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Probabilistic Bounds on the Length of a Longest Edge in Delaunay Graphs
of Random Points in d-Dimensions ∗

Esther M. Arkin† Antonio Fernández Anta‡ Joseph S. B. Mitchell§ Miguel A. Mosteiro¶

Abstract

Motivated by low energy consumption in geographic
routing in wireless networks, there has been recent in-
terest in determining bounds on the length of edges
in the Delaunay graph of randomly distributed points.
Asymptotic results are known for random networks in
planar domains. In this paper, we obtain upper and
lower bounds that hold with parametric probability in
any dimension, for points distributed uniformly at ran-
dom in domains with and without boundary. The re-
sults obtained are asymptotically tight for all relevant
values of such probability and constant number of di-
mensions, and show that the overhead produced by
boundary nodes in the plane holds also for higher di-
mensions. To our knowledge, this is the first compre-
hensive study on the lengths of long edges in Delaunay
graphs.

1 Introduction

We study the length of a longest Delaunay edge for
points randomly distributed in multidimensional Eu-
clidean spaces. In particular, we consider the Delau-
nay graph for a set of n points distributed uniformly at
random in a d-dimensional body of unit volume. It is
known that the probability that uniformly distributed
random points are not in general position 1 is negligi-
ble and therefore it is safe to focus on generic sets of
points [8], which we do throughout the paper.

The motivation to study such settings comes from
the Random Geometric Graph (RGG) model in which
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1A set of d + 1 points in d-dimensional Euclidean space is said
to be in general position if no hyperplane contains all of them.
We say that such a set is generic, or degenerate otherwise.

n nodes are distributed uniformly at random in a disk
or, more generally, according to some specified den-
sity function on d-dimensional Euclidean space [16].
The problem has attracted recent interest because of
its applications in energy-efficient geometric routing
and flooding in wireless sensor networks (see, e.g.,
[7, 11, 12, 13]).

Related Work. Kozma, Lotker, Sharir, and Stupp [11]
show that the asymptotic length of a longest Delau-
nay edge depends on the sum, σ, of the distances
to the boundary of its endpoints. More specifically,
their bounds are O( 3

√
(log n)/n) if σ ≤ ((log n)/n)2/3,

O(
√

(log n)/n) if σ ≥
√

(log n)/n, and O((log n)/(nσ))
otherwise. Kozma et al. also show, in the same set-
ting, that the expected sum of the squares of all De-
launay edge lengths is O(1). In [5] the authors con-
sider the Delaunay triangulation of an infinite random
(Poisson) point set in d dimensional space. In partic-
ular, they study different properties of the subset of
those Delaunay edges completely included in a cube
[0, n1/d] × · · · × [0, n1/d]. For the maximum length of
a Delaunay edge in this setting, they observe that in
expectation is in Θ(log1/d n).

The lengths of longest edges in geometric graphs
induced by random point sets has also been stud-
ied for graphs related to the Delaunay, including
Gabriel graphs [18] and relative neighborhood (RNG)
graphs [17, 19]. In particular, Wan and Yi [18] show
that for n points uniformly distributed in a unit-area
disk, the ratio of the length of a longest Gabriel edge
to
√

(lnn)/(πn) is asymptotically almost surely equal
to 2, and the expected number of “long” Gabriel edges,
of length at least 2

√
(lnn+ ξ)/(πn), is asymptotically

almost surely equal to 2e−ξ, for any fixed ξ. In [9],
while studying the maximum degree of Gabriel and
Yao graphs, the authors observe that the probabil-
ity that the maximum edge length is greater than
3
√

(log n)/n tends to zero, bound that they claim be-
comes O(((log n)/n)1/d) for d dimensions. An overview
of related problems can be found in [1].

Interest in bounding the length of a longest Delaunay
edge in two-dimensional spaces has grown out of exten-
sive algorithmic work [6, 4, 10] aimed at reducing the
energy consumption of geographically routing messages
in Radio Networks. Multidimensional Delaunay graphs
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are well studied in computational geometry from the
point of view of efficient algorithms to construct them
(see [8] and references therein), but only limited results
are known regarding probabilistic analysis of Delaunay
graphs in higher dimensions [14].

Overview of Our Results. We study the probabilis-
tic length of longest Delaunay edges for points dis-
tributed in geometric domains in two and more dimen-
sions. Since the length of the longest Delaunay edge
is strongly influenced by the boundary of the enclosing
region, we study the problem for two cases, which we
call with boundary and without boundary.

Our results include upper and lower bounds for d-
dimensional bodies with and without boundaries, that
hold for a parametric error probability ε and are com-
puted up to the constant factors (they are tight only
asymptotically). In comparison, the upper bounds pre-
sented in [11] are only asymptotic, are restricted to two
dimensions (d = 2), and apply to domains with bound-
ary (disks), although results without boundary are im-
plicitly given, since the results are parametric in the
distance to the boundary.

Lower bounds without boundary and all upper
bounds apply for any d > 1. Lower bounds with bound-
ary are shown for d ∈ {2, 3}. The results shown are
asymptotically tight for e−cn ≤ ε ≤ n−c, for any con-
stant c > 0, and d ∈ O(1). To the best of our knowl-
edge, this is the first comprehensive study of this prob-
lem. The results obtained are summarized in Table 1.
In order to compare upper and lower bounds for bodies
with boundary, it is crucial to notice that we bound the
volume of a circular segment (2D) and the volume of
an spherical cap (3D), which can be approximated by
polynomials of third and fourth degree respectively on
the diameter of the base. Upper bounds are proved ex-
ploiting the fact that, thanks to the uniform density, it
is very unlikely that a “large” volume is void of points.
Lower bounds, on the other hand, are proved by show-
ing that a configuration that yields a Delaunay edge of
a certain length is not very unlikely.

In the following section, some necessary notation is
introduced. Upper and lower bounds for enclosing bod-
ies without boundaries are shown in Section 3, and the
case with boundaries is covered in Section 4. We con-
clude with some open problems.

2 Preliminaries

The following notation will be used throughout. We
will restrict attention to Euclidean (L2) spaces. A d-
sphere, S = Sr,c, of radius r is the set of all points in a
(d + 1)-dimensional space that are located at distance
r (the radius) from a given point c (the center). A d-
ball, B = Br,c, of radius r is the set of all points in

a d-dimensional space that are located at distance at
most r (the radius) from a given point c (the center).
The area of a d-sphere S (in (d + 1)-space) is its d-
dimensional volume. The volume of a d-ball B (in d-
space) is its d-dimensional volume. We refer to a unit
sphere as a sphere of area 1 and a unit ball as a ball of
volume 1. (This is in contrast with some definitions of a
“unit” ball/sphere as a unit-radius ball/sphere; we find
it convenient to standardize the volume/area to be 1 in
all dimensions.)

Let P be a set of points on a d-sphere, S. Given two
points a, b ∈ P , let âb be the arc of a great circle between
them. Let δ(a, b) be the length of the arc âb, which is
also known as the orthodromic distance between a and
b on the sphere S. Let the orthodromic diameter of
a subset X ⊆ S be the greatest orthodromic distance
between a pair of points in X. A spherical cap on S is
the set of all points at orthodromic distance at most r
from some center point c ∈ S. Let Ad(x) be the area
(d-volume) of a spherical cap of orthodromic diameter
x, on a d-sphere of surface area 1. A ball cap of B is
the intersection of a d-ball B with a closed halfspace,
bounded by a hyperplane h, in d-space; the base of a
ball cap is the (d − 1)-ball that is the intersection of h
with the ball B. Let Vd(x) be the d-volume of a ball
cap of base diameter x, of a d-ball of volume 1. For any
pair of points a, b, let d(a, b) be the Euclidean distance
between a and b, i.e. d(a, b) = ||

−→
ab||2. Let D(P ) be the

Delaunay graph of a set of points P .
The following definitions of a Delaunay graph, D(P ),

of a finite set P of points in d-dimensional bodies follow
the standard definitions of Delaunay graphs (see, e.g.,
Theorem 9.6 in [8]).

Definition 1 Let P be a generic set of points on a d-
sphere S.

(i) A set F ⊆ P of d + 1 points define the vertices of
a Delaunay face of D(P ) if and only if there is a
d-dimensional spherical cap C ⊂ S such that F is
contained in the boundary, ∂C, of C and no points
of P lie in the interior of C (relative to the sphere
S).

(ii) Two points a, b ∈ P form a Delaunay edge, an arc
of D(P ), if and only if there is a d-dimensional
spherical cap C such that a, b ∈ ∂C and no points
of P lie in the interior of C (relative to the sphere
S).

Definition 2 Let P be a generic set of points in a d-
ball B.

(i) A set F ⊆ P of d + 1 points define the vertices of
a Delaunay face of D(P ) if and only if there is a
d-ball B′ such that F is contained in the boundary,
∂B′, of B′ and no points of P lie in the interior of
B′.
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d
Upper Bound:
w.p. ≥ 1− ε, @ âb ∈ D(P )

Lower Bound:
w.p. ≥ ε, ∃ âb ∈ D(P )

Without
boundary d Ad(δ(a, b)) ≥

ln
“
(n
2)(n−2

d−1)
/
ε
”

n−d−1 Ad(δ(a, b)) ≥
ln((e−1)/(e2ε))

n−2+ln((e−1)/(e2ε))

1 δ(a, b) ≥
ln
“
(n
2)
/
ε
”

n−2 δ(a, b) ≥ ln((e−1)/(e2ε))
n−2+ln((e−1)/(e2ε))

2 δ(a, b) ≥
cos−1

 
1−

2 ln((n
2)(n−2)/ε)
n−3

!
√
π

δ(a, b) ≥
cos−1

 
1−

2 ln((e−1)/(e2ε))
n−2+ln((e−1)/(e2ε))

!
√
π

With
boundary d Vd(d(a, b)) ≥

ln
“
(n
2)(n−2

d−1)
/
ε
”

n−d−1 –

2 d(a, b) ≥
3

√
16√
π

ln
“
(n
2)(n−2)

/
ε
”

n−3

d(a, b) ≥ ρ2/2 : V2(ρ2) = ln(α2/ε)
(n−2+ln(α2/ε))

=⇒ d(a, b) ≥ 3

√
ln(α/ε)

2
√
π(n−2+ln(α/ε))

3 d(a, b) ≥
4

√
96
π3/2

ln
“
(n
2)(n−2

2 )
/
ε
”

n−4

d(a, b) ≥ ρ3/2 : V3(ρ3) = ln(α3/ε)
(n−2+ln(α3/ε))

=⇒ d(a, b) ≥ 4

√
3

√
48
π4

ln(α3/ε)
(n−2+ln(α3/ε))

Table 1: Summary of results. α2, α3 are constants.

(ii) Two points a, b ∈ P form a Delaunay edge, an arc
of D(P ), if and only if there is a d-ball B′ such that
a, b ∈ ∂B′ and no points of P lie in the interior of
B′.

The following inequalities [15] are used throughout

e−x/(1−x) ≤ 1− x ≤ e−x, for 0 < x < 1. (1)

3 Enclosing Body without Boundary

The following theorems show upper and lower bounds
on the length of arcs in the Delaunay graph on a d-
sphere.

3.1 Upper Bound

Theorem 3 Consider the Delaunay graph D(P ) of a
set P of n > d+ 1 ≥ 2 points distributed uniformly and
independently at random in a unit d-sphere, S. Then,
for 0 < ε < 1, the probability is at least 1− ε that there
is no arc âb ∈ D(P ), a, b ∈ P , such that

Ad(δ(a, b)) ≥
ln
((
n
2

)(
n−2
d−1

)/
ε
)

n− d− 1
. (∗)

Proof. Let Eε be the event that “there exists an arc
âb ∈ D(P ), a, b ∈ P , with inequality (∗) satisfied” Our
goal is to prove that P (Eε) ≤ ε.

Let us consider a fixed pair of points, a, b ∈ P . We let
Ea,b be the event that âb ∈ D(P ). For any subsetQ ⊂ P
of d + 1 points containing a and b, let CQ denote the
spherical cap through Q and let FQ denote the event
that the interior of CQ contains no points of P (i.e.,
int(CQ) ∩ P = ∅).

Thus, we can write Ea,b =
⋃
Q FQ as the union, over

all
(

n−2
(d+1)−2

)
=
(
n−2
d−1

)
subsets Q ⊂ P with |Q| = d + 1

and a, b ∈ Q, of the events FQ. Then, by the union
bound, we know that P (Ea,b) ≤

∑
Q P (FQ). Further,

in order for event FQ to occur, all points of P except the
d+ 1 points of Q must lie outside the spherical cap CQ
through Q; thus, P (FQ) = (1− µd(CQ))n−(d+1), where
µd(CQ) denotes the d-volume of CQ.

We see that P (FQ) ≤ (1−Ad(δ(a, b)))n−(d+1), since,
for any subset Q ⊃ {a, b}, the d-volume µd(CQ) is at
least as large as the d-volume, Ad(δ(a, b)), of the spher-
ical cap having orthodromic diameter δ(a, b). (In other
words, Ad(δ(a, b)) is the d-volume of the smallest vol-
ume spherical cap whose boundary passes through a and
b.)

Altogether, we get

P (Ea,b) ≤
∑
Q

P (FQ) =
∑
Q

(1− µd(CQ))n−(d+1)

≤
(
n− 2
d− 1

)
(1−Ad(δ(a, b)))n−(d+1).
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Now, the event of interest is

Eε =
⋃

a,b∈P :(∗) holds

Ea,b.

The inequality (∗) is equivalent to

(n− d− 1)Ad(δ(a, b)) ≥ ln
((

n

2

)(
n− 2
d− 1

)/
ε

)
,

which is equivalent to(
e−Ad(δ(a,b))

)(n−d−1)

≤ ε(
n
2

)(
n−2
d−1

) .
Since, by Inequality 1, e−x ≥ 1−x, the above inequality
implies that

(1−Ad(δ(a, b)))(n−d−1) ≤ ε(
n
2

)(
n−2
d−1

) ,
which implies that(

n

2

)(
n− 2
d− 1

)
(1−Ad(δ(a, b)))(n−d−1) ≤ ε.

Using the union bound, we get

P (Eε) = P

 ⋃
a,b∈P :(∗) holds

Ea,b

 ≤ ∑
a,b∈P :(∗) holds

P (Ea,b).

Since each term P (Ea,b) in the above summation is
bounded above by

(
n−2
d−1

)
(1 − Ad(δ(a, b)))n−(d+1), and

there are at most
(
n
2

)
terms in the summation, we get

P (Eε) ≤
∑

a,b∈P :(∗) holds

P (Ea,b)

≤
(
n

2

)(
n− 2
d− 1

)
(1−Ad(δ(a, b)))(n−d−1) ≤ ε.

�

The following corollaries for d = 1 and d = 2 can
be obtained from Theorem 3 using the corresponding
surface areas.

Corollary 4 In the Delaunay graph D(P ) of a set P
of n > 2 points distributed uniformly and independently
at random on a unit circle (1-sphere), with probability
at least 1− ε, for 0 < ε < 1, there is no arc âb ∈ D(P ),
a, b ∈ P , such that

δ(a, b) ≥
ln
((
n
2

)/
ε
)

n− 2
.

Corollary 5 In the Delaunay graph D(P ) of a set P
of n > 3 points distributed uniformly and independently
at random on a unit sphere (2-sphere), with probability

at least 1− ε, for 0 < ε < 1, there is no arc âb ∈ D(P ),
a, b ∈ P , such that

δ(a, b) ≥ 1√
π

cos−1

(
1−

2 ln
((
n
2

)
(n− 2)

/
ε
)

n− 3

)
.

Proof. The surface area of a spherical cap of a 2-sphere
is 2πRh, where R is the radius of the sphere and h is the
height of the cap. For a unit 2-sphere is R = 1/(2

√
π).

Then, the perimeter of a great circle is 2π/(2
√
π) =√

π. Thus, the central angle of a cap whose orthodromic
diameter is ρ is 2πρ/

√
π = 2

√
πρ. Let the angle between

the line segment ab and the radius of the sphere be α.
Then,

α =
{
π/2−

√
πρ if ρ ≤

√
π/2√

πρ− π/2 if ρ >
√
π/2

And the height of the cap is h = 1/(2
√
π) −

1/(2
√
π) sin(π/2 −

√
πρ) = (1 − cos(

√
πρ))/(2

√
π).

Therefore, the surface area of a spherical cap of a
2-sphere whose orthodromic diameter is ρ is (1 −
cos(
√
πρ))/2. Replacing in Theorem 3, the claim fol-

lows. �

3.2 Lower Bound

Theorem 6 In the Delaunay graph D(P ) of a set P
of n > 2 points distributed uniformly and independently
at random in a unit d-sphere, with probability at least
ε, there is an arc âb ∈ D(P ), a, b ∈ P , such that
Ad(δ(a, b)) ≥ Ad(ρ1), where

Ad(ρ1) =
ln
(
(e− 1)/(e2ε)

)
n− 2 + ln ((e− 1)/(e2ε))

,

for any 0 < ε < 1 such that Ad(2ρ1) ≤ 1− 1/(n− 1).

Proof. In order to prove this claim, we consider a con-
figuration given by a specific pair of points and a specific
empty spherical cap circumscribing them, that would
yield a Delaunay arc between those points. Then, we
relate the probability of existence of such configuration
to the distance between the points. Finally, we relate
this quantity to the desired parametric probability. The
details follow.

For any pair of points a, b ∈ P , by Definition 1, for the
arc âb to be in D(P ), there must exist a d-dimensional
spherical cap C such that a and b are located on the
boundary of the cap base and the cap surface of C is
void of points from P . We compute the probability of
such an event as follows. Let ρ2 > ρ1 be such that
Ad(2ρ2)−Ad(2ρ1) = 1/(n− 1). Consider any point a ∈
P . The probability that some other point b is located
so that ρ1 < δ(a, b) ≤ ρ2 is 1 − (1− 1/(n− 1))n−1 ≥
1− 1/e, by Inequality 1.

The spherical cap with orthodromic diameter δ(a, b)
is empty with probability (1−Ad(δ(a, b)))n−2. To lower
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bound this probability we consider separately the spher-
ical cap with orthodromic diameter ρ1 and the re-
maining annulus of the spherical cap with orthodromic
diameter δ(a, b). The probability that the latter is
empty is lower bounded by upper bounding the area
Ad(δ(a, b))− Ad(ρ1) ≤ Ad(2ρ2)− Ad(2ρ1) = 1/(n− 1).
Then, (1− 1/(n− 1))n−2 ≥ 1/e, by Inequality 1.

Finally, the probability that the spherical cap with
orthodromic diameter ρ1 is empty is, by Inequality 1,

(1−Ad(ρ1))n−2 ≥ exp
(
−Ad(ρ1)(n− 2)

1−Ad(ρ1)

)
,

= exp
(
− ln

(
e− 1
e2ε

))
=

e2ε

e− 1
.

Therefore,

Pr
(
âb ∈ D(P )

)
≥
(

1− 1
e

)
1
e

e2ε

e− 1
= ε.

�

The following corollaries for d = 1 and d = 2 can
be obtained from Theorem 6 using the corresponding
surface areas.

Corollary 7 In the Delaunay graph D(P ) of a set P
of n > 2 points distributed uniformly and independently
at random in a unit circle (1-sphere), with probability
at least ε, for any e1−n−4/n ≤ ε < 1, there is an arc
âb ∈ D(P ), a, b ∈ P , such that

δ(a, b) ≥
ln
(
(e− 1)/(e2ε)

)
n− 2 + ln ((e− 1)/(e2ε))

.

Corollary 8 In the Delaunay graph D(P ) of a set P
of n > 2 points distributed uniformly and independently
at random in a unit sphere (2-sphere), with probability
at least ε, for any e−n+2

√
n−1−1 ≤ ε < 1, there is an

arc âb ∈ D(P ), a, b ∈ P , such that

δ(a, b) ≥ 1√
π

cos−1

(
1−

2 ln
(
(e− 1)/(e2ε)

)
n− 2 + ln ((e− 1)/(e2ε))

)
.

Proof. As shown in the proof of Corollary 5, the sur-
face area of a spherical cap of a 2-sphere whose ortho-
dromic diameter is ρ is (1− cos(

√
πρ))/2. Replacing in

Theorem 6, the claim follows. �

4 Enclosing Body with Boundary

The following theorems show upper and lower bounds
on the length of edges in the Delaunay graph in a d-
ball. The proofs, omitted here for brevity, can be found
in the full version of this work [3].

4.1 Upper Bound

Theorem 9 In the Delaunay graph D(P ) of a set P of
n > d + 1 ≥ 2 points distributed uniformly and inde-
pendently at random in a unit d-ball, with probability at
least 1−ε, for 0 < ε < 1, there is no edge (a, b) ∈ D(P ),
a, b ∈ P , such that

Vd(d(a, b)) ≥
ln
((
n
2

)(
n−2
d−1

)/
ε
)

n− d− 1
.

The following corollaries for d = 2 and d = 3 can
be obtained from Theorem 9 using the corresponding
volumes.

Corollary 10 In the Delaunay graph D(P ) of a set P
of n > 3 points distributed uniformly and independently
at random in a unit disk (2-ball), with probability at least
1 − ε, for

(
n
2

)
(n− 2)e−

√
2(n−3)/π < ε < 1, there is no

edge (a, b) ∈ D(P ), a, b ∈ P , such that

d(a, b) ≥ 3

√
16√
π

ln
((
n
2

)
(n− 2)

/
ε
)

n− 3
.

Corollary 11 In the Delaunay graph D(P ) of a set P
of n > 4 points distributed uniformly and independently
at random in a unit ball (3-ball), with probability at least

1 − ε, for
(
n
2

)(
n−2

2

)
e−2(n−4)

/
(3
√
π) < ε < 1, there is no

edge (a, b) ∈ D(P ), a, b ∈ P , such that

d(a, b) ≥ 4

√
96
π3/2

ln
((
n
2

)(
n−2

2

)/
ε
)

n− 4
.

4.2 Lower Bound

In this section we give lower bounds for d = 2 and
d = 3. As in the case without boundary, we prove our
lower bounds showing a configuration given by a specific
pair of points and a specific empty body circumscribing
them, that would yield a Delaunay edge between those
points. Then, we relate the probability of existence of
such configuration to the distance between the points
and to the desired parametric probability.

Theorem 12 For d = 2, given the Delaunay graph
D(P ) of a set P of n > 2 points distributed uni-
formly and independently at random in a unit d-ball,
with probability at least ε, there is an edge (a, b) ∈ D(P ),
a, b ∈ P , such that d(a, b) ≥ ρ1/2, where

Vd(ρ1) =
ln (α/ε)

(n− 2 + ln (α/ε))
,

where α = (1− e−1/16)(1− e−1/32)e−1, for any 0 < ε ≤
α/e2 such that Vd(ρ1) ≤ 1/2−1/n. Which implies that

d(a, b) ≥ 3

√
ln (α/ε)

2
√
π (n− 2 + ln (α/ε))

.
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Theorem 13 For d = 3, given the Delaunay graph
D(P ) of a set P of n > 4 points distributed uni-
formly and independently at random in a unit d-ball,
with probability at least ε, there is an edge (a, b) ∈ D(P ),
a, b ∈ P , such that d(a, b) ≥ ρ1/2, where

Vd(ρ1) =
ln (α/ε)

(n− 2 + ln (α/ε))
,

where α = (1− e−1/6)(1− e−1/12)e−12, for any 0 < ε ≤
α/e such that Vd(ρ1) ≤ 1/2− 1/n. Which implies that

d(a, b) ≥ 4

√
3

√
48
π4

ln (α/ε)
(n− 2 + ln (α/ε))

.

5 Future Directions, Open Problems

It would be interesting to extend this study to other
norms, such as L1 or L∞. Also, Theorems 12 and 13
were proved by showing that the existence of a con-
figuration that yields a Delaunay edge of some length
is not unlikely. Different configurations were used for
each, but a configuration that works for both cases ex-
ists (although yielding worse constants). We conjecture
that (modulo some constant) the same bound can be
obtained in general for any d > 1. Both questions are
left for future work.
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