
Class Nine: Random Graphs

We can think of building a labelled random graph as follows: For each
potential edge we flip a coin...If it’s HEADS we include the edge in our random
graph and if it’s TAILS we do not. This is known as the Erdős-Rényi model.

Draw some small graphs and think about the following questions:

In building a random graph on n vertices how many coin flips must we make?

How many potential random graphs are there on n vertices?

What are the chances of obtaining a specific graph by our random procedure
using a fair coin? What about when using a bias coin?

On average how many edges will a random graph on n vertices have?

Draw all random graphs on 3 vertices with their respective probabilities.
What is the probability a random graph on 3 vertices is

Connected? Bipartite? Connected and bipartite? A path? A tree? A clique?



What is the probability that two random graph on 3 vertices are isomorphic?
Both forests? Both trees? Have the same chromatic number?
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What are the chances that a random graph on n vertices has m edges?

What are the chances that a vertex in our random graph has a specific degree?
On average what is the degree of a vertex in our random graph?

On average how many isolated vertices are there?

As we vary our coin “fairness” how does our random graph change?

How does the complement of a random graph behave?

On average how many triangles would a random graph have? Complete graphs?

On average how many cycles of length k would a random graph have?

What are the chances that a random graph on n vertices has a clique of size k?



Lemma. Consider a random graph on n vertices obtained by flipping a biased
coin with probability of heads equal to p.

• The average degree is (n− 1)p.

• The average number of edges
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• The average number of triangles
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• The average number of isolated vertices is n(1− p)n−1.

• The average number of cycles of length k is (n)k
2k
pk, where (n)k = n(n−

1)...(n− (k − 1)) is the falling factorial.

Lemma. Consider a random graph G on n vertices obtained by flipping a
biased coin with probability of heads equal to p. Then

P [α(G) ≥ k] ≤
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Corollary. The Ramsey number R(k, k) > 2k/2.

Theorem (Erdős). For any positive integer χ, there exists a graph with chro-
matic number at least χ and no triangles.

Evolution of a random graph on n vertices as the probability p of an edge
existing grows from 0 to 1

• An edge exists p ∼ 1
n2

• An subtree with 3 vertices exists p ∼ 1
n3/2

• An subtree with k vertices exists p ∼ 1
nk/(k−1)

• A cycle exists p ∼ 1
n

• No isolated vertices/Connected p ∼ lnn
n

To take a random walk in a graph G we start at a vertex v and move
to one of its neighbors with probability 1

deg(v)
. Repeating this process yields a

our notion of a random walk.

What is the long run proportion of time spent in a specific vertex
during a random walk in a complete graph? What about a general graph?



In a regular graph, if a random walk just passed
through a specific vertex how long till it returns?

What is the expected number of moves it takes a knight to return to
its initial position if it starts in a corner of the chessboard?

Try other starting positions. Where on the board does it return “fastest” from?
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Lemma. The long run proportion of time spent in v during a random walk in
a non-bipartite graph G is

π(v) =
deg(v)∑

u∈V (G) deg(u)
=

deg(v)

2|E(G)|
.

Corollary. The expected number of steps until a random walk returns to its
starting point is 1

π(v)
.




