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Abstract

We bring together several new results related to the clas-
sical Sylvester-Gallai Theorem and its recently noted
sharp dual. In 1951 Dirac and Motzkin conjectured that
a configuration of n not all collinear points must admit
at least n/2 ordinary connecting lines. There are two
known counterexamples, when n = 7 and n = 13. We
provide a construction that yields both counterexam-
ples and show that the common construction cannot be
extended to provide additional counterexamples.

1 Introduction

In 1893 J. J. Sylvester posed the following celebrated
problem [13]: Given a collection of points in the plane,
not all lying on a line, prove that there exists a
line which passes through precisely two of the points.
Sylvester’s problem was reposed by Erdés in 1944 [5]
and then solved the same year by T. Gallai [7]. To-
day, the positive result to Sylvester’s problem is usually
referred to as Sylvester’s Theorem or the Theorem of
Sylvester and Gallai. Sylvester’s Theorem holds equally
in the Euclidean and Real Projective Planes. We write
RP? to denote the real projective plane. See [1] and [6]
for excellent treatments of Sylvester-Gallai theory.

A line which passes through precisely two points in a
configuration of points is referred to as an ordinary
line. Analogously, given an arrangement of lines, a
point lying at the intersection of precisely two lines is
referred to as an ordinary point.

Much work has gone into obtaining lower bounds on
the number of ordinary lines in a collection of points
satisfying the hypothesis of Sylvester’s Theorem. Dirac
[4] and Motzkin [12] separately conjectured that, given n
points as in the statement of Sylvester’s Theorem, there
must be at least n/2 ordinary lines. For even n there is
a family of examples due to Bordczky (as cited in [2])
with n points and precisely n/2 ordinary lines. These
examples are most easily verified in the real projective
plane. One starts with the vertices of a regular n/2-gon
and then adds the n/2 points at infinity determined by
the line through any pair of vertices. Each vertex of the
original regular n/2-gon then determines an ordinary
line (a dashed line in the figure) with precisely one of
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Figure 1: Boroczky even n example with n = 12 points
and 6 ordinary lines.

the n/2 points at infinity. Note that there is nothing
special about this example residing in RP?; the points
and connecting lines can easily enough be rotated into
R2.

In 1958 Kelly and Moser [8] found an example of 7
points with just 3 ordinary lines. They also showed that
a set of n not all collinear points must admit at least
3n/7 ordinary lines. Then in 1968 McKee [2] found an
example of 13 points with just 6 ordinary lines. Finally
in 1993 Csima and Sawyer [3] showed that except for
the case of n = 7 there must be at least 6n/13 ordinary
lines in a configuration of n not all collinear points. The
Dirac-Motzkin conjecture thus stands as follows: For n
not all collinear points, n # 7, 13, there must be at least
n/2 ordinary lines.

By projective duality, Sylvester’s Theorem is equiv-
alent to the statement that in an arrangement of lines
in RP?2, not all of which pass through a single point,
there must be an ordinary point. For given n, a lower
bound on the number of ordinary lines amongst not all
collinear point configurations (in R? or RP?) of size n,
corresponds to the same lower bound on the number of
ordinary points amongst not all coincident line arrange-
ments in RP? of the same size n. In [10, 11] Lenchner
showed that a sharper dual version of Sylvester’s Theo-
rem actually holds, namely that given an arrangement
of lines in R?, not all of which are parallel and not all
of which are coincident, then there must be an ordinary
point - indeed, that given n such lines, there must be at
least (5n + 6)/39 ordinary points.

In this paper we look at the sharp dual results in [10,
11] from a different angle and prove a couple of related
theorems which give insight into the n/2 conjecture. We
also provide a common construction for the n = 7 and



n = 13 counterexamples and show that the common
construction cannot be extended to produce additional
counterexamples.

2 Lines or Pseudolines and the Ordinary Points they
may contain

To obtain our results, we use the following key lem-
mas and definitions. In what follows we shall consider
Sylvester’s problem in its dual formulation in the real
projective plane.

Definition Say that an ordinary point p is attached
to a line [, not containing p, if [ together with two lines
crossing at p form a triangular face of the arrangement.
See Figure 2.
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Figure 2: An example of a line [ with two ordinary
points attached.

The following two lemmas are due to Kelly and Moser
[8].

Lemma 1 If a linel of an arrangement A contains no
ordinary points, then there are at least 3 ordinary points
attached to [.

Lemma 2 If a line | of an arrangement A contains
a single ordinary point, then the line | has at least 2
ordinary points attached to it.

Definition A line is said to be of type (n,m) if it
contains n ordinary points and has m ordinary points
attached to it.

The following lemma is due to Csima and Sawyer [3]:

Lemma 3 Suppose A is a finite arrangement of lines
in RP? having two lines of type (2,0) that intersect in
an ordinary point. Then A is graph theoretically iso-
morphic to the Kelly-Moser arrangement (Figure 3).

The following simple observation is what is used to
drive home the Kelly-Moser and Csima-Sawyer results.
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Figure 3: The Kelly-Moser arrangement of 7 lines with
just 3 ordinary points.

Lemma 4 In an arrangement of lines in RP?, an ordi-
nary point can have at most 4 lines counting that point
as an attachment.

Proof. An ordinary point is contained in 2 crossing
lines, and hence a vertex of 4 faces; it can therefore
be attached to at most 4 lines. O

Definition An arrangement of pseudolines in RP? is
a family of simple closed curves each pair of which has
exactly one point in common, and at this common point
the curves cross.

We note that both the Csima-Sawyer and Kelly-
Moser Theorems, in their dual formulations, are true
if we replace lines in RP? by pseudolines in RP?. The
pseudoline version of the Kelly-Moser Theorem was
proved in 1972 by Kelly and Rottenberg [9] and the
pseudoline version of the Csima-Sawyer Theorem was
remarked to hold without changing any of the basic lem-
mas in the original Csima-Sawyer article [3]. Lemmas 1
- 4 are valid both for lines and pseudolines. Lenchner’s
Theorem 4 from [11] which says that an arrangement of
n, not all coincident, not all parallel lines in R? must
contain at least [(5n + 6)/39] ordinary points, relies
solely on the Csima-Sawyer Theorem, and so can be
reinterpreted in the context of pseudolines as follows:

Theorem 5 Given an arrangement of n pseudolines in
RIP?, one can find at least [(5n+6)/39] ordinary points
off any pseudoline not already part of the arrangement.

We can also say something about ordinary points off
pseudolines that are part of the arrangement.

Theorem 6 Given an arrangement of n pseudolines in
RP?, no n — 1 of which pass through a common point,
one can find at least [(5n — 6)/39] ordinary points off
any pseudoline in the arrangement.

Proof. Given an arrangement 4 as in the statement of
the Theorem, Csima-Sawyer again guarantees at least
[6n/13] ordinary points as long as n # 7. We consider
the case n = 7 separately.



If our result were false, then more than $2 — 228 —
7+ % of those ordinary points would have to lie on a
fixed pseudoline [ € A. Now consider the arrangement
A’ consisting of the n — 1 elements of A other than .
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The removal of [ “kills off” at least 3 + 75 ordinary

points and creates at most L_(Z%L%—) = % — % new
ones since an ordinary point can only be created where
previously two pseudolines from A intersected in [.
Now, by assumption the pseudolines of A’ do not all
pass through a common point, so as long as n # 8
Csima-Sawyer guarantees there are at least 6(n —1)/13
ordinary points. Thus, there must have been at least

Sn=b) _(z _ 18y 516 qidinary points off of I, con-
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tradicting our choice of [.

Finally, if n = 7 or 8 then [(5n — 6)/39] = 1 so if
the Theorem were false all ordinary points of A would
have to lie on a single pseudoline {. Removing [ kills all
the at least 3 ordinary points and so creates at most 2
new ones, leaving at least one which all along must have
been off of [. O

One is led to ask whether, in “Sylvester-critical”
arrangements, i.e. arrangements with < n/2 ordinary
points, if it is possible that a small number of pseudo-
lines can actually contain all the ordinary points. Look-
ing at Theorem 6 we might think it possible for just two,
or some other small number of pseudolines to contain all
the ordinary points in such arrangements. In the case
of the “near-pencil” (not a Sylvester-critical arrange-
ment) with all lines but one going through a common
point, all the ordinary points lie on a single line. If A is
an arrangement, we use the notation |.A| to denote the
number of lines or pseudolines in A. A sub-collection
B C A spans the ordinary points, if all ordinary
points of A are contained in B.

Theorem 7 Let {A4;}2, be a family of arrangements
in RP?* with |A;| /* oo and such that if | A;| = n; then
the number of ordinary points in A; is < n;/2. The size
of sub-collections B; C A; spanning the ordinary points
is unbounded.

Proof. Suppose we could always find a spanning sub-
collection of pseudolines of size < k. Consider N = | A|
with N > k2. Then almost all ordinary points are
contained in the intersection of one of the k lines and
a line of type (1,2+),(2,04),(3,04+) etc. where the
notation z+ means that the given line has at least x
ordinary points attached.

We show that in all such cases we would end up with
too many attachments. First, suppose all m < n/2
ordinary points result from intersections of the k lines
with (1,2) lines. We use the notation ~ to denote “on
the order of.” There would have to be m such lines,
leaving ~ n—m lines of the form (0, 3+). But this would
give rise to at least, on the order of 2m + 3(n —m) =

3n — m total attachments. But 3n — m > 4m since
m < n/2, which contradicts the fact that we can have
at most 4 attachments per ordinary point (Lemma 4).

Next suppose that all m < n/2 ordinary points result
from intersections of the k lines with (2, 0+) lines. There
must be ~ m/2 of these, leaving on the order of n—m/2
of type (0,3+), yielding at least ~ 9n/4 attachments,
which again is too many.

Intersections of the k lines with (3,0+) lines require
even more attachments. It is easy to see that inter-
section of the k lines with lines of type (2,0) requires
the fewest attachments, but as noted even these are not
adequate. The theorem is thus established. |

In light of the argument in the preceding proof, the
following lemma is not too surprising. It is asserted
to be true without proof in Borwein and Moser’s 1990
survey article [1].

Lemma 8 An arrangement of n not all coincident lines
in RP? with fewer than n/2 ordinary points must have
at least one line of type (2,0).

Proof. The idea is that without lines of type (2,0), if
one first writes down the lines contributing to & ordi-
nary points through intersection, then because of the
constraint of at most 4 attachments per ordinary point
(Lemma 4), one is forced to have at least 2k lines.
Suppose first that we had just lines of type (1,24). It
is plain that 2k of these form exactly k ordinary points,
with no room for additional lines because of the at least
4k attachments. How about lines of type (2,1+)7 k of
these lines contribute & ordinary points and any more
than k additional lines of type (0,3+) would yield more
than 4k total attachments. Finally, k£ lines of type
(3,0+4) yield 3k/2 ordinary points, and 2k additional
lines of type (0,3+) would already yield at least 6k at-
tachments, which is capacity. It is easy to verify that
lines of type (4,0+) and higher do worse. We thus con-
clude that an arrangement of lines as in the hypothesis
of the lemma must contain lines of type (2,0). |

In fact, the preceding argument shows that it is only
lines of type (2,0) that really contribute to an arrange-
ment of n lines having fewer than the critical number
(n/2) of ordinary points.

3 A Unified View of the n = 7 and n = 13 Examples

There are various ways to view the Kelly-Moser and
McKee counterexamples to the Dirac-Motzkin n/2 con-
jecture. The literature of this subject considers these
examples to be “sporadic,” or not related. However,
they can be seen to come from a common construction.

We work in RP?. For the Kelly-Moser example, start
with the vertices of two equal sized equilateral triangles,



glue the triangles together along one edge, and add a
center point. This gives a configuration with 5 points
and 4 ordinary lines. Now greedily add points at infinity
with the objective of reducing the ratio of ordinary lines
to points. Since the 4 original ordinary lines formed 2
pairs of parallel lines, we greedily add two points, one
to kill each pair of parallel lines. See Figure 4(a).

For the McKee example, start with the vertices of
two equal sized regular pentagons, glue the pentagons
together along an edge, add a center point, and again
greedily add points at infinity with the objective of re-
ducing the ratio of ordinary lines to points. We start
with 9 points and 12 ordinary lines. There are two
sets of 4 ordinary lines all sharing a common direction
(slope), so we greedily add points at infinity to remove
these. In the process we create two new finite ordi-
nary lines, and one additional ordinary line at infinity.
Adding vertical and horizontal points at infinity satu-
rates this example, yielding McKee’s configuration of 13
points and 6 ordinary lines as shown in Figure 4(b).

Figure 4: A common view of the (a) Kelly-Moser and
(b) McKee examples.

We may try the same procedure with equal sized reg-
ular 7-gons. In this case we start with 13 points and 36
ordinary lines. There are two sets of 6 ordinary lines
sharing a common direction, so adding corresponding
points at infinity yields a configuration with 15 points
and 27 ordinary lines. Adding vertical and horizontal
points at infinity is the next most productive thing to
do, leaving a configuration of 17 points and 22 ordinary
lines. See Figure 5.

Unfortunately there is nothing very productive to do
at this stage and the example becomes saturated with
21 points and 26 ordinary lines. Pairs of regular 9 and
11-gons only fair worse.

4 Conclusion

The Dirac-Motzkin n/2 conjecture remains. We know
that one way of trying to extend the n =7 and n = 13
examples is not fruitful, but perhaps there is another. In
addition there is the question of whether the asymptotic

Figure 5: Glued 7-gons have 17 points with 22 ordinary
lines after adding the most productive points at infinity.
The ordinary lines are too numerous to draw.

5n/39 bound is tight for the number of ordinary points
avoiding any particular pseudoline. We conjecture that
the 5n/39 bound is not tight, and in fact should be
the same asymptotic bound as for the number of total
ordinary points.
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