron is extracted while
saving for each edge of each polygon whether it is a
silhouette edge as seen from the light. The secondary
BSP tree is used to compute a list L of the polygons in

front-to-back order with respect to the light.
Each node in the labeled-leaf BSP tree C is defined

by the plane passing through the light source O and
an edge on one of the polyhedra. The plane is defined
such that its normal vector points outside the shadow
volume. Each node stores the following attributes:

• An (oriented) splitting plane.

• A label {Interior, ’in’, ’out’}.

• An edge e that, alongside the light, defines the split-
ting plane.

• A flag identifying whether that edge is a silhouette
edge.

• For each edge e that is a silhouette edge, a set of
intervals I is maintained. The intervals identify the
set of points P along the edge such that the ray
OP does not intersect any of the polygons already
inserted in the tree C. An example of the intervals
is shown in Figure 2.

• If the node is labeled ’out’, the polygon visible from
the light.

• If the node is labeled Interior, two pointers to its
children nodes.

Figure 2: The polygon L has just been partitioned
by the front edge of polygon H. I at that edge is
{[a, c], [d, f ]}. β is {[b, e]}. The intersection yields
{[b, c], [d, e]} and describes the two cross-hatched poly-
gons. The difference is {[a, b], [e, f ]} and is assigned
back to I.

The labeled-leaf BSP tree C is initialized to a single
node labeled ’out’ identifying that the shadow volume
is initially empty. The polygons in L are processed in
order. Each polygon is extracted and inserted into the
labeled-leaf tree. The processing of a polygon depends
on the type of node reached:

Interior The following actions are taken:

2



1. The polygon is divided by the splitting plane
at the node and the segment of intersection is
saved.

2. The intersection segment is projected through
O on the edge e and the resulting interval β
along e is noted.

3. Two one-dimensional set operations are per-
formed. The difference I − β and the inter-
section I ∩ β are determined. The difference
describes the set of points along e that, pro-
jected on the polygon being partitioned, de-
scribes one or more polygons of the shadow
volume. The intersection describes the set of
points that remain uncovered. It is assigned
to I at the current node. See Figure 2.

4. The two polygon fragments resulting from the
split are inserted recursively at the two child
nodes.

’in’ The polygon is not visible from the light, no action
is taken.

’out’ The polygon is visible from the light. Each of its
edges is combined with the light source to construct
a new set of splitting planes. These splitting planes
are used to build a new subtree that is attached at
the node currently labeled ’out’. See Figure 3.

’out’

’out’

’out’ ’in’

O (Light)

a

b

c

Plane OaPlane Oc

Oa

Ob

Oc

+ −

+ −

+ −

Figure 3: When the polygon abc reaches an ’out’ node,
the node is replaced by the subtree shown on the left.

After the polygons in L have been inserted, an addi-
tional traversal of C visits all nodes at which I is not
empty. For each interval remaining in a set I, a quad-
rangular polygon with two affine and two ideal vertices
is generated.

4 Implementation

A video demonstrating our implementation can
be downloaded from http://www.cs.ualberta.-
ca/~ghali/papers/cccg05/brep-BSPsolid.mp4. It
can be viewed using the Apple Quicktime viewer.

Building the implementation on CGAL made it pos-
sible to experiment with different number types. As
would be expected, floating point computation leads
to incorrect results or to crashes. For the largest scene
we tried, consisting of 10000 polygons, we were able
to use floating point arithmetic in combination with
an ad-hoc epsilon value. This value is used as a clamp
when performing polygon binary split operations:
Vertices closer to the splitting plane than this epsilon
are considered to lie on the plane. In general, however,
it is not possible to find an epsilon that allows us to use
floating point arithmetic on an arbitrary input. Using
exact arithmetic and handling special (or degenerate)
cases as “first-class citizens” [2] allows us to handle
arbitrarily large inputs.

In addition to reducing the average rendering time,
preprocessing a scene by computing the reduced-size
shadow polygons is useful to reduce the large fluctu-
ation in rendering time that otherwise occurs. Such a
large fluctuation occurs when many shadow polygons
enter then exit the field of view. Figure 4 shows a com-
parison between the per-frame rendering times of the
same animation.

Figure 4: Comparison between the time it took to ren-
der each frame in an animation of the scene shown in
Figure 5. Dashed line: a separate shadow volume is used
for each polyhedron. Solid line: the polygons defining
the boundary of the union of the shadow volumes are
used.

5 Future Work

Several representations of solids are known: bound-
ary representations, BSP trees, CSG, Nef polyhedra,
and spatial enumeration. Modeling systems have long
needed to use more than one representation for solids
because some operations are easier to perform on one
representation than another. This is also the reason we
use labeled-leaf BSP trees rather than a boundary rep-

3



(1) (2) (3)

Figure 5: (1) The slanted polygon are the boundary of the BSP solid. Computing the boundary optimizes shadow
rendering, which is shown when the viewer is either inside (2) or outside (3) the shadow volume.

resentation. The method we describe for generating a
boundary representation from a BSP solid relies on the
solids being shadow volumes. The main question that
needs investigation is whether an efficient algorithm can
be developed for computing the boundary of a general
labeled-leaf BSP polyhedron. In effect our method only
needs a 1D BSP tree in addition to a 3D BSP tree to
compute the boundary because the visibility only mat-
ters along lines passing by the light source. A solution
to the general problem would require maintaining 1D as
well as 2D BSP trees to describe the facets of the BSP
solid. Comba and Naylor’s topological BSP trees [4],
whereby the tree is threaded with cross-links between
lower dimensional features, is a step towards solving the
problem, but an algorithm that does not first generate
the description of the boundary of individual leaves only
to remove them later would be more interesting.

Another intriguing problem is the generation of an-
alytical visibility with adjacency. How can one gener-
ate a Doubly-Connected Edge List that represents the
view from an observer and that partitions a small sphere
centered at the observer into faces corresponding to the
view? BSP trees apear to be a promising method for
solving this problem. It is most interesting in this case
to operate directly on a sphere. It is not necessary to
declare a view plane and to apply a perspective trans-
formation [9]. This is more of a software engineering
problem than a geometric one. The difficulty of manip-
ulating DCELs means that a visibility algorithm must
construct a DCEL using Euler operators [8].

6 Conclusion

We described the first practical algorithm to compute
the boundary of a solid represented by a BSP tree. This
makes it possible to compute the boundary of the union
of a set of solids following a well-known technique [11].
Our algorithm relies on the solids being cast from a sin-
gle source such as those resulting during shadow compu-
tation, which makes it possible to compute the bound-
ary using only one and three dimensional data struc-

tures for point sets. Finding a practical algorithm that
uses one, two, and three dimensional structures to com-
pute the b-rep of an arbitrary BSP solid is an intriguing
open problem.

References

[1] H. Bieri and W. Nef. Elementary set operations with
d-dimensional polyhedra. In Computational Geometry
and its Applications, volume 333 of Lecture Notes Com-
put. Sci., pages 97–112. Springer-Verlag, 1988.

[2] C. Burnikel, K. Mehlhorn, and S. Schirra. On degen-
eracy in geometric computations. In Proc. 5th ACM-
SIAM Sympos. Discrete Algorithms, pages 16–23, 1994.

[3] N. Chin and S. Feiner. Near real–time shadow genera-
tion using BSP trees. In SIGGRAPH ’89, pages 99–106,
Aug. 1989.

[4] J. Comba and B. Naylor. Conversion of binary space
partitioning trees to boundary representation. In Pro-
ceedings of Theory and Practice of Geometric Modeling,
Tuebingen, Germany, Oct 1996.

[5] F. C. Crow. Shadow algorithms for computer graphics.
Computer Graphics, 11(2):242–248, 1977.

[6] H. Fuchs, Z. M. Kedem, and B. Naylor. On visible
surface generation by a priori tree structures. Computer
Graphics, 14(3):124–133, 1980. Proc. SIGGRAPH ’80.

[7] T. Heidmann. Real shadows, real time. Iris Universe,
18:28–31, 1991. Silicon Graphics, Inc.

[8] M. Mäntylä. An Introduction to Solid Modeling. Com-
puter Science Press, Rockville, MD, 1988.

[9] B. Naylor. Partitioning tree image representation and
generation from 3d geometric models. In Proceedings of
Graphics Interface ’92, pages 201–212, may 1992.

[10] B. Naylor, J. A. Amanatides, and W. Thibault. Merg-
ing BSP trees yields polyhedral set operations. Comput.
Graph., 24(4):115–124, Aug. 1990. Proc. SIGGRAPH
’90.

[11] W. C. Thibault and B. F. Naylor. Set operations on
polyhedra using binary space partitioning trees. Com-
puter Graphics, 21(4):153–162, 1987.

4


