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Abstract

We study versions of cop and robber pursuit-evasion
games on the visibility graphs of polygons, and inside
polygons with straight and curved sides. Each player
has full information about the other player’s location,
players take turns, and the robber is captured when the
cop arrives at the same point as the robber. In visi-
bility graphs we show the cop can always win because
visibility graphs are dismantlable, which is interesting as
one of the few results relating visibility graphs to other
known graph classes. We extend this to show that the
cop wins games in which players move along straight
line segments inside any polygon and, more generally,
inside any simply connected planar region with a rea-
sonable boundary. Essentially, our problem is a type
of pursuit-evasion using the link metric rather than the
Euclidean metric, and our result provides an interesting
class of infinite cop-win graphs.

1 Introduction

Pursuit-evasion games have a rich history both for their
mathematical interest and because of applications in
surveillance, search-and-rescue, and mobile robotics. In
pursuit-evasion games one player, called the “evader,”
tries to avoid capture by “pursuers” as all players move
in some domain. There are many game versions, de-
pending on whether the domain is discrete or con-
tinuous, what information the players have, and how
the players move—taking turns, moving with bounded
speed, etc.

This paper is about the “cops and robbers game,” a
discrete version played on a graph, that was first in-
troduced in 1983 by Nowakowski and Winkler [25], and
Quilliot [26]. The cop and robber are located at ver-
tices of a graph and take turns moving along edges of
the graph. The robber is caught when a cop moves to
the vertex the robber is on. The standard assumption is
that both players have full information about the graph
and the other player’s location. The first papers on this
game [25, 26] characterized the graphs in which the cop
wins—they are the graphs with a “dismantlable” vertex
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ordering. (Complete definitions are in Section 3. ) Since
then many extensions have been explored—see the book
by Bonato and Nowakowski [8]. (Note that the cops and
robbers version that Seymour and Thomas [27] develop
to characterize treewidth is different: the robber moves
only along edges but at arbitrarily high speed, while a
cop may jump to any graph vertex.)

Our Results. We consider three successively more gen-
eral versions of the cops and robbers game in planar re-
gions. The first version is the cops and robbers game on
the visibility graph of a polygon, which is a graph with
a vertex for each polygon vertex, and an edge when two
vertices “see” each other (may be joined by a line seg-
ment) in the polygon. We prove that this game is cop-
win by proving that visibility graphs are dismantlable.
As explained below, this result is implicit in [1]. In fact,
we show that visibility graphs are 2-dismantlable. We
remark that it is an open problem to characterize or ef-
ficiently recognize visibility graphs of polygons [15, 16],
so this result is significant in that it places visibility
graphs as a subset of a known and well-studied class of
graphs.

Our second setting is the cops and robbers game on
all points inside a polygon. The cop chooses a point
inside the polygon as its initial position, then the robber
chooses its initial position. Then the players take turns,
beginning with the cop. In each turn, a player may move
to any point visible from its current location, i.e., it
may move any distance along a straight-line segment
inside the polygon. The cop wins when it moves to the
robber’s position. We prove that the cop will win using
the simple strategy of always taking the first step of a
shortest path to the robber. Thus the cop plays on the
reflex vertices of the polygon.

Our third setting is the cops and robbers game on
all points inside a bounded simply-connected planar re-
gion. We show that if the boundary is well-behaved (see
below) then the cop wins. We give a strategy for the cop
to win, although the cop can no longer follow a shortest
path strategy (e.g. when it lies on a reflex curve), and
can no longer win by playing on the boundary.

The cops and robbers game on all points inside a re-
gion can be viewed as a cops and robbers game on an
infinite graph—the graph has a vertex for each point
inside the region, and an edge when two points see
each other. Our result shows that these infinite graphs
are cop-win. This provides an answer to Hahn’s ques-
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tion [19] of finding an interesting class of infinite cop-win
graphs.

The cops and robbers game on all points inside a re-
gion can be viewed as pursuit-evasion under a different
metric, and could appropriately be called “straight-line
pursuit-evasion.” Previous work [22, 6] considered a
pursuit-evasion game in a polygon (or polygonal region)
where the players are limited to moving distance 1 in the
Euclidean metric on each turn. In our game, the play-
ers are limited to distance 1 in the link metric, where
the length of a path is number of line segments in the
path. This models a situation where changing direction
is costly but straight-line motion is easy. Mechanical
robots cannot make instantaneous sharp turns so ex-
ploring a model where all turns are expensive is a good
first step towards a more realistic analysis of pursuit-
evasion games with turn constraints. We also note that
the protocol of the players taking alternate turns is more
natural in the link metric than in the Euclidean metric.

2 Related Work

Cops and Robbers. The cops and robbers game was
introduced by Nowakowski and Winkler [25], and Quil-
liot [26]. They characterized the finite graphs where one
cop can capture the robber (“cop-win” graphs) as “dis-
mantlable” graphs, which can be recognized efficiently.
They also studied infinite cop-win graphs. Aigner and
Fromme [2] introduced the cop number of a graph, the
minimum number of cops needed to catch a robber. The
rule with multiple cops is that they all move at once.
Among other things Aigner and Fromme proved that
three cops are always sufficient and sometimes neces-
sary for planar graphs. Beveridge et al. [5] studied ge-
ometric graphs (where vertices are points in the plane
and an edge joins points that are within distance 1) and
show that 9 cops suffice, and 3 are sometimes necessary.
Meyniel conjectured that O(

√
n) cops can catch a rob-

ber in any graph on n vertices [4]. For any fixed k there
is a polynomial time algorithm to test if k cops can
catch a robber in a given graph, but the problem is NP-
complete for general k [13], and EXPTIME-complete
for directed graphs [17]. The cops and robbers game
on infinite graphs was studied in the original paper [25]
and others, e.g. [7].

In a cop-win graph with n vertices, the cop can win in
at most n moves. This result is implicit in the original
papers, but a clear exposition can be found in the book
of Bonato and Nowakowski [8, Section 2.2]. For a fixed
number of cops, the number of cop moves needed to
capture a robber in a given graph can be computed in
polynomial time [20], but the problem becomes NP-hard
in general [7].

Pursuit-Evasion. In the cops and robbers game, space
is discrete. For continuous spaces, a main focus has been

on polygonal regions, i.e., a region bounded by a poly-
gon with polygonal holes removed. The seminal 1999
paper by Guibas et al. [18] concentrated on “visibility-
based” pursuit-evasion where the evader is arbitrarily
fast and the pursuers do not know the evader’s location
and must search the region until they make line-of-sight
contact. This models the scenario of agents searching
the floor-plan of a building to find a smart, fast intruder
that can be zapped from a distance. Guibas et al. [18]
showed that Θ(log n) pursuers are needed in a simple
polygyon, and more generally they bounded the num-
ber of pursuers in terms of the number of holes in the
region. If the pursuers have the power to make random
choices, Isler et al. [22] showed that only one guard is
needed for a polygon. For a survey on pursuit-evasion
in polygonal regions, see [11].

The two games (cops and robbers/visibility-based
pursuit-evasion) make opposite assumptions on five cri-
teria: space is discrete/continuous; the pursuers suc-
ceed by capture/line-of-sight; the pursuers have full in-
formation/no information; the evader’s speed is lim-
ited/unlimited; time is discrete/continuous (i.e., the
players take turns/move continuously).

The difference between players taking turns and mov-
ing continuously can be vital, as revealed in Rado’s
Lion-and-Man problem from the 1930’s (see Little-
wood [23]) where the two players are inside a circular
arena and move with equal speed. The lion wins in the
turn-taking protocol, but—surprisingly—the man can
escape capture if both players move continuously.

Bhaduaria et al. [6] consider a pursuit-evasion game
using a model very similar to ours. The players know
each other’s positions (perhaps from a surveillance net-
work) and the goal is to actually capture the evader.
Players have equal speed and take turns. In a polyg-
onal region they show that 3 pursuers can capture an
evader in O(nd2) moves where n is the number of ver-
tices and d is the diameter of the polygon. They also
give an example where 3 pursuers are needed. In a sim-
ple polygon they show that 1 pursuer can capture an
evader in O(nd2) moves. This result, like ours, can be
viewed as a result about a cop and robber game on an
infinite graph. The graph in this case has a vertex for
each point in a polygon, and an edge when two points
are distance at most 1 apart in the polygon. The con-
nection between this result and cops and robbers on
(finite) geometric graphs [5] has not been explored, to
the best of our knowledge.

There is also a vast literature on graph-based pursuit-
evasion games, where players move continuously and
have no knowledge of other players’ positions. The
terms “graph searching” and “graph sweeping” are used,
and the concept is related to tree-width. For surveys
see [3, 14].

Curved Regions. Traditional algorithms in compu-



tational geometry deal with points and piecewise lin-
ear subspaces (lines, segments, polygons, etc.). The
study of algorithms for curved inputs was initiated by
Dobkin and Souvaine [12], who defined the widely-used
splinegon model. A splinegon is a simply connected re-
gion formed by replacing each edge of a simple polygon
by a curve of constant complexity such that the area
bounded by the curve and the edge it replaces is con-
vex. The standard assumption is that it takes constant
time to perform primitive operations such as finding the
intersection of a line with a splinegon edge or computing
common tangents of two splinegon edges. This model
is widely used as the standard model for curved planar
environments in different studies.

Melissaratos and Souvaine [24] gave a linear time al-
gorithm to find a shortest path between two points in
a splinegon. Their algorithm is similar to shortest path
finding in a simple polygon but uses a trapezoid decom-
position in place of polygon triangulation. For finding
shortest paths among curved obstacles (the splinegon
version of a polygonal domain) there is recent work [10],
and also more efficient algorithms when the curves are
more specialized [9, 21].

3 Preliminaries

For a vertex v of a graph, we use N [v] to denote the
closed neighbourhood of v, which consists of v together
with the vertices adjacent to v. Vertex v dominates
vertex u if N [v] ⊇ N [u].

A graph G is dismantlable if it has a vertex ordering
{v1, v2, . . . , vn} such that for each i < n, there is a ver-
tex vj , j > i that dominates vi in the graph Gi induced
by {vi, . . . , vn}.

We regard a polygon as a closed set of points, the
interior plus the boundary. Two points in a polygon
are visible or see each other if the line segment between
them lies inside the polygon. The line segment may lie
partially or totally on the boundary of the polygon. The
visibility graph of a polygon has the same vertex set as
the polygon and an edge between any pair of vertices
that see each other in the polygon. For any point x
in polygon P , the visibility polygon of x, V (x), is the
set of points in P visible from x. Note that V (x) may
fail to be a simple polygon—it may have 1-dimensional
features on its boundary in certain cases where x lies on
a line through a pair of vertices.

For points a and b in polygon P , we say that a
dominates b if V (a) ⊇ V (b). Note that we are using
“dominates” both for vertices in a graph (w.r.t. neigh-
bourhood containment) and for points in a polygon
(w.r.t. visibility polygon containment). For vertices a
and b of a polygon, if a dominates b in the polygon then
a dominates b in the visibility graph of the polygon, but
not conversely.

4 Cops and Robbers in Visibility Graphs

In this section we show that the visibility graph of any
polygon is cop-win by showing that any such graph is
dismantlable.

This result is actually implicit in the work of Aich-
holzer et al. [1]. They defined an edge uv of polygon P
to be visibility increasing if for every two points p1 and
p2 in order along the edge uv the visibility polyons nest:
V (p1) ⊆ V (p2). In particular, this implies that v domi-
nates every point on the edge, and that v dominates u in
the visibility graph. Aichholzer et al. showed that every
polygon has a visibility-increasing edge. It is straight-
forward to show that visibility graphs are dismantlable
based on this result.

Lemma 1 The visibility graph G of any polygon P is
dismantlable.

Proof. By induction on the number of vertices of the
polygon. Let uv be a visibility-increasing edge, which
we know exists by the result of Aichholzer et al. Then
vertex v dominates u in the visibility graph G. We will
construct a dismantlable ordering starting with vertex
u.

It suffices to show that G − u is dismantlable. Let
tu and uv be the two polygon edges incident on u. We
claim that the triangle tuv is contained in the polygon:
u sees t on the polygon boundary, so v must also see
t. (Triangle tuv is an “ear” of the polygon.) Removing
triangle tuv yields a smaller polygon whose visibility
graph is G−u. By induction, G−u is dismantlable. �

Aichholzer et al. [1] conjectured that a polygon al-
ways has at least two visibility-increasing edges. In the
remainder of this section we prove this conjecture, thus
giving a simpler proof of their result and also proving
that visibility graphs of polygons are 2-dismantlable.
Bonato et al. [7] define a graph G to be 2-dismantlable
if it either has fewer than 7 vertices and is cop-win or
it has at least two vertices a and b such that each one
is dominated by a vertex other than a, b, and such that
G − {a, b} is 2-dismantlable. They show that if an n-
vertex graph is 2-dismantlable then the cop wins in at
most n

2 moves by choosing the right starting point.
We need a few more definitions. Let P be a simple

polygon, with an edge uv where v is a reflex vertex.
Extend the directed ray from u through v and let t be
the first boundary point of P beyond v that the ray
hits. The points v and t divide the boundary of P into
two paths. Let σ be the path that does not contain
u. The simple polygon formed by σ plus the edge vt is
called a pocket and denoted Pocket(u, v). The segment
vt is the mouth of the pocket. Note that u does not
see any points inside Pocket(u, v) except points on the
line that contains the mouth. See Fig. 1 for examples,
including some with collinear vertices, which will arise
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in our proof. Pocket(u, v) is maximal if no other pocket
properly contains it. Note that a non-convex polygon
has at least one pocket, and therefore at least one max-
imal pocket. This will be strengthened to two maximal
pockets in Lemma 3 below.

u


u


v


v


u


v


t


t


t


Figure 1: Pocket(ui, vi), i = 1, 2, 3, shaded.

To prove that the visibility graph of a polygon is 2-
dismantlable we prove that a maximal pocket in the
polygon provides a visibility-increasing edge and that
every nonconvex polygon has at least two maximal
pockets.

Lemma 2 If uv is an edge of a polygon and
Pocket(u, v) is maximal then uv is a visibility-increasing
edge.

Aichholzer et al. [1, Lemma 2] essentially proved this
although it was not expressed in terms of maximal
pockets. Also they assumed the polygon has no three
collinear vertices. We include a proof.

Proof. We prove the contrapositive. Suppose that edge
uv is not visibility-increasing. If u is a reflex vertex with
next neighbour w, say, then Pocket(w, u) properly con-
tains Pocket(u, v), which implies that Pocket(u, v) is not
maximal. Thus we may assume that u is convex. Since
uv is not visibility-increasing there are two points p1
and p2 in order along uv such that the visibility poly-
gon of p1 is not contained in the visibility polygon of
p2. Thus there is a point t which is visible to p1 but
not visible to p2. By extending the segment p1t, we
may assume, without loss of generality, that t is on the
polygon boundary. We claim that t lies in the closed
half-plane bounded by the line through uv and lying on
the opposite side of Pocket(u, v). See Fig. 2(a). This
is obvious if p1 is internal to edge uv, and if p1 = u it
follows because u is convex. Furthermore, t cannot lie
on the line through u, v otherwise p2 would see t.

Now move point p from p1 to p2 stopping at the last
point where p sees t. See Fig. 2(b). There must be a
reflex vertex v′ on the segment tp. The points v′ and
t divide the polygon boundary into two paths. Take

the path that does not contain v, and let u′ be the first
neighbour of v′ along this path. It may happen that
u′ = t. Then, as shown in Fig. 2(b), Pocket(u′v′) prop-
erly contains Pocket(u, v), so Pocket(u, v) is not maxi-
mal.

v
u

t

pp2 p1

(a)

u′
v′

v u

t

p

(b)

Figure 2: If uv is not visibility-increasing then
Pocket(u, v) is not maximal.

�

Lemma 3 Any polygon that is not convex has two max-
imal pockets Pocket(u1, v1) and Pocket(u2, v2) where u1
does not see u2.

Proof. Let Pocket(u1, v1) be a maximal pocket. Let
u be the other neighbour of v1 on the polygon bound-
ary. Consider Pocket(u, v1), which must be contained
in some maximal pocket, Pocket(u2, v2). Vertex u1 is
inside Pocket(u, v1) and not on the line of its mouth.
Therefore u1 is inside Pocket(u2, v2) and not on the
line of its mouth. Since u2 cannot see points inside
Pocket(u2, v2) except on the line of its mouth therefore
u2 cannot see u1. �

From the above lemmas, together with the observa-
tion that the visibility graph of a convex polygon is a
complete graph, which is 2-dismantlable, we obtain the
result that visibility graphs are 2-dismantlable.

Theorem 4 The visibility graph of a polygon is 2-
dismantlable.

Consequently, the cop wins the cops and robbers game
on the visibility graph of an n-vertex polygon in at most
n
2 steps.

5 Cops and Robbers Inside a Polygon

In this section we look at the cops and robbers game on
all points inside a polygon. This is a cops and robbers
game on an infinite graph so induction on dismantlable
orderings does not immediately apply. Instead we give
a direct geometric proof that the cop always wins. Al-
though the next section proves more generally that the
cop always wins in any simply connected planar region
with a reasonable boundary, it is worth first seeing the



simpler proof for the polygonal case to gain understand-
ing and because this case has a tight Θ(n) bound on the
maximum number of moves.

Theorem 5 The cop wins the cops and robbers game
on the points inside any polygon in at most n steps using
the strategy of always taking the first segment of the
shortest path from its current position to the robber.

Proof. We argue that each move of the cop restricts the
robber to an ever shrinking active region of the polygon.
Suppose the cop is initially at c0 and the robber initially
at r0. In the ith move the cop moves to ci and then the
robber moves to ri.

Observe for i ≥ 1 that points ci are at reflex vertices of
the polygon. To define the active region Pi containing
the robber position ri, we first define its boundary, a
line segment, `i. Suppose that the shortest path from
ci−1 to ri−1 turns left at ci, as in Figure 3. Define `i to
be the segment that starts at ci and goes through ci−1
and stops at the first boundary point of the polygon
where an edge of the polygon goes to the left of the
ray cici−1. (If the shortest path turns right at ci we
similarly define `i to stop where a polygon edge goes
right.) In general, the segment `i cuts the polygon into
two (or more) pieces; let active region Pi be the piece
that contains ri−1. (In the very first step, `1 may hug
the polygon boundary, so P1 may be all of P .)

c
i

c
i−1

l
i

c
i

c
i−1

l
i

r
i−1

r
i−1

P
i

P
i

Figure 3: The segment `i and the active region Pi

(shaded) containing robber positions rk, for all k ≥ i−1.

We claim by induction on the (decreasing) number
of vertices of Pi that the robber can never leave Pi,
i.e., that ri, ri+1,. . . are in Pi. It suffices to show that
ri is in Pi and that Pi+1 ⊆ Pi and that Pi+1 has fewer
vertices.

Suppose that the shortest path from ci−1 to ri−1 turns
left at ci. (The other case is completely symmetric.)
Observe that the next robber position ri must be inside
Pi, i.e., the robber cannot move from ri−1 to cross `i.
We distinguish two cases depending whether the short-
est path from ci to ri makes a left or a right turn at
ci+1.

Case 1. The shortest path from ci to ri makes a left
turn at ci+1. We consider two subcases: (a) ci+1 is left

of the ray ci−1ci; and (b) ci+1 is right of the ray ci−1ci.
We claim that case (b) cannot happen—see Figure 4(b).
For case (a) observe that `i+1 extends past ci and there-
fore Pi+1 is a subset of Pi and smaller by at least one
vertex—see Figure 4(a).

c
i

c
i−1

l
i

r
i

P
i

c
i+1

l
i+1

c
i

c
i−1

l
i

r
i

P
i

c
i+1

P
i+1 r

i−1

r
i−1

(b)(a)

Figure 4: Case 1. (a) If ci+1 is left of the ray ci−1ci then
Pi+1 (darkly shaded) is a subset of Pi (lightly shaded).
(b) It cannot happen that ci+1 is to the right of the ray
ci−1ci because the robber could not have moved from
ri−1 to ri.

Case 2. The shortest path from ci to ri makes a right
turn at ci+1. We consider two subcases: (a) ci+1 is left
of the ray ci−1ci; and (b) ci+1 is right of the ray ci−1ci.
See Figure 5. In case (a) `i+1 stops at ci and in case (b)
it may happen that `i+1 extends past ci, but in either
case, segment `i is outside Pi+1, and Pi+1 is a subset of
Pi and smaller by at least one vertex. �

c
i

c
i−1

l
i

r
i

P
i

c
i+1

l
i+1

c
i

c
i−1

l
i

r
i

P
i

c
i+1

P
i+1

r
i−1

r
i−1

P
i+1

l
i+1

(b)(a)

Figure 5: Case 2. (a) ci+1 is left of the ray ci−1ci. (b)
ci+1 is right of the ray ci−1ci. In either case Pi+1 (darkly
shaded) is a subset of Pi (lightly shaded).

We note that Bhadauria et al. [6] use the same cop
strategy of following a shortest path to the robber for
the version of the problem where each cop or robber
move is at most distance 1.

Theorem 5 can alternatively be proved by decompos-
ing the polygon into O(n2) triangular regions and prov-
ing that they have an ordering with properties like a
dismantlable ordering, but we do not include the proof
here.
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6 Cops and Robbers Inside a Splinegon

In this section we consider the cops and robbers game
in a simply connected region with curved boundary,
specifically a splinegon R whose boundary consists of
n smooth curve segments that each lie on their own
convex hull. Other natural assumptions (such as alge-
braic curves or splines of limited degree, or other curves
of constant complexity) give regions that can be con-
verted to splinegons with a constant factor overhead by
cutting at points of inflection and points with vertical
tangents. Assume that tangents in a given direction
and common tangents between curve segments can be
computed. A vertex is an endpoint between two curve
segments.

We need another assumption to avoid an infinite game
where the cop gets closer and closer to the robber but
never reaches it. This occurs, for example, when two
curves meet tangentially at a vertex as in Figure 6—in
fact, in this situation a robber at a vertex avoids capture
by remaining stationary. We will assume that the link
distance between any two points in the splinegon R is
finite, and bounded by d.

Figure 6: The number of cop moves may be infinite even
when n = 2. Truncating the vertices makes the game
finite but the number of moves may depend on the link
diameter.

With these assumption—a splinegon R of n curved
segments with link diameter d—we prove that the cop
always wins, and does so in O(n2 + d) steps. But first,
we show through additional examples that the strategy
must be a little more complex than in the polygonal
case.

6.1 The Cop Strategy

A main difference from the polygonal case is that the
cop may need to move to interior points in order to win.
Figure 7, for example, shows that a region in which the
robber can win if the cop always stops on the boundary.

Our strategy is that the cop starts off along the first
straight segment of the shortest path to the robber’s
current position. However, if this segment is tangent to
a concave curve of the shortest path then the cop should
move further, into the interior of the polygon. How far
should the cop go? It is tempting stop the cop when it
can see the robber, but Figure 8 shows that this strategy

S
1

S
2

S
3

Figure 7: If the cop plays only on the boundary then
the robber can win: the robber’s strategy is to play on
the middle dashed portions of the boundary and always
move to the same curve Si that the cop is on. In our cop
strategy the cop would move to the endpoint tangents
(drawn as thin lines).

c
1

c
2

c
3

r
1

r
2

r
3

Figure 8: If the cop only moves far enough to see the
robber then the robber can win because it can force the
cop to take smaller and smaller steps.

fails—the cop should move farther. Figure 9 shows there
is also a danger of moving the cop too far.

c
1

c
2

r
1

r
2

Figure 9: If the cop moves too far then the robber can
win: the cop moves from c1 to c2, the robber moves
from r1 to r2 (dotted line) and then this can be repeated
around the polygon. In our proposed strategy the cop
would not move from c1 all the way to c2—it would stop
at a robber exit line (drawn as a thin line).

In our strategy the cop will stop at certain lines inside
the splinegon. We first state the cop strategy in terms
of these lines, and then define the lines. We use the
notation ci−1 for the cop’s position and ri−1 for the



robber’s position at the start of round i. Their initial
positions are c0 and r0. Recall that each round begins
with a cop move.

Cop Strategy for Round i. If the cop sees the robber,
it moves to the robber’s position and wins. Otherwise,
define the cop’s next position, ci as follows: Compute
the shortest path from the cop’s current position, ci−1,
to the robber’s current position, ri−1. Let `i be the ray
along the first straight segment of this shortest path, or,
if the shortest path begins with a curve, let `i be the
tangent to this curve. Let bi be the first point where
the shortest path diverges from `i, which will be on the
boundary of the splinegon R. Let γi be the boundary
curve either containing bi, if bi is not a splinegon vertex,
or incident on bi and not visible from ci−1 in R, if bi is a
vertex. By reflection if necessary, assume that the path
starts upward and turns left, as depicted in Figure 10.

If bi 6= ci−1 and bi is a vertex, then define ci to be
bi. (This matches the polygonal case.) Otherwise `i is
tangent to γi, so define ci to be the first point on the
ray `i, past bi, where `i intersects a common tangent or
a robber exit line or touches the splinegon boundary.

l
i

c
i−1

r
i−1 c

i

b
i R

i

γ
i

l
i

Figure 10: The cop move, showing the shortest path
from ci−1 to ri−1 (thick grey path), the first straight
segment of this path ci−1bi upward along ray `i, the
new cop position ci, the downward segment ¯̀

i (dashed)
and the active region Ri (lightly shaded).

We now define common tangents and robber exit lines.
Refer to Figure 11. A common tangent is a line segment
that is tangent to R at two points and ends where it ex-
its the region. At each endpoint of each curve we have
an endpoint tangent—the tangent to the curve through
the endpoint. An endpoint tangent extends in both di-
rections until it exits the region. There are O(n2) com-
mon tangents, because a curve has at most two common
tangents with any other curve or vertex (including its
own endpoints—we count endpoint tangents as common
tangents, too).

We define robber exit lines relative to the current rob-
ber and cop positions, using the notation from the cop
strategy above. Consider segments that start at ri−1
and are tangent to R, ending at the tangent point.
Among these, a robber exit line is one that crosses ray

`i such that the tangent point is on the far side of the
segment with respect to the direction of `i. If we extend
a robber exit line past its tangent point to the region
boundary we obtain a bay of points not visible from the
robber position. Note that every bay contains a vertex
of the region—either the tangent point itself is a vertex
or the tangent point is on a reflex curve, and we must
change curves before the end of the bay.

l
i

c
i−1

r
i−1

γ
i

e
1 e

2 e
3

f
1

f
2

f
3

Figure 11: Lines f1, f2 and f3 are three of the many
common tangents. Lines e1, e2 and e3 go through ri−1
and are tangent to R; of those, e2 is the only exit line.
Lightly shaded regions are the bays.

This completes the description of the cop strategy.
We note that the cop’s move can be computed in poly-
nomial time. We can preprocess to find all common
tangents. For a given robber position, we can find all
robber exit lines in polynomial time. We can find short-
est paths in the splinegon R in linear time using the
algorithm of [24]. With this information, we can find
the next cop position. A straightforward implementa-
tion takes O(n2) time, though this can probably be im-
proved.

6.2 The Cop Wins

In order to prove that the cop wins using the strategy
specified in the previous section, we first show that each
cop move restricts the robber to a smaller subregion.
Then we show that the number of steps the cop needs
to win is O(n2 + d) where n is the number of segments
and d is the link diameter of the region.

We begin by defining the subregion that the robber
is restricted to during and after round i. Define ¯̀

i to
be the segment that starts at bi, goes opposite ray `i
through ci−1, and stops at the first boundary point for
which every ε > 0 neighborhood contains a boundary
point on the opposite side of ¯̀

i from γi at bi (i.e., where
part of the boundary is to the right in Figure 10.) The
segment ¯̀

i starts and ends on the boundary so it cuts
the region into two (or more) pieces; define the active
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region, Ri, to be the piece that contains ri−1. Define the
exclusion region to be its complement in R. Observe
that the robber cannot exit Ri in round i, i.e., ri is
inside Ri. This is because ri−1 is on the wrong side of
the line through ¯̀

i.
We prove below in Lemma 8 that Ri+1 ( Ri, i.e., the

active region shrinks. Following that, we show that the
cop wins in a finite number of steps. The proofs are sim-
ilar to the analogous results for polygons, and involve
handling four cases for the left/right configuration of
the cop and the robber. Suppose that the shortest path
from ci−1 to ri−1 makes a left turn at bi. (The other case
is completely symmetric.) We distinguish these cases:

Case 1. The shortest path from ci to ri makes a left
turn at bi+1.

(a) ci+1 is left of the ray ci−1ci—more precisely, in
moving from ci−1 to ci to ci+1 the cop turns left by an
angle in the range (0, 180◦).

(b) ci+1 is right of the ray ci−1ci—more precisely, the
cop turns right by an angle in [0, 180◦).
Case 2. The shortest path from ci to ri makes a right
turn at bi+1.

(a) ci+1 is left of the ray ci−1ci—more precisely, the
cop turns left by an angle in (0, 180◦).
(b) ci+1 is right of the ray ci−1ci—more precisely, the

cop turns right by an angle in [0, 180◦).

Note that the cop never turns by an angle of 180◦

(doubling back) because then bi+1 would be on the line
segment between bi and ci and would provide a stopping
point for ci according to the rule that the cop stops on
the boundary.

We begin by showing that Case 2(a) can only hap-
pen in special circumstances and that Case 1(b) cannot
happen at all.

Lemma 6 In Case 2(a) the segment cibi+1 is tangent
to the boundary on its left side (as well as tangent to
the boundary on its right side at bi+1).

Proof. See Figure 12. The segment cibi+1 is tangent
to the boundary curve γi+1 on its right side at point
bi+1. Suppose that segment cibi+1 is not tangent to the
boundary on its left side. We show that the cop has
passed a common tangent. Move ci back towards ci−1
while maintaining tangency with the curve γi+1. We
can move some positive amount. Either we reach the
tangent at an endpoint of γi+1 or the segment cibi+1

hits a boundary point on its left side (possibly because ci
reaches bi). In either case, we have arrived at a common
tangent, so ci should have been placed here rather than
further along. �

Lemma 7 Case 1(b) cannot occur, i.e., it cannot hap-
pen that the shortest path from ci to ri makes a left turn
at bi+1 and ci+1 is right of the ray ci−1ci by an angle in
[0, 180◦).
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Figure 12: In case 2(a) if the segment cibi+1 is not tan-
gent to the boundary on its left side then there is an
earlier choice for ci (on the dashed red common tan-
gent).

Proof. Suppose the situation does occur. See Fig-
ure 13(a). We show that the cop has passed a common
tangent or a robber exit line, which gives a contradic-
tion. Because ci+1 is to the right of the ray ci−1ci,
therefore the robber’s move ri−1ri must have crossed
the line through ci−1ci, say at point x. We claim that
segments ri−1ri and ci−1ci intersect. First note that x
lies after bi along the ray ci−1ci. We must show that ci
lies after x along this ray. If ci lies before x, then there
is a two-link path inside the region, ci, x, ri that turns
right at x. Shortening this to a locally shortest path,
we obtain the shortest path from ci to ri that makes a
first turn to its right, contradicting our assumption.

The segment cibi+1 is tangent to the curve γi+1. We
will now move point p from ci towards bi, maintaining a
segment through p tangent to the curve γi+1. Define ρ
to be the shortest path from ri−1 to ci. For any position
of p, we extend the segment past p to the point where it
intersects ρ. If the segment reaches an endpoint tangent
of γi+1 then we have a common tangent. Otherwise, the
segment must at some point lose contact with ρ and we
claim that this can only happen because of one of the
following:

• The segment intersects ρ at ri−1: this is a robber
exit line. See Figure 13(a).

• The segment becomes tangent to ρ: this is a com-
mon tangent. See Figure 13(b).

• The segment bumps into the region boundary (pos-
sibly at point bi): this is a common tangent. See
Figure 14.

�

We are now ready to show that the active region
shrinks.

Lemma 8 The active regions satisfy Ri+1 ( Ri.
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Figure 13: Case 1(b), moving p from ci towards bi while
maintaining tangency with γi+1. (a) We encounter a
robber exit line. (b) We encounter a common tangent.

Proof. Assume that the shortest path from ci−1 to ri−1
makes a left turn at bi, and consider the cases as listed
above.

Case 1(a). The shortest path from ci to ri makes a
left turn at bi+1 and ci+1 is left of the ray ci−1ci. See
Figure 15. The ray ¯̀

i+1 from bi+1 through ci intersects
`i at ci, and is therefore completely contained in the
active region Ri. Furthermore, the open segment ci−1ci
is outside Ri+1. Thus Ri+1 ( Ri.

Case 1(b). The shortest path from ci to ri makes a
left turn at bi+1 and ci+1 is right of the ray ci−1ci. This
case cannot occur by Lemma 7.

Case 2(a). The shortest path from ci to ri makes a
right turn at bi+1 and ci+1 is left of the ray ci−1ci. See
Figure 16(a). By Lemma 6, the segment cibi+1 is tan-
gent to the boundary on its left side, say at point p. The
ray ¯̀

i+1 that defines the active region extends from bi+1

to p. It’s extension goes through ci, so it is contained
in Ri. Furthermore, the open segment ci−1ci is outside
Ri+1. Therefore Ri+1 ( Ri.

Case 2(b). The shortest path from ci to ri makes a
right turn at bi+1 and ci+1 is right of the ray ci−1ci (or
on the ray). See Figure 16(b). The ray ¯̀

i+1 intersects
`i at ci, and is contained in Ri. Furthermore, the open
segment ci−1ci is outside Ri+1. Thus Ri+1 ( Ri. �
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Figure 14: Case 1(b), moving p from ci towards bi while
maintaining tangency with γi+1. We encounter a com-
mon tangent by bumping into the region boundary (a)
before p reaches bi, or (b) at bi.
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Figure 15: Case 1(a).

Finally we prove our main result.

Theorem 9 Inside a splinegon of n curve segments
with link diameter d, the cop wins the cops and robbers
game in O(n2 + d) moves.

Proof. We argue that at each step between the first and
the last, the active region shrinks in some discrete way.
Define the newly excluded region, Ei, to be Ri−Ri+1, in-
cluding the boundary of Ri+1 but excluding the bound-
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Figure 16: (a) Case 2(a). (b) Case 2(b).

ary of Ri. We show that either ci and bi define a com-
mon tangent or else Ei contains either: (1) a vertex of
the region; or (2) an endpoint of a common tangent; or
(3) a bend of the minimum link path from the initial
to final cop positions. There are at most O(n2) pairs
of points defining common tangents. Next we bound
the number of events involving Ei. Event (1) can hap-
pen at most n times. Event (3) can happen at most d
times since that is the maximum number of bends in the
minimum link path between any two points. We claim
that event (2) happens at most O(n2) times because a
common tangent whose terminus becomes part of the
exclusion region will never again be used to determine
the cop’s position. We will argue this for the previous
cop move because that is easier to see in our figures. If
ci stopped at a common tangent, then ci 6= bi, and the
common tangent cannot be in the line cibi. Thus the
common tangent cannot have a terminus outside Ri or
on its boundary.

It remains to prove that at each step, one of event
(1), (2), or (3) occurs.

Recall that the cop’s position, ci, is at a common
tangent or a robber exit line or on the boundary of the
region. If ci is on a common tangent, then one endpoint
of the common tangent must lie in the newly excluded
region Ei, because the boundary of Ei is a line segment
going through ci.

If ci is on a robber exit line then we claim that Ei

contains a vertex. To justify this, first note that ri−1
must lie in Ri+1 (because a straight segment joins ri−1
and ri). Thus the tangent point of the robber exit line,
and its bay, must lie in Ei. As noted when we defined
robber exit lines, this bay contains a vertex. Therefore
Ei contains a vertex.

Finally, we must consider the possibility that ci is
on the region boundary. When can this happen? By
Lemma 6, the cop always stops at a common tangent in
Case 2(a). By Lemma 7, Case 1(b) never occurs. Thus
we must be in Case 1(a) or 2(b). Next we claim that
ci must be at a point where `i exits the region, because
otherwise ci and bi define a common tangent. In Case
2(b) (see Figure 16(b)) the robber’s move ri−1ri must
cross line `i beyond ci, which is impossible if `i exits
the region at ci. Thus we must be in Case 1(a). See
Figure 17. Any minimum link path from the initial cop
position (outside Ri) to the final robber position (inside
Ri+1) must include a bend point in Ei.
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Figure 17: When the cop stops on the region boundary
in Case 1(a).

�

7 Open Problems

1. Consider the cops and robbers game on the points
inside a polygonal region, i.e., a polygon with holes.
There is a lower bound of three cops—such an example
can be constructed from a planar graph where three
cops are required [2]. Do three cops suffice?

2. What is the complexity of finding how many moves
the cop needs for a given polygon/region? The graph
version of this problem is solvable in polynomial time
for cop-win graphs [20]. For the cops and robbers game
on the points inside a polygon we conjecture that the
problem is solvable in polynomial time if the cop is re-
stricted to the reflex vertices of the polygon. However,
the cop may save by moving to an interior point, for
example in a star-shaped polygon whose kernel is dis-
joint from the polygon boundary, so the problem seems



harder if the cop is unrestricted.
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