Approximation Algorithms for Maximum Cliques in 3D Unit-Disk Graphs

Peyman Afshani and Timothy M. Chan
School of Computer Science
University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada
{ pafshani, tmchan }@uwaterloo.ca

Abstract

We study two problems for a given n-point set in
3-space: finding a largest subset with diameter at
most one, and finding a subset of £ points with min-
imum diameter. For the former problem we sug-
gest several polynomial-time algorithms with constant
approximation factors, the best of which has factor
n/arccos(1/3) < 2.553. For the latter problem we
observe that there is a polynomial-time approximation
scheme.

1 Introduction

Clustering is an important and well-studied area of com-
putational geometry [4].
basic problems in this area:

In this paper, we study two

Problem 1 Given a set S of n points in R® and a value
r, find a subset A C S of diameter at most r having the
mazimum number k™ of points.

Problem 2 Given a set S of n points in R® and an
integer k, find a subset A C S of k points having the
minimum diameter r*.

These two problems are closely related: it is not dif-
ficult to see that a polynomial-time solution for one im-
plies a polynomial-time solution for the other one. The
first problem can be reformulated as finding a maxi-
mum clique in a unit-disk graph, as we may assume
r = 1 without loss of generality. Although the general
clique problem is NP-complete (and hard to approxi-
mate even to within factor of n'=¢ [6]), better results
may be possible in geometric settings.

In two dimensions, efficient algorithms are known for
both problems; for example, for Problem 2, Aggarwal
et al. [1] gave an O(nlogn + k*°nlog k)-time solution;
subsequently, Eppstein and Erickson [5] improved the
time bound to O(nlogn + nk?log? k) (which was fur-
ther improved to O(nlogn + nk?logk) [2, 3]). Also, if

diameters are measured under the L., metric instead of
Euclidean, then polynomial-time methods exist in any
fixed dimension [1, 4, 5]. However, no polynomial-time
algorithms are known in the 3D Euclidean version; the
best result reported [4, 5] has O(nlogn + 2°*)n) com-
plexity, which is exponential in k£ (though demonstrates
fixed-parameter tractability).

In this paper, we present some approximation results
for these two problems in 3D. Section 2 gives a straight-
forward (1+ €)-factor approximation algorithm (PTAS)
for Problem 2, while Section 3 presents several constant-
factor approximation algorithms for Problem 1.

2 Problem 2: Approximating r*

We first observe that approximating the minimum di-
ameter r* of a k-point subset is easy.

Theorem 3 There is a PTAS for Problem 2 that com-
putes a (1 + €)-factor approzimation in O(nlogn +
20(1/53)71) time for any fized € > 0.

Proof. First compute a constant-factor approximation.
As explained by Datta et al. [4], this can be accom-
plished in O(nlogn) time by a simple grid method. Say
the optimal diameter is between r and cr.

Form a uniform grid of side length er. Round each
input point to its nearest grid point. As a result, we
obtain a multiset of grid points. For each grid point p,
store a count of the input points mapped to p. Note
that the value of the optimal diameter changes by an
additive error of at most O(er). Thus a (1 + O(e))-
factor approximate solution for the original point set
can be obtained from an (exact) solution for the rounded
multiset. The rounded problem can be solved as follows:

For each rounded point p, exhaustively generate all
subsets of grid points (disregarding multiplicities) at
distance at most 2¢r from p. Since each such subset has
size at most O(1/€®), there are at most 2°(/¢") such

subsets. For each such subset, if the total count of its

points is at least k, compute the diameter of the subset
in O(1/¢°()) time. We just return the minimum of all
diameters found. O

3 Problem 1: Approximating k*

We now study the problem of approximating the max-
imum size k* of a clique in a unit-disk graph in R®.
The rounding approach in the previous section no longer
works, because small perturbations of the input points
can cause drastic changes to k*. We give several ap-
proaches yielding constant-factor approximations.

3.1 A Fast Factor-8 Algorithm

We begin with the simplest method:

Theorem 4 There is a factor-8 approzimation algo-
rithm for Problem 1 that runs in O(nlogn) time.

Proof. Let ¢ be a fixed small positive constant to be
determined later. Build a grid of side length 1 + c.
For each grid cell, divide it into 8 sub-cubes of side
length 175 . Note that each sub-cube has diameter
%(1 + ¢) < 1 by making ¢ sufficiently small. Take
the number of points in each of these sub-cubes and
report the largest number over all grid cells. Now, re-
peat the same procedure O(c%) times, but with the grid
shifted by a vector (ci,cj, ck), for all combinations of
i,j,k € {0,1,...,]1/¢]|}. Since ¢ is a constant, this al-
gorithm can be clearly implemented in O(nlogn) time.
We claim that the largest number reported is an 8-factor
approximation.

Let A* be the optimal subset. Since A* has diam-
eter at most one, the extent of A* along each axis is
at most one, so A* fits inside a cube C* of side length
one. Among the various shifts of the grid, there must a
grid cell C' such that C* completely fits inside C. Thus
A* C C. One of the 8 sub-cubes of C' must contain at
least |A*|/8 points. O

3.2 A Fast Factor-7 Algorithm

We now refine the factor-8 algorithm by employing a
more clever strategy to cover A* by only 7 rectangular
sub-boxes (not necessarily cubes) each of diameter at
most one.

Theorem 5 There is a factor-T approzimation algo-
rithm for Problem 1 that runs in O(nlogn) time.

Proof. We follow the same approach as in the factor-8
algorithm, except we divide each (14¢) x (1+¢) x (1+¢)
grid cell C into sub-boxes in a different way. First divide
Cintoa (1 4+¢)x(14+¢)x07(1+¢) box A and a
(I4+¢)x (14+¢) x0.3(14¢) box B. Then divide A
into four 0.5(1 4 ¢) x 0.5(1 4+ ¢) x 0.7(1 + ¢) sub-boxes,
each with diameter < 0.995(1 4 ¢). Divide B into two
0.8(14¢) x 0.5(1 4 ¢) x 0.3(1 + ¢) sub-boxes, each with
diameter < 0.990(1 + ¢), and one 0.2(1+ ¢) x 0.93(1 +
¢) x 0.3(1 4 ¢) sub-box, with diameter < 0.998(1 + ¢).
By making ¢ sufficiently small, the diameters of these 7
sub-boxes are all less than one.

The above strategy still leaves a small 0.2(1 + ¢) x
0.07(1 4+ ¢) x 0.3(1 4 ¢) sub-box R uncovered. We re-
peat the same strategy, this time leaving a different copy
R’ of R uncovered at the opposite corner of the cube.
Again, we consider the number of points inside each of
these sub-boxes generated and return the maximum.

To prove that the approximation factor is bounded
by 7, we know that as before, the optimal subset A*
must be contained inside some grid cell C'. Inside C,
if both uncovered sub-boxes R and R’ contain points
of A*, then A* would contain two points of distance
at least \/(1—0.4)2 + (1 —0.14)2 + (1 — 0.6)2(1 +¢) >
1.122(1 4 ¢) > 1: a contradiction. So, one of R or R’ is
empty of points of A*; w.l.o.g., say it is R. Then one of
the 7 sub-boxes of C'— R must contain at least |A*|/7
points. a

3.3 Factor 3.5

We show that with a larger running time, we can cut the
approximation factor by half, by borrowing a technique
of Aggarwal et al. [1]. (They originally used this tech-
nique to obtain an exact algorithm for the 2D version
of Problem 1.)

Lemma 6 If we can cover the input set with two given
shapes each of diameter at most one then we can solve
Problem 1 in O(Tmatch(n)) time, where Traten(n) is the
time required to solve the maximum matching problem
for an n-vertex bipartite graph.

Proof. A maximum clique in the unit-disk graph cor-
responds to a maximum independent set in the com-
plement graph. Since points in each of the two shapes
form a clique, the complement graph is bipartite. It is
well known that for bipartite graphs the maximum inde-
pendent set problem reduces to the maximum matching
problem. O

The classical matching algorithm by Hopcroft and
Karp [7] yielded Taten(n) = O(n?%). More recently,

Mucha and Sankowski [8] gave a randomized algorithm
with Taten(n) = O(n®), where w < 2.376 is the matrix
multiplication exponent.

Theorem 7 There is a factor-3.5 approzimation algo-
rithm for Problem 1 that runs in O(Tmaten(n)) time.

Proof. We modify the factor-7 algorithm: for each grid
cell, instead of taking the number of points over each
sub-box, we take the optimal answer for the subset of
points from each pair of sub-boxes and report the largest
answer.

In the correctness proof, since some pair of the 7 sub-
boxes of C'— R must contain at least 2| A*|/7 points, the
approximation factor is bounded by 7/2. O

3.4 Factor 2.553

We now give our best approximation-factor result. The
key subproblem, as we have discovered already, is how
to cover an unknown set A* of diameter at most one
with a small number of simple known shapes of diameter
at most one. With rectangular boxes, we have demon-
strated that 7 suffices. We now show how to reduce the
number, to about 5.106 in an “average” sense, by using
a more complicated shape which we call a “rounded di-
amond.” Together with the earlier matching idea, the
factor is further halved to 2.553.

Definition 8 Consider two points u and v with ||u —
v|| = 1 and two spheres Cy and C, of radius one cen-
tered respectively at u and v. Let r be a point on the
intersection of these two spheres. Let T be the curved
triangle formed by the segment uv and the arcs ur and
vr. Consider a rotation of T" around the axis uv by an
angle a which maps r to " and T to T’. The resulting
pyramid-like volume D is called an rounded diamond of
angle a. (See Figure 1.)

Figure 1: The rounded diamond D. Notice that the arcs
ru and 7'u (resp. rv and r'v) are part of circles centered
at v (resp. u).

In order to compute the diameter of this rounded di-
amond, we need the following technical lemma:

Lemma 9 Given a poigt q and a circular arc st with
center at o, if the ray qo does not hit the arc, then the
farthest point on the arc from q is either s ort.

Proof. W.lo.g.,, say ¢ = (1,0) and the arc is
{(rcosf,rsinf) | 6 € [a1, @3]}. Then we want to max-
imize (rcos® — 1)2 + r2sin*0 = r2 — 2rcos + 1 over
0 € [a1,as]. Now, cosf over this range is minimized
either at aq or @y, assuming that 7 ¢ [a1, aa]. O

Lemma 10 If 0 < o < 7 then the diameter of D is
equal to max {1, ||r — r'||}.

Proof. Consider two points p,q with maximum dis-
tance inside D. We can assume both p,q are on the
surface of D or otherwise we can extend the segment
pq and thus increase their distance. In particular, ¢ is
either on a flat portion T or T’ or on a sphere C, or
C,. We only address the cases when g is on T or Cy;
the other cases are symmetric.

If ¢ is on T, then by convexity ¢ must be one of the
points u, v, r or on one of the arcs ru,rv. W.l.o.g., we
may assume that ¢ is on ru.

If ¢ is on C,, then consider the rotation of ¢ around
the axis uv. We can apply Lemma 9 (to the 2-
dimensional points obtained by projection along this
axis) to conclude that in this case, the maximum dis-
tance is attained when ¢ is either on the arc ru or r'u.
W.l.o.g., we may again assume that ¢ is on ru.

Now if ¢ is on the arc ru, then consider the rotation of
g around v in an axis perpendicular to T. We can apply
Lemma 9 a second time to conclude that the maximum
distance is attained when ¢ is either r or u.

Thus the maximum distance occurs when ¢ €
{u,v,r,r'}, and similarly when p € {u,v,r,7'}. So in-
deed the diameter is max {1, ||r — r'||}. O

Corollary 11 If a = arccos(1/3) then the diameter of
D is one.

Proof. The distance of r or 7’ to the segment uv is @
So, ||r—7r']| = @ - 2sin(a/2), which is equal to 1 when
a = 2arcsin(1/v/3) = arccos(1/3). O

Theorem 12 There is an approximation algorithm for
Problem 1 with factor w/arccos(1/3) < 2.553 that runs
in O(n®Tmaten(n)) time.

Proof. Our algorithm tries all pairs of points u,v € S
with ||u —v]| < 1. Let v’ be the point of distance 1 from
uon uv. Consider the lune L created by the intersection
of the interior of the spheres C, and C,.. Consider a
rounded diamond D C L of angle 2 arccos(1/3) around
uv. By Lemma 6 and Corollary 11 (since D is the union
of two rounded diamonds of angle arccos(1/3)), we can
compute the optimal answer for the subset SN D. Do
this for all possible placements of D rotated around uw.
Return the largest answer found. Note that although
technically there are infinitely many placements of D
for each pair u, v, there are only O(n) combinatorially
different subsets SN D, so the running time is bounded

by O(n®Tmaten(n))-

To prove correctness, suppose that u,v € S are in the
optimal solution A* with ||u — v|| being the diameter of
A*. Then A* must be contained inside the lune L. A
complete 27 rotation of D around uv sweeps all of L.
So, there must be a placement of D which contains at

2 .
least WZ(I/S) | A*| points. O

4 Remarks

The algorithms in Sections 2 and 3.1 can be extended
to any fixed dimensions, although it is unclear what
the best approximation results are in higher dimensions
using the approaches in Sections 3.2-3.4.

Besides improving the approximation factor for Prob-
lem 1, an even more basic and interesting question is
to determine whether the 3D problem can actually be
solved exactly in polynomial time, or whether one can
prove NP-hardness in 3D or in other low dimensions.

References

[1] A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Find-
ing k points with minimum diameter and related

problems. Journal of Algorithms, 12(1):38-56, 1991.

[2] K. Bhattacharya and H. ElGindy. Biased search and
k-point clustering. In Proceedings of the 9th Cana-
dian Conference on Computational Geometry, pages

141-146, 1997.

[3] T. M. Chan. Geometric applications of a randomized
optimization technique. Discrete and Computational

Geometry, 22(4):547-567, 1999.

[4] A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid.
Static and dynamic algorithms for k-point clustering

problems. Journal of Algorithms, 19:474-503, 1995.

[5] D. Eppstein and J. Erickson. Tterated nearest neigh-
bors and finding minimal polytopes. Discrete and
Computational Geometry, 11:321-350, 1994.

[6] J. Hastad. Clique is hard to approximate within
n'=¢. Acta Mathematica, 182:105-142, 1999.

[7] J. Hopcroft and R. M. Karp. An n®/? algorithm
for maximum matchings in bipartite graphs. SIAM
Journal on Computing, 2(4):225-231, 1973.

[8] M. Mucha and P. Sankowski. Maximum match-
ings via Gaussian elimination. In Proceedings of the
45th Annual Symposium on Foundations of Com-
puter Science, pages 248-255, 2004.

