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2 J. Avigad and S. Feferman

1. Introduction

1.1. Functional interpretations

In 1958, Kurt Gödel published in the journal Dialectica an interpretation of
intuitionistic arithmetic in a quantifier-free theory of functionals of finite type, an
interpretation which has since come to be known as Gödel’s functional or Dialectica
interpretation. When combined with Gödel’s double-negation interpretation, which
reduces classical arithmetic to intuitionistic arithmetic, the Dialectica interpretation
(also referred to below as the D-interpretation) yields a reduction of the classical
theory as well. This approach has since been extended and adapted to other theories,
but the pattern usually follows Gödel’s original example:
• first, one reduces a classical theory C to a variant I based on intuitionistic

logic;

• then one reduces the theory I to a quantifier-free functional theory F .

Functional interpretations of this form can be interesting for a number of reasons.
To begin with, the work can be seen as a contribution to a modified form of Hilbert’s
program, since, from a foundational point of view, the consistency of C is thereby
reduced to the consistency of F . Subsequent analyses of F often lead to further
gains, yielding, for example, reductions of (prima facie)
• infinitary systems to finitary ones,

• non-constructive systems to constructive ones, and

• impredicative systems to predicative ones.

Secondly, functional interpretation provides a way of extracting (or “unwinding”)
constructive information from proofs in I or C . For example, as a direct consequence
of the interpretation one usually obtains the result that any recursive function whose
totality can be proven either in I or in C is represented by a term of F . Via an
additional interpretation of F in I , this characterization is in fact usually shown to
be exact. It often turns out that the terms of F represent a natural class of functions,
such as the primitive recursive or polynomial-time computable functions. In other
cases, the theory F embodies independently interesting computational constructs,
such as bar-recursion or polymorphism, which are discussed in this chapter.

Finally, functional interpretations often provide a useful stepping-stone to other
goals. For example, the analyses of Gödel’s functional calculus T due to Tait and
Howard provide an alternative means to the ordinal analysis of classical arithmetic,
and non-constructive interpretations due to the second author yield consequences for
various subsystems of second-order arithmetic. Many of these results can also be ob-
tained using Herbrand-Gentzen methods of syntactic transformation, and in certain
domains (for example, in the ordinal analysis of strong subsystems of analysis and
set-theory) these latter methods are the only ones currently known.1 Nonetheless,

1Whether there is a fundamental obstacle against the use of D-interpretations for such purposes
is a matter of methodological interest.
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Gödel’s Functional Interpretation 3

functional interpretations have proven to be a relatively powerful and versatile tool,
with distinct advantages that will be illustrated below.

1.2. Historical background

Although the Dialectica interpretation was not published until 1958, Gödel began
to develop these ideas in the latter part of the 1930’s as a possible modification of
Hilbert’s program (cf. Sieg and Parsons [1994]), and the D-interpretation itself was
arrived at by 1941 and presented in a lecture to the Mathematics and Philosophy
Clubs at Yale University. Full notes for that lecture are found in Gödel’s Nachlass
and have been made available in Volume III of his Collected Works as Gödel [1941].

The interpretation was first brought to the attention of the logic community
at large in a lecture by Georg Kreisel at the Summer Institute in Symbolic Logic
held at Cornell University in 1957 (cf. the notes Kreisel [1957]). The publication
Gödel [1958], in German, was for an issue of Dialectica in honor of Paul Bernays’
70th birthday. Gödel worked on a translation and expansion of that article for
another issue in honor of Bernays a decade later, but though it reached the stage of
proof sheets it never appeared in print until it was retrieved from the Nachlass for
publication in Volume II of his Collected Works as Gödel [1972].

Subsequent work on functional interpretations was carried out in the 1960s
through the early 1980s, following the initial developments by Kreisel in the late
1950s. After a lapse in the latter part of the 1980s, there has been a resurgence of
interest in these methods in the 1990s, yielding a number of new applications. Some
of the different general directions of work may be indicated roughly as follows (more
or less along the lines of Troelstra [1990,pp. 236–239], which should be consulted for
publication information concerning items not found in the references to this chapter).

1. The functionals in Gödel’s interpretation are defined by schemata for explicit
definition and a natural extension of primitive recursion to finite types, and are
therefore called primitive recursive functionals of finite type.2 There have been
a number of investigations of this class of functionals, which have set-theoretic,
recursion-theoretic and term models. Prominent in the study of the latter are
various methods of normalization and related assignments of ordinals. Among
the contributors here that one should mention are S. Hinata, J. Diller, W. Tait
and W. Howard.

2. Next, Gödel’s interpretation has been adapted and extended both to stronger
and weaker theories. Here, briefly, in semi-chronological order, are some of
the kinds of systems to which the D-interpretation has been extended, either
directly in the case of intuitionistic systems, or indirectly by combination with
the negative translation in the case of classical systems. (We also indicate some
of the main contributors to each):

2This will be distinguished below from the class of functionals introduced by Kleene [1959b]
using a weaker predicative extension of primitive recursion to finite types.
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4 J. Avigad and S. Feferman

(a) Intuitionistic arithmetic with principles of transfinite induction
(G. Kreisel).

(b) Impredicative (“full”) classical analysis formulated with function variables
(G. Kreisel, C. Spector, W. Howard, H. Luckhardt).

(c) Subsystems of classical arithmetic (C. Parsons).
(d) Impredicative systems of classical analysis formulated with set variables

(J.-Y. Girard).
(e) Intuitionistic and classical theories of ordinals (W. Howard, S. Feferman).
(f) Predicative systems of classical analysis (W. Maass, S. Feferman).
(g) Classical analysis with a game quantifier (W. Friedrich).
(h) Systems of feasible arithmetic (S.A. Cook and A. Urquhart).
(i) Iterated arithmetical fixed point theories (J. Avigad).

3. Furthermore, the interpretations have been applied towards a number of inter-
esting proof theoretic ends. These applications include:
(a) The no-counterexample interpretation for Peano Arithmetic (G. Kreisel).
(b) Closure and conservation results for intuitionistic systems (A.S. Troel-

stra).
(c) Conservation results for classical systems and characterization of the prov-

ably recursive functionals (C. Parsons, S. Feferman, U. Kohlenbach).
4. Finally, useful variants of Gödel’s original interpretation have also been de-

veloped, among them those due to J. Shoenfield, J. Diller and W. Nahm,
M. Beeson, U. Kohlenbach.

These lists, as well as the treatment below, are not comprehensive. For more
information we refer the reader to the surveys Troelstra [1990] and Feferman [1993],
the encyclopedic treatment of Troelstra [1973], and the related articles Feferman
[1977] and Troelstra [1977].3

1.3. An overview of this chapter

In this chapter we try to give a broad and self-contained survey of the D-
interpretation and its applications. First we provide the details of the interpretation
of arithmetic, explicitly presenting the relevant axioms and the functional theory T .
In section 3 we present some of the useful information that can be gleaned from the
interpretation, and take a broader look at the general form of the interpretation in
order to understand better how it might be adapted to other contexts.

The presentation of a functional theory raises the issue of what its models look
like. In the case of Gödel’s T , that issue is addressed in section 4. In section 5 we

3Unfortunately, notation in literature is not uniform, and here we have struck some compro-
mises. For example, though the use of PRω to denote Gödel’s theory of the primitive recursive
functionals of finite type in Feferman [1977,1990] is more descriptive, here we follow Gödel’s
original use of the name T .
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Gödel’s Functional Interpretation 5

show how to weaken T in order to obtain useful characterizations of the provably
total recursive functions of certain fragments of arithmetic, namely IΣ1 and S 1

2 .
In section 6 we go in the opposite direction and consider a strengthening of T

that suffices to interpret full second-order arithmetic (“analysis”). In the following
three sections we then consider ways in which the D-interpretation can also be used
to obtain information regarding a number of interesting subsystems of analysis.

Finally, in the last section we show how functional theories based on polymor-
phic types arise in a natural way from a functional interpretation of full analysis,
formulated using predicate variables instead of function variables.

The authors are very much indebted to Ulrich Kohlenbach for numerous com-
ments and suggestions, as well as corrections to a draft of this chapter.

2. The Dialectica interpretation of arithmetic

2.1. Theories of arithmetic and the double-negation interpretation

The first-order theory Peano arithmetic, or PA, has already been discussed in
Chapter II. Peano arithmetic has its intuitionistic analogue in a theory known
as Heyting arithmetic, or HA, which differs from the former only in that it uses
intuitionistic axioms and rules as the underlying predicate logic. For concreteness,
we take the following list of axioms and rules, which is that used by Gödel [1958] (cf.
also Troelstra [1973,1977]):

1. From ϕ, ϕ→ ψ conclude ψ
2. From ϕ→ ψ, ψ → θ conclude ϕ→ θ

3. ϕ ∨ ϕ→ ϕ, ϕ→ ϕ ∧ ϕ
4. ϕ→ ϕ ∨ ψ, ϕ ∧ ψ → ϕ

5. ϕ ∨ ψ → ψ ∨ ϕ, ϕ ∧ ψ → ψ ∧ ϕ
6. From ϕ→ ψ conclude θ ∨ ϕ→ θ ∨ ψ
7. From ϕ→ (ψ → θ) conclude ϕ ∧ ψ → θ, and conversely
8. ⊥ → θ

9. From ϕ→ ψ conclude ϕ→ ∀x ψ, assuming x is not free in ϕ
10. ∀x ϕ→ ϕ[t/x], assuming t is free for x in ϕ
11. ϕ[t/x]→ ∃x ϕ, assuming t is free for x in ϕ
12. From ϕ→ ψ conclude ∃x ϕ→ ψ, assuming x is not free in ψ

Here ϕ[t/x] denotes the result of replacing all free occurrences of the variable x by t
in the formula ϕ. It is common in intuitionistic systems to define negation by

¬A = A→ ⊥

where ⊥ is an identically false statement, or “contradiction”; ⊥ may be taken to be
a closed atomic formula, or identified with 0 = 1. We take the equality axioms to be
given by

1. x = x
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6 J. Avigad and S. Feferman

2. x = y → (ϕ[x/z]→ ϕ[y/z]), where ϕ is atomic.
Finally, classical logic is obtained by adding to this list tertium non datur, the law of
excluded middle:

ϕ ∨ ¬ϕ.

Classical predicate logic can be reduced in a simple way to intuitionistic predicate
logic via the so-called double-negation (or negative) translation due (independently)
to Gödel and Gentzen. This is defined as follows:

1. ϕN = ¬¬ϕ, for ϕ atomic
2. (ϕ ∧ ψ)N = ϕN ∧ ψN

3. (ϕ ∨ ψ)N = ¬(¬ϕN ∧ ¬ψN)
4. (ϕ→ ψ)N = ϕN → ψN

5. (∀x ϕ(x))N = ∀x ϕ(x)N

6. (∃x ϕ(x))N = ¬∀x ¬ϕ(x)N

The “double negation” appellation is due not only to clause 1, but also the fact that
(ϕ ∨ ψ)N ↔ ¬¬(ϕN ∨ ψN) and (∃x ϕ)N ↔ ¬¬∃x ϕN are provable intuitionistically.

Clearly, from a classical point of view every formula is equivalent to its N-
interpretation. Moreover, one has the following

2.1.1. Theorem. Suppose a set of axioms S proves a formula ϕ using classical
logic. Then S N proves ϕN using intuitionistic logic.

For a proof of this and more general results, see Troelstra [1973] or Troelstra [1977,
section 3.8]. For the case at hand, the preceeding theorem provides the following
useful

2.1.2. Corollary. Suppose PA proves a formula ϕ. Then HA proves ϕN .

2.1.3. Proof. We only need to verify that HA proves the N-interpretation of each
axiom and rule of PA. Since HA proves x = y ∨ ¬(x = y) (using a double induction
on x and y), the N-interpretations of the quantifier-free axioms of PA follow from
their HA counterparts. Finally, the N-interpretation of an instance of the induction
scheme is again an instance of the induction scheme. 2

2.2. The primitive recursive functionals of finite type

The Dialectica interpretation reduces HA to a theory T which axiomatizes a
class of functionals that Gödel called the “primitive recursive functionals of finite
type.”4 While T is quantifier-free, its language is many-sorted, in that each term is
assigned a type symbol, or type for short. The set of types is generated inductively by
the following rules:

1. 0 is a type.
4For a variant of the D-interpretation that applies directly to PA, see Shoenfield [1967].
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Gödel’s Functional Interpretation 7

2. If σ and τ are types then so is σ → τ 5

The intended use is that objects of type 0 are considered to be natural numbers
and objects of type σ → τ are considered to be functions from objects of type σ
to objects of type τ . The latter may be interpreted as constructive functions in
some sense or other, or set-theoretically as all functions of the specified type. By
convention we interpret

τ1 → τ2 → . . .→ τn

by associating parentheses to the right, i.e. as

τ1 → (τ2 → (. . .→ τn) . . .).

Objects of a type (σ → τ) → ρ have function arguments and are usually called
functionals. An interpretation 〈Mσ : σ a type〉 of such a typed language is called a
functional type structure or simply a type structure.

One might also wish to include on the preceeding list the following additional
closure condition:

3. If σ and τ are types then so is σ × τ .
Here σ × τ denotes the set of ordered pairs of objects 〈s, t〉 with s an object of type
σ and t an object of type τ . This closure condition is eliminable in favor of 2 by
“currying,” that is, interpreting the type (ρ × σ) → τ as the type ρ → (σ → τ)
and adopting the term-reading conventions described below. (Always in such choices
there are trade-offs: fewer closure conditions on type symbols simplifies description
of models, normalization of terms, etc., but more closure conditions provide added
flexibility and naturalness of formulation.)

To each type σ we can assign a natural number lev(σ) as its type level, by:
1. lev(0) = 0
2. lev(σ → τ) = max(lev(σ) + 1, lev(τ)).

The language of T is said to be of finite type since every type is assigned a finite level
by this convention. The pure types (n) are defined by

1. (0) = 0
2. (n+ 1) = (n)→ 0.

Where the context determines that we are dealing with type symbols, we drop the
parentheses around symbols for pure types. Then lev(n) = n for each n < ω.

We now define the set of terms of T , as well as the relation t : τ (read “term t
has type τ ”), inductively via the following rules:

1. There are infinitely many variables xτ , yτ , zτ , . . . of each type τ .
2. If s is a term of type σ and t a term is of type σ → τ then t(s) is a term of

type τ .
3. 0 is a constant of type 0.
4. Sc is a constant of type 0→ 0.
5Gödel [1958] used (τ, σ) for our σ → τ . There are many alternative notations in use in the

literature such as (σ)τ or τ(σ) or τσ , etc.; caveat emptor.
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8 J. Avigad and S. Feferman

5. For each pair of types σ, τ , Kσ,τ is a constant of type σ → τ → σ.
6. For each triple of types ρ, σ, τ, Sρ,σ,τ is a constant of type

(ρ→ σ → τ)→ (ρ→ σ)→ (ρ→ τ).
7. For each type σ, Rσ is a constant of type σ → (0→ σ → σ)→ 0→ σ.

The intended interpretation is that 0 denotes the constant zero, Sc(t) denotes the
successor of t (which we will also write t′), and t(s) denotes the result of applying
the function(al) t to the argument s. The intuitive meanings of Kσ,τ , Sρ,σ,τ , and Rσ

will become clear when we present their defining equations below.
Where possible without ambiguity, we will suppress the type superscripts on the

constants K, S, R and on variables, and write, for example, x, y, z, . . .. We will
sometimes use capital letters X,Y, Z . . . to denote variables of functional type. To
improve readability, if t is a term of type ρ → (σ → τ), r is a term of type ρ,
and s is a term of type σ, we will write t(r, s) instead of t(r)(s) (which we in turn
interpret by associating to the left, yielding (t(r))(s)). Similarly t(r1, r2, . . . , rn)
denotes t(r1)(r2) . . . (rn).6

At the risk of confusion, sequences of variables (possibly empty) will be indicated
by the same font, e.g. x = (x1, . . . , xn) or X = (X1, . . . , Xn). If x is such a sequence
then the term t(x) should be interpreted as t(x1, . . . , xn) and the prefix ∃x should
be interpreted as the quantifier string ∃x1 ∃x2 . . .∃xn . In general, we will rely on
context to determine whether we are dealing with a single variable or sequence of
such. If x and y denote sequences of variables, then x, y denotes their concatenation,
as in t(x, y) or ∃x, y.

In the intended interpretation, of course, 0 and Sc satisfy

x′ 6= 0

and
x′ = y′ → x = y.

The constants K and S in (5) and (6) above are the usual typed combinators whose
interpretation is given by

K(s, t) = s for s : σ and t : τ ,

and
S(r, s, t) = r(t)(s(t)) for r : (ρ→ σ → τ), s : ρ→ σ, and t : ρ.

The meaning of equality at higher types is a delicate matter which will be taken up
in section 2.5 below. For the time being we read these equations naively.

If terms are generated from the variables and constants solely by the operation of
application then one obtains combinatory completeness as usual, i.e. we can associate

6In the literature on functional interpretations, parentheses are often dropped altogether for
the sake of brevity, so that one may encounter e.g. Xxyz instead of X(x, y, z). When this is
the case, convention and the types of the associated terms and variables dictate the appropriate
reading.
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Gödel’s Functional Interpretation 9

with each term t and variable x another term λx.t whose free variables are all those
of t other than x, and which satisfies the equation

(λx.t)(s) = t[s/x].

It follows that if t has free variables among x1, . . . , xn , then (λx1 . . . λxn.t) is a closed
term with

(λx1 . . . λxn.t)(s1, . . . , sn) = t[s1/x1, . . . , sn/xn]

for all si of the same type as xi for i = 1, . . . , n. Alternatively, we could have taken
the λ operation as a basic term-forming operation, where the terms thereby formed
have the defining equation above.

Finally, we have the equations for the recursors R, which define a simple form of
primitive recursion:

R(f, g, 0) = f
R(f, g, n′) = g(n,R(f, g, n)).

That is, R(f, g) is a function h of type 0→ σ, with defining equations

h(0) = f
h(n′) = g(n, h(n)).

There is no need to mention parameters to h explicitly, since these can be absorbed
in the types of f and g. We note that this kind of higher-type iteration is clearly
anticipated in Hilbert [1926], and even, to some extent, in Weyl [1918].

The atomic formulas of T consist of assertions of equality between terms of the
same type,7 and more complex formulas are obtained by combining these with the
usual propositional connectives. The axioms of T consist of the defining equations
of 0, Sc, K, S, and R described above, a rule allowing for the substitution of
arbitrary terms for variables of the same type, equality axioms, the axioms of classical
propositional logic, and the scheme of induction

from ϕ(0) and ϕ(x)→ ϕ(x′) conclude ϕ(t)

for arbitrary formulas ϕ and terms t in the language. Note that if one has included
products σ × τ among the finite types, one also needs to add basic terms denoting
pairing and projection operations of the appropriate types, together with their
defining equations as well.

In later sections we will consider variants of T which allow for more elaborate
types (e.g. “transfinite types”) and functionals. For the time being, T is strong
enough to interpret HA, as we now show.

7In one treatment of equality in T , these are only for terms of type 0; cf. section 2.5 below.
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10 J. Avigad and S. Feferman

2.3. The Dialectica interpretation

To each formula ϕ in the language of arithmetic we associate its Dialectica (or
D-) interpretation ϕD , which is a formula of the form

ϕD = ∃x ∀y ϕD
where ϕD is a (quantifier-free) formula in the language of T . Here the free variables
of ϕD consist of those free in ϕ, together with the sequences of variables (possibly
empty) x and y. However, the free variables of ϕ are generally suppressed and we
also write ϕD(x, y) for ϕD . If one or more free variables z of ϕ are exhibited, as
ϕ(z), then we write ϕD(x, y, z) for ϕD .

The associations ( )D and ( )D are defined inductively as follows, where

ϕD = ∃x ∀y ϕD and ψD = ∃u ∀v ψD.
1. For ϕ an atomic formula, x and y are both empty and ϕD = ϕD = ϕ.
2. (ϕ ∧ ψ)D = ∃x, u ∀y, v (ϕD ∧ ψD).
3. (ϕ ∨ ψ)D = ∃z, x, u ∀y, v ((z = 0 ∧ ϕD) ∨ (z = 1 ∧ ψD)).
4. (∀z ϕ(z))D = ∃X ∀z, y ϕD(X(z), y, z).
5. (∃z ϕ(z))D = ∃z, x ∀y ϕD(x, y, z).
6. (ϕ→ ψ)D = ∃U, Y ∀x, v (ϕD(x, Y (x, v))→ ψD(U(x), v)).

The case of→ has been put last here because this requires special explanation below.
Since we have defined ¬ϕ to be ϕ→ ⊥, from 6 we obtain

7. (¬ϕ)D = ∃Y ∀x ¬ϕD(x, Y (x)).
In clause 1 we assume the obvious identification of the symbols + and × of HA

with the terms that represent addition and multiplication in T . The definition of
ϕD for atomic ϕ, of (ϕ ∧ ψ)D and of (∃z ϕ(z))D needs no comment. The definition
of (ϕ ∨ ψ)D is also clear on a constructive reading: the new parameter z tells which
disjunct is being established, according as to whether z = 0 or z = 1. The definition
of (∀z ϕ(z))D is obtained by prefixing a universal quantifier to ϕD to obtain

∀z ∃x ∀y ϕD(x, y, z)

and then “skolemizing” the existentially quantified variable.
The motivation behind the definition of (ϕ → ψ)D given by Gödel is as follows:

from a witness x to the hypothesis ϕD one should be able to obtain a witness u to
the conclusion ψD , such that from a counterexample v to the conclusion one should
be able to find a counterexample y to the hypothesis. In short, one uses equivalences
(i–iv) below to bring quantifiers to the front, and then skolemizes the existential
variables:

(∃x ∀y ϕD(x, y)→ ∃u ∀v ψD(u, v)) ↔ (i)
∀x (∀y ϕD(x, y)→ ∃u ∀v ψD(u, v)) ↔ (ii)
∀x ∃u (∀y ϕD(x, y)→ ∀v ψD(u, v)) ↔ (iii)
∀x ∃u ∀v (∀y ϕD(x, y)→ ψD(u, v)) ↔ (iv)
∀x ∃u ∀v ∃y (ϕD(x, y)→ ψD(u, v)) ↔ (v)
∀x ∃u, Y1 ∀v (ϕD(x, Y1(v))→ ψD(u, v)) ↔ (vi)
∃U, Y ∀x, v (ϕD(x, Y (x, v))→ ψD(U(x), v)).
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Gödel’s Functional Interpretation 11

The definitions of (ϕ ∧ ψ)D , (ϕ ∨ ψ)D , and (∃z ϕ(z))D are all justified from a
constructive as well as classical point of view. The definition of (∀z ϕ(z))D is justified
by an application of the axiom of choice,

(AC ) ∀x ∃y ϕ(x, y)→ ∃Y ∀x ϕ(x, Y (x))

for arbitrary formulas ϕ. (AC ) is usually accepted classically in set theory; it is also
accepted by many constructivists, since the reading of the hypothesis is that one has
a constructive proof of ∀x ∃y ϕ(x, y), and such a proof must provide a means Y of
constructively associating with each x a solution y = Y (x) of ϕ(x, y).

The analysis of (ϕ → ψ)D is more delicate. While equivalences (i–vi) above are
all classically justified, only (i), (iii), (v) and (vi) are acceptable from a constructive
point of view, the first two by logic and the latter two by (AC ). Equivalence (ii),
namely,

(IP ′) (∀y ϕ→ ∃u ∀v ψ)→ ∃u (∀y ϕ→ ∀v ψ)

is a special case of a principle called independence of premise. Though this is valid
in classical logic, it is not generally accepted constructively, since the constructive
reading of the hypothesis (θ → ∃u η) is that we have a constructive means of turning
any proof of the premise θ into a proof of η with a witness for the existential quantifier
applied to η. In general, the choice of such a u will then depend on the proof of θ,
while (IP ′) tells us that u can be chosen independently of any proof of that premise.

Equivalence (iv) can be justified by a generalization of Markov’s principle, namely

(MP ′) ¬∀y θ → ∃y ¬θ

in which θ is assumed to be quantifier-free. (Assuming that the law of excluded
middle holds for ψD , argue thus: if ψD is true then (iv) is justified, and if ψD is false
apply (MP ′).) The problem with (MP ′) is that there is no evident way to choose
constructively a witness y to ¬θ from a proof that ∀y θ leads to a contradiction.
However if y ranges over the natural numbers one can search for such a y given that
one accepts its existence. In this case (MP ′) boils down to the usual form of Markov’s
principle

(MP) ∀x (¬¬∃y ϕ(x, y)→ ∃y ϕ(x, y))

which is accepted in the Russian school of constructivity for ϕ quantifier-free.
While the reasoning leading to the form of the D-interpretation is not fully

constructive it can still be used as a tool in constructive metamathematics and to
derive constructive information. In section 3.1 we’ll see that the D-interpretation
verifies the three principles (AC ), (IP ′), and (MP ′) just discussed, and hence
allows one to use the D-interpretation to extract constructive information from
non-constructive proofs.

2.4. Verifying the axioms of arithmetic

Gödel’s main result is as follows.
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12 J. Avigad and S. Feferman

2.4.1. Theorem. Suppose ϕ is a formula in the language of arithmetic, and HA
proves ϕ. Then there is a sequence of terms t such that T proves ϕD(t, y).

We express this by saying that HA is D-interpreted in T . Combining Theorem 2.4.1
with Corollary 2.1.2 we obtain

2.4.2. Corollary. Suppose ϕ is a formula in the language of arithmetic, such that
PA proves ϕ. Then there is a sequence of terms t such that T proves (ϕN)D(t, y).

In short, PA is ND-interpreted in T .
One proves Theorem 2.4.1 by induction on the length of the proof in HA. One

only has to verify that the claim holds true when ϕ is an axiom of HA, and that it is
maintained under rules of inference.

We begin by considering the axioms of rules of intuitionistic logic, listed in
section 2.1. For most of these the verification is routine, and we only address a few
key examples. For example, consider the rule “from ϕ → ψ and ϕ conclude ψ.”
Given a term a such that T proves ϕD(a, y) and terms b and c such that T proves
ϕD(x, b(x, v)) → ψD(c(x), v), we want a term d such that T proves ψD(d, v). By
substituting b(a, v) for y in the first hypothesis and a for x in the second, we see
that taking d = c(a) works; so, in a sense, modus ponens corresponds to functional
application. The reader can verify that, similarly, the axiom “from ϕ → ψ and
ψ → θ conclude ϕ→ θ” corresponds to the composition of functions.

Handling the axiom ϕ→ ϕ ∧ ϕ requires a bit more work. If the interpretation of
the hypothesis is given by ∃x ∀y ϕD(x, y), the interpretation of the conclusion is

∃x1, x2 ∀y1, y2 (ϕD(x1, y1) ∧ ϕD(x2, y2)).

According to the clause for implication, we need to provide terms c1(x) and c2(x)
taking a witness x for the hypothesis to witnesses x1 and x2 for the conclusion; for this
purpose, we can simply take c1(x) and c2(x) to be x. But we also need a functional
d(x, y1, y2) that will take y1 and y2 witnessing the failure of ϕD(x, y1) ∧ ϕD(x, y2)
to a value d representing the failure of ϕD(x, d). This functional must effectively
determine which of ϕD(x, y1) and ϕD(x, y2) is false. We need the following

2.4.3. Lemma. If ϕ is a formula of arithmetic, there is a term tϕ such that T
proves

tϕ(x, y) = 0↔ ϕD(x, y).

The lemma is proved by induction on the size of ϕD ; the key instance occurs when ϕD
is simply an atomic formula s1 = s2 , for which case the required t can be obtained
from an application of primitive recursion.

Another instance of primitive recursion yields a functional Cond such that T
proves

Cond(w, u, v) =
{
u if w = 0
v otherwise.
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Taking d = Cond(tϕ(x, y1), y1, y2) above then suffices to complete the proof for
ϕ→ ϕ ∧ ϕ.

Aside from the two instances just described, the recursors R are not otherwise
used to verify the logical axioms. Their primary purpose is to interpret the induction
rule, “from ϕ(0) and ϕ(u) → ϕ(u′) conclude ϕ(u).” Inductively we are given terms
a, b, and c so that T proves ϕD(0, a, y) and

ϕD(u, x, b(u, x, y1))→ ϕD(u′, c(u, x), y1).

We want a term d such that ϕD(u, d(u), y). Using the recursors we can define d using
primitive recursion, so that

d(0) = a

d(u′) = c(u, d(u)).

This yields
ϕD(0, d(0), y)

and
ϕD(u, d(u), b(u, d(u), y))→ ϕD(u′, d(u′), y).

The following lemma will then allow us to conclude ϕD(u, d(u), y), as desired.

2.4.4. Lemma. From ψ(0, y) and ψ(u, b(u, y)) → ψ(u′, y) one can prove, in T ,
ψ(u, y).

The idea is to work backwards: if “ .−” denotes truncated (or “cut off”) subtraction,
note that ψ(u, y) follows from

ψ(u .− 1, b(u .− 1, y)),

which in turn follows from

ψ(u .− 2, b(u .− 2, b(u .− 1, y))),

and so on, until the first argument is equal to 0. More formally, one defines in
T a function e(y, z) by e(y, 0) = y and e(y, z′) = b(u .− z′, e(y, z)), and then uses
induction to prove that ψ(w, e(y, u .− w)) holds for every w less than or equal to u.
For details, see Spector [1962] or Troelstra [1973].

This leaves only the quantifier-free axioms regarding 0, Sc, +, and × in HA,
which follow immediately from their counterparts in T .

Once more we emphasize that the recursors of T are only essentially needed for
the nonlogical axioms. Roughly speaking, it is the combinatory completeness of
T that allows us to verify the axioms of intuitionistic predicate logic, whereas the
recursors are the functional analogue of induction. This observation allows one to
generalize the D-interpretation to other theories, as discussed in section 3.3 below.
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14 J. Avigad and S. Feferman

2.5. Equality at higher types

We return to the question as to how equality at higher types is to be treated in
T . There are two basic choices, the intensional formulation taken in Gödel [1958]
and the (weakly) extensional formulation of Spector [1962]. In Gödel’s formulation,
we have a decidable equality relation =σ at each type, i.e. all formulas s =σ t with
s, t of type σ are taken to be atomic, and the law of excluded middle is accepted for
these. Suppressing type subscripts where there is no ambiguity, the equality axioms
for T in this version are, as usual,

1. s = s

2. s = t ∧ ϕ[s/x]→ ϕ[t/x].
The axioms for K, S and R at each type may be read as they stand.

In Spector’s formulation, the atomic formulas are equations between terms of
type 0 only, and the law of excluded middle is accepted only for these. For σ =
(σ1 → . . .→ σn → 0), an equation s =σ t between terms of type σ is regarded as an
abbreviation for

s(x1, . . . , xn) = t(x1, . . . , xn)

where the xi are fresh variables of type σi for i = 1, . . . , n. In particular, the axioms
for K, S and R are to be read as such abbreviations. Now in this version, the axioms
1, 2 are taken only for terms s, t of type 0; denote these by 10 and 20 respectively.
For s, t of type σ 6= 0 we must further adjoin a rule

2′. From s(x1, . . . , xn) = t(x1, . . . , xn) and ϕ[s/x] infer ϕ[t/x].
An alternative suggested by Gödel in a footnote to his revision [1972] of [1958]

and made explicit by Troelstra [1990] is to follow Spector in taking only equations
at type 0 as basic but to assume as axioms, besides 10 and 20 , just the following
consequences of 2′ for K, S, and R:

s[K(u, v)/x] = s[u/x], s[S(u, v, w)/x] = s[u(v, u(w))/x],

s[R(u, v, 0)/x] = s[u/x], s[R(u, v, w′)/x] = s[v(w,R(u, v, w))/x],

where s[x] is a term of type 0 and u, v, w are terms of appropriate type. Note that
the resulting theory is contained in both Gödel’s and Spector’s versions.

Most of the results for the functional interpretation are insensitive to which of
these three formulations of T (and of other systems like T to be considered below) is
taken. When it is necessary to make a distinction, as for example in the next section
when considering extensions of T by adjunction of quantifiers, and in section 4.1
when considering models of T , we shall use WE -T to denote Spector’s version and
T0 to denote the version, just described, elicited by Troelstra, while reserving T
itself for Gödel’s version. However, one further system must be considered along
with the latter. It is implicit in the idea of intensional equality at higher types that
we have an effective procedure to decide whether any two objects of the same type
are identical. This is made explicit by adjoining a constant Eσ for the characteristic
function of =σ at each type σ, with axiom:

Eσ(x, y) = 0↔ x =σ y.
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The system T with these additional constants and axioms is then denoted I -T .

3. Consequences and benefits of the interpretation

3.1. Higher type arithmetic

Before turning to some of the immediate consequences of the Dialectica inter-
pretation, we pause to consider some easy generalizations. First of all, note that
the D-translation applies equally well if the source language is also typed. In other
words, if we define HAω to be a version of T with quantifiers ranging over each finite
type, with the axioms and rules of intuitionistic predicate logic and induction for all
formulas in the new language, then we can apply the D-translation to this theory as
well.

A problem, however, arises in verifying the interpretation of the axiom ϕ→ ϕ∧ϕ,
and this depends on how equality at higher types is treated. For if ϕ is an equation
s =σ t, in order to extend the argument for Lemma 2.4.3 we shall need to have a
characteristic function Eσ for =σ . Otherwise we shall have to limit ourselves to a
formulation of HAω using only equations of type 0. Thus we are led to consider
three versions of HAω corresponding to the three versions I -T , WE -T and T0 in
section 2.5, denoted respectively I -HAω , WE -HAω , and HAω

0 . To be more precise,
in WE -HAω , given the availability of quantification at higher types, we may take
equality there to be introduced by definition in terms of equality at lower types so as
to satisfy the equivalences

x =σ→τ y ↔ ∀zσ (x(z) =τ y(z))

for each σ, τ . What is a new option now is that a fully extensional version E -HAω

can be formulated as follows. In this theory one takes the symbol =σ to be basic at
each type, and adopts the full axioms 1, 2 of section 2.5 as in the intensional version.
What makes the difference is that the preceeding equivalences are now taken as
axioms in the fully extensional theory.

Now, with little or no modification, the proof sketched in section 2.4 carries
over to show that for H any one of the three systems I -HAω , WE -HAω , or HAω

0 ,
the system H is D-interpreted in the corresponding quantifier-free subsystem, i.e.
I -T , WE -T , or T0 , resp. This does not hold for the system E -HAω , as shown
by Howard [1973]. In particular, no functional of that system satisfies the D-
interpretation of ∀u, x, y (x =1 y → u(x) =0 u(y)) where x, y are of type 1 (i.e.
0→ 0) and u is of type 2 (i.e. 1→ 0). However, E -HAω may be formally interpreted
in HAω

0 preserving all formulas all of whose variables are of type 0 or 1, by relativizing
the quantifiers to the hereditarily extensional objects in each type; we may then apply
the D-interpretation to HAω

0 as above. This is the route taken by Luckhardt [1973];
cf. also Feferman [1977,section 4.4.2] for a brief outline of the details involved. Clearly
HAω

0 ⊂ I -HAω and HAω
0 ⊂WE -HAω ⊂ E -HAω .

In the following we shall take it that HAω is any one of the three systems I -HAω ,
WE -HAω , and HAω

0 for which the D-interpretation works directly as described above,
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16 J. Avigad and S. Feferman

and T is now taken for the corresponding quantifier-free subsystem; however, the
reader is free to settle on any one of these three pairs as the preferred one according
to taste.8

Let us return to the principles (AC ), (IP ′), and (MP ′) which figured in the
motivation for the definition of (ϕ → ψ)D in section 2.3. These make use of the
quantified variables of arbitrary type and are thus formulated in the language of
HAω . Given the discussion in section 2.3 it shouldn’t be surprising that, in fact, we
have

3.1.1. Theorem. Over intuitionistic logic, the schemata (AC ) + (IP ′) + (MP ′)
and ϕ↔ ϕD are equivalent.

Henceforth we’ll use HA# to denote the theory HAω together with either of these
two schemata. The previous discussion tells us that

3.1.2. Theorem. HA# is D-interpreted in T .

What, now, can be said about classical theories of higher types? Take PAω to
be the classical extension of HAω , obtained simply by adjoining the law of excluded
middle for all formulas. It is N-interpreted in HAω just as PA is N-interpreted in HA.
By the preceding theorem, it is natural to consider the system PA# which is defined
to consist of PAω together with all instances of ϕ ↔ ϕND for ϕ in the language of
PAω . It then follows immediately that

3.1.3. Theorem. PA# is ND-interpreted in T .

Consider now the principles (AC ), (IP ′), and (MP ′) on the classical side. Of
these, (IP ′) and (MP ′) follow from classical logic, but (AC ) is not derivable from
PA# . Moreover, (AC ) is not in general preserved under the ND-interpretation. For,
the N-interpretation of ∀x ∃y ϕ(x, y)→ ∃Y ∀x ϕ(x, Y (x)) is equivalent to

∀x ¬∀y ¬ϕN(x, y)→ ¬∀Y ¬∀x ϕN(x, Y (x))

or, equivalently,

∀x ¬¬∃y ϕN(x, y)→ ¬¬∃Y ∀x ϕN(x, Y (x)),

which cannot in general be proved in HA# . It is, however, provable for the special
case (QF -AC ) of the axiom of choice with quantifier-free matrix ϕ. For, in that case,

∀x ¬¬∃y ϕN(x, y)↔ ∀x ∃y ϕN(x, y)
8But note that Troelstra [1990,p. 351] says that “WE -HAω as an intermediate possibility

[between I -HAω and HAω
0 ] is not very attractive: the deduction theorem does not hold for this

theory.” Yet another alternative for dealing with the problem of verifying the axioms ϕ→ ϕ ∧ ϕ
without restriction on atomic formulas, but without additional Eσ functionals, makes use of a
variant of the D-interpretation due to Diller and Nahm [1974], described in Troelstra [1973,pp.
243–245]. We shall not go into that variant in this chapter.
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is provable in HA# using (MP ′). Then from (AC ) in that system we infer
∃Y ∀x ϕN(x, Y (x)), which implies intuitionistically its double negation. The
conclusion is that (QF -AC ) is ND-interpreted in T . The following observation
by Kreisel [1959,p. 120] then gives the proper analogue to Theorem 3.1.1:

3.1.4. Theorem. Over classical logic, the schemata (QF -AC ) and ϕ↔ ϕND are
equivalent.

3.1.5. Proof. In the forward direction, one need only consider negative formulas
ϕ, i.e. those which do not contain disjunction or existence symbols. For such formulas
it is easily proved by induction on ϕ that ϕND has the form ∃X ∀y ψ(X(y), y) where
ψ is quantifier-free and where ϕ↔ ∃X ∀y ψ(X(y), y)↔ ∀y ∃x ψ(x, y). The reverse
direction is immediate. 2

Thus PA# can equally well be thought of as PAω + (QF -AC ).
When analyzing classical or intuitionistic theories of first- or second-order arith-

metic, it often turns to be useful to embed them in fragments or extensions of PA#

and HA# respectively; cf. the discussion in section 3.3 below.

3.2. Some consequences of the D-interpretation

Since the D-interpretations of HA and HA# , as well as the ND-interpretations
of PA and PA# , are purely syntactic, they can be formalized in a weak theory of
arithmetic. This yields the following theorem, which is of foundational importance.

3.2.1. Theorem. Let S be any of the theories HA, HA#, PA, or PA#. Then a
weak base theory proves

Con(T )→ Con(S ).

Of course, the interpretations yield far more information than just the relative
consistency of the theories involved. Recall that a formula θ(x1, x2, . . . , xn) in the
language of arithmetic is ∆0

0 if all its quantifiers are bounded, in which case it defines
a primitive recursive relation on the natural numbers. The characteristic function of
this relation can be represented by a term t in the language of T , such that PA# or
HA# proves θ(~x)↔ t(~x) = 0. Though it is somewhat an abuse of notation, when we
say below that “T proves θ(~x)” for such a θ, we mean that it proves t(~x) = 0.

3.2.2. Theorem. Let S be any of the theories above, and suppose S proves the Π0
2

formula
∀x ∃y θ(x, y),

where θ is ∆0
0. Then there is a term f such that T proves

θ(x, f(x)).
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18 J. Avigad and S. Feferman

3.2.3. Proof. By embedding HA and PA in HA# and PA# respectively and prov-
ing the equivalence just discussed, we can assume that θ is quantifier-free. In that case
the D-interpretation of ∀x ∃y θ(x, y) is ∃Y ∀x θ(x, Y (x)), and its ND-interpretation
is ∃Y ∀x ¬¬θ(x, Y (x)). The conclusion then follows from Theorem 3.1.2 in the case
of HA# , and Theorem 3.1.3 in the case of PA# . 2

Now suppose h is a recursive function whose graph is defined by a Σ0
1 formula

ϕ(x, y) in the standard model. We say that the theory S proves h to be total
if it proves ∀x ∃!y ϕ(x, y). In section 2.2 we axiomatized the primitive recursive
functionals of finite type, without addressing the issue of what exactly the terms
denote. Deferring this discussion to section 4 below, for now let us assume that at
least the closed type 1 terms denote functions. As a corollary to Theorem 3.2.2 we
have

3.2.4. Corollary. Every provably total recursive function of HA, HA#, PA, or
PA# is denoted by a term of T .

In fact, in section 4.1 we will see that there are models of T that can be formalized
in the language of arithmetic, yielding an interpretation of T in HA. This yields the
following result, which is interesting in that it makes no mention of T at all:

3.2.5. Corollary. PA, and hence HA + (MP), is conservative over HA for Π0
2

sentences.

When it comes to PA, Theorem 3.2.2 is sharp in the following sense. Consider the
Π0

3 sentence “for every x there exists a y, such that either y is a halting computation
for the Turing machine with index x, or Turing machine x doesn’t halt.” Though
this statement is provable in PA, any function returning such a y for every x cannot
be recursive since it solves the halting problem. Later we’ll see that, on the other
hand, the functions represented by terms of T are recursive, so that the analogue of
Theorem 3.2.2 does not hold for Π0

3 formulas.
Nonetheless, one can extract a different kind of constructive information from

PA-proofs of complex formulas. Suppose PA (or PA#) proves a formula ϕ given by

∀x1 ∃y1 ∀x2 ∃y2 . . .∀xn ∃yn θ(x1, x2, . . . , xn, y1, y2, . . . , yn)

where θ is quantifier-free. The N -interpretation of this formula intuitionistically
implies

¬∃x1 ∀y1 ∃x2 ∀y2 . . . ∃xn ∀yn ¬θ(x1, x2, . . . , xn, y1, y2, . . . , yn),

whose D-interpretation is the same as that of

∀X1, X2, . . . , Xn ∃y1, y2, . . . , yn

¬¬θ(X1, X2(y1), . . . , Xn(y1, y2, . . . , yn−1), y1, y2, . . . , yn).

As a result we have
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3.2.6. Corollary. Suppose PA proves ϕ as above. Then there are terms

t1 = F1(X1, X2, . . . , Xn)
...

tn = Fn(X1, X2, . . . , Xn)

such that T proves

θ(X1, X2(t1), . . . , Xn(t1, t2, . . . , tn−1), t1, t2, . . . , tn).

The observation that the functionals F1, F2, . . . , Fn can be taken to be recur-
sive in their arguments is known as Kreisel’s “no-counterexample interpreta-
tion’’ (cf. Kreisel [1951,1959]). To make sense of the name, think of the func-
tions X1, X2, . . . , Xn as trying to provide counterexamples to the truth of ϕ, by
making θ(X1, X2(y1), . . . , Xn(y1, . . . , yn−1), y1, . . . , yn) false for any given values of
y1, y2, . . . , yn ; in which case F1, F2, . . . , Fn effectively provide witnesses that foil the
purported counterexample.

3.3. Benefits of the D-interpretation

In general, the D-interpretation is a powerful tool when applied to the reduction
of an intuitionistic theory I to a functional theory F . As we have seen, the very
form of the D-interpretation automatically brings a number of benefits. Since little
more than the combinatorial completeness of F is necessary to interpret the logical
axioms of I , one only has to worry about interpreting the non-logical axioms of I
and tailor the functionals of F accordingly. As an added bonus, I can often be
embedded in a higher-type analogue I ω to which we can add the schemata (AC ),
(IP ′), (MP ′) at no extra cost. Taken together (AC ), (IP ′), and (MP ′) prove the
scheme ϕ↔ ϕD , a fact that is often useful in practice since it allows one to pull facts
about the D-interpretation back to the theory being interpreted. This observation
will be employed in sections 6 and 7 below.

If one is trying to analyze a classical theory C by reducing it to I via a double-
negation interpretation, one has, of course, to ensure that I is strong enough to
prove the doubly-negated axioms of C . Once again, though, the choice of a D-
interpretation for I has some advantages: C can often also be embedded in a
higher-type analogue C ω in a natural way, and the fact that Markov’s principle is
verified in the interpretation guarantees that one ultimately obtains Skolem terms
for provable Π0

2 sentences. This in turn yields a characterization of C ’s provably
total recursive functions.

These advantages of the D-interpretation are summed up in Feferman [1993]:

Applied to intuitionistic systems it takes care of the underlying logic once
and for all, verifies the Axiom of Choice AC in all types, and interprets
various forms of induction by suitably related forms of recursion. This
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then leads for such systems to a perspicuous mathematical characteri-
zation of the provably recursive functions and functionals. For applica-
tion to classical systems, one must first apply the negative translation
(again taken care of once and for all). Since the D-interpretation verifies
Markov’s principle even at higher types . . . at least the provably recursive
functions and functionals are preserved, as well as QF-AC in all types
and induction schemata. The main disadvantage, though, comes with
the analysis of other statements whose negative translation may lead to
a complicated D-interpretation; special tricks may have to be employed
to handle these.

A further distinguishing feature of the D-interpretation is its nice behavior with
respect to modus ponens. In contrast to cut-elimination, which entails a global (and
computationally infeasible) transformation of proofs, the D-interpretation extracts
constructive information through a purely local procedure: when proofs of ϕ and
ϕ → ψ are combined to yield a proof of ψ, witnessing terms for the antecedents of
this last inference are combined to yield a witnessing term for the conclusion. As
a result of this modularity, the interpretation of a theorem can be readily obtained
from the interpretations of the lemmata used in its proof.

The process of applying the D-interpretation to specific classical theorems can
sometimes be used to obtain appropriate constructivizations thereof, or to uncover
additional numerical information that is implicit in their classical proofs; cf., for
example, Bishop [1970] or Kohlenbach [1993].

4. Models of T , type structures, and normalizability

In section 2.2 we presented the set of terms of the theory T without a discussion
of what these terms denote. In this section we exhibit several kinds of functional and
term models.

4.1. Functional models

The most obvious model of T considered in either the intensional or extensional
sense is the full (set-theoretic) hierarchy of functionals of finite type, in which the
objects of type 0 are the natural numbers, and each type σ → τ represents the set of
all functions from the objects of type σ to those of type τ . The denotations of 0, Sc,
K, S, and R are then apparent, as well as the denotation of terms built up through
the application of these constants. The equality relation in T is taken to denote true
(extensional) equality in this model. By the primitive recursive functionals in the
set-theoretic sense we mean those denoted by closed terms of T .

One can obtain a “smaller” type structure in which the elements of each type are
indices for recursive functions, as follows. Let ϕe denote a standard enumeration of
the recursive functions, say, using Kleene’s universal predicate. Define M0 = N, and

Mσ→τ = {e | ∀x ∈Mσ ∃y ∈Mτ (ϕe(x) ↓= y)}.
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One can associate recursive indices to constants of T in a natural way, and interpret
equality as equality of indices. The resulting model M of I -T (and of I -HAω) is
known as the hereditarily recursive operations (though “hereditarily total recursive
operations” might be more accurate) and is usually denoted by HRO . Equality is
not extensional in this model, since many different indices can represent the same
functional. If instead one wants a model of WE -T (and of WE -HAω or even E -HAω),
one can consider the hereditarily effective operations N , usually denoted by HEO .
For this model, sets Nσ and the equality relation =σ are defined inductively as
follows: set N0 = N and =0 the usual equality relation for natural numbers,

Nσ→τ = {e | ∀x ∈ Nσ ∃y ∈ Nτ (ϕe(x) ↓= y) ∧
∀x ∈ Nσ, y ∈ Nσ (x =σ y → ϕe(x) =τ ϕe(y))},

and
e =σ→τ f ≡ ∀z ∈ Nσ (ϕe(z) =τ ϕf (z)).

Both HEO and HRO can be formalized in HA in the sense that the sets Mσ

(resp. Nσ) and the equality relations =σ are defined by formulas in the language of
arithmetic, HA proves each axiom of T true in the interpretation, and the natural
numbers in the model correspond to the natural numbers of HA. Notice, however,
that the complexity of the formulas defining Mσ and Nσ grow with the level of σ, so
that HA (or PA) cannot prove the consistency of T outright.

By generalizing the notion of a continuous function to higher types, Kleene and
Kreisel independently obtained further models of T (cf. also Troelstra [1973]); these
will be of significance in section 6.

All of the models described in this subsection contain more than just the primitive
recursive functionals (or the indices for such), and hence model extensions of T as
well.9 In contrast, a “minimal” model of T , which only contains objects denoted by
terms, is provided by the term model, which we now describe.

4.2. Normalization and the term model

The defining equations for the typed combinators K, S, and R in section 2.2
describe a symmetric equality relation. From a computational point of view, it is
often more useful to think of these defining equations as describing a directed relation,
in which terms on the left-hand sides of the equations are “reduced” to more basic
ones on the right. For example, the defining equations of the theory T yield the
following reduction rules:

1. K(s, t) . s
2. S(r, s, t) . r(t)(s(t))
3. R(s, t, 0) . s
9Some, like the recursion theoretic models, have generalizations to transfinite types; see, e.g.

Beeson [1982]. Category-theoretic methods have also been used to construct models of functional
theories, though we will not discuss such models here.
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4. R(s, t, x′) . t(x,R(s, t, x)).
If one uses lambda terms instead of combinators, the first two clauses can be replaced
by the reduction rule (λx.s)(t) . t[s/x]. If one wants to include product types,
corresponding reduction rules for the pairing and projection operations can be defined
as well.

If s and t are terms, we say that s reduces to t in one step, written s→ t, if t can
be obtained by replacing some subterm u of s by a v such that u . v. We say that s
reduces to t if t can be obtained from s by a finite sequence of one-step reductions.
In other words, the reducibility relation →∗ is the reflexive-transitive closure of →.

Such a reducibility relation is an example of a rewrite system (cf. Dershowitz and
Jouannaud [1990]). The following terminology is standard.

4.2.1. Definition.
1. If s is a term and u is a subterm of s, then u is a redex of s if a reduction rule

can be applied to u; i.e. there is some v such that u . v.
2. If s has a redex, then s is reducible. Otherwise, s is irreducible, or in normal

form.
3. A term is normalizable if it can be reduced to one in normal form. A system of

reduction rules is normalizing if every term is normalizable.
4. A term s is strongly normalizable if there are no infinite (one-step) reduction

sequences beginning with s; that is, every such sequence eventually leads to
a term in normal form. A system of reduction rules is strongly normalizing if
every term is strongly normalizable.

5. A system of reduction rules is confluent, or has the Church-Rosser property, if
whenever s →∗ u and s →∗ v then there is a term t such that u →∗ t and
v →∗ t.

If a system of rules is confluent and s is any term, then s has at most one normal
form. Furthermore, if the system is also normalizing, then s has exactly one normal
form. Identifying closed terms with their normal forms then provides a term model
for the defining equations corresponding to the reduction rules. Under this very
simple semantics, one can think of each closed term representing nothing more than
the “program” it computes, when applied to other closed terms in normal form.
Strong normalizability implies that the “programming language” is insensitive to its
implementation, in the sense that every reduction sequence terminates regardless of
the order in which the reductions are performed.

In all the functional theories we consider in this chapter (together with the
associated reduction relations), the only closed irreducible terms of type 0 are in fact
numerals. In that case, we can identify type 0 objects of the corresponding term
model with natural numbers. Showing that the reduction relation associated with a
functional theory is confluent and normalizing then has two benefits:
• it implies that the functional theory is consistent, that is, it cannot prove 0 = 1;

and
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• it justifies the intuition that the functional theory describes “computable”
entities.

4.3. Strong normalization for T

Given the reduction rules corresponding to the theory T described above, one
can apply brute but judicious combinatorial force to verify the following

4.3.1. Lemma. The reduction relation →∗ associated with T is confluent. Fur-
thermore, any closed irreducible term of type 0 is a numeral.

The “shortest known proof” of this, due to Tait and Martin-Löf, can be found in
Hindley and Seldin [1986,appendix 1].

Assuming we can prove that the relation →∗ is also normalizing, the resulting
term model will satisfy the axioms of T : the uniqueness of normal forms implies
that terms on either side of an equality axiom have the same interpretation under
any instantiation of the variables; and the fact that the objects of type 0 in the term
model are numerals reduces induction in T to induction in the metatheory.

Proving that →∗ is normalizing, however, is bound to be tricky. Because it
implies the consistency of Peano arithmetic, the proof must somehow go beyond the
capabilities of that theory. W. Tait developed an elegant and flexible technique for
proving normalization, using appropriate “convertibility” predicates (cf. Tait [1967]
and Tait [1971]).

4.3.2. Definition. For each type σ, we define the set of reducible terms of type σ,
denoted by Redσ :

1. If t is a term of type 0, then t is in Red0 if and only if t is normalizing.

2. If t is a term of type σ → τ , then t is in Redσ→τ if and only if whenever s in
Redσ , t(s) is in Redτ .

Writing the second clause symbolically, we have that t is in Redσ→τ if and only if

∀s (s ∈ Redσ → t(s) ∈ Redτ ).

Notice that the quantifier complexity of the first-order formula expressing “t ∈ Redρ”
grows with the complexity of ρ.

The normalization proof proceeds in two steps:
1. One shows, by induction on terms, that every t of type σ is in Redσ .

2. One shows, by induction on the type σ, that every t in Redσ is normalizing.
The only aspect of the proof that cannot be carried out in a weak base theory is
the verification of clause 2, when t is the recursor Rσ : at this point the argument
requires induction on a formula involving the predicate Redσ . As a result we have
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4.3.3. Theorem. T is normalizing. Moreover, for each term t of T , PA proves
that t is normalizable.

This does not mean that Peano arithmetic proves that “for every term t, t is
normalizable,” since for various t the corresponding PA-proof can grow increasingly
complex. The latter result, however, follows from the soundness of PA.

Another approach to proving normalization involves assigning ordinals (or nota-
tions representing ordinals) to terms in such a way that each one-step reduction leads
to a decrease in the associated ordinal. For terms of T , this task is carried out by
Howard [1970] using notations below the ordinal ε0 . Via a formal treatment of the
term model, this yields, as a by-product, an ordinal analysis: over a weak base theory
the assertion that “there are no infinite descending sequences of ordinal notations
beneath ε0” implies the consistency of PA.

4.4. Infinitely long terms

Another term model for T which is of special interest was provided by Tait [1965].
This uses infinitely long terms to replace the recursors, and thus produces a system
of terms which is closer in character to the ordinary typed λ-calculus. The closure
conditions on terms are as follows:

1. There are infinitely many variables xτ , yτ , zτ , . . . of each type τ .
2. 0 is a constant of type 0.
3. Sc is a constant of type (0→ 0).
4. If s is a term of type σ and t is a term of type (σ → τ) then t(s) is a term of

type τ .
5. If t is a term of type τ then λxσ.t is a term of type (σ → τ).
6. If tn (n = 0, 1, 2, . . .) is a sequence of terms of type τ then 〈tn〉 is a term of

type (0→ τ).
Write n for Scn(0). Then we translate each term t of T into a term t+ of this

system of infinite terms by taking t+ = t for t a variable, 0 or Sc,

K+ = λxλy.x, S+ = λxλyλz.x(z, y(z))

and
R+ = λfλgλx.〈tn〉 where t0 = f and tn+1 = g(n, tn),

and by requiring (·)+ to preserve application.
Each term t of the infinite system is assigned an ordinal |t| as length in a natural

way, with |t| = 1 for t a variable or constant, |λx.t| = |t| + 1, |t(s)| = |s| + |t|
and, finally, |〈tn〉| = supn<ω(|tn| + 1). Note that for each of the constants C of T ,
|C+| ≤ ω, so for each term t of T , |t+| < ω · 2.

We have three immediate reduction rules for this system of infinite terms:
1. (λx.t[x])(s) . t[s/x]
2. 〈tn〉(m) . tm
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3. (〈tn〉(r))(s) . 〈tn(s)〉(r), when r is not a numeral and 〈tn〉(r) is not of type 0.
The relation →∗ is then the least reflexive and transitive relation which extends the
. relation and preserves application. As before, a term t is said to be in normal form
if whenever t→∗ u then t is identical with u.

4.4.1. Theorem. For each term t of T we can find a term t◦ in normal form such
that t+ →∗ t◦ and |t◦| < ε0.

The idea of Tait’s proof of Theorem 4.4.1 is very much the same as that for the
cut-elimination theorem for the extension of Gentzen’s classical propositional sequent
calculus to that for logic with countably long conjunctions Π and disjunctions Σ.
Derivations in PA are translated into derivations in this calculus, by first translating
formulas ϕ into propositional formulas ϕ+ , using (∀x ϕ[x])+ = Πn<ωϕ

+[n/x]. Then
each derivation d from PA is translated into an infinite propositional derivation d+

with finite cut-rank and |d+| < ω · 2. Each derivation whose cut-rank is ≤ m+ 1 and
ordinal length is ≤ α is effectively reduced to a derivation of the same end-formula
whose cut-rank is ≤ m and ordinal length is ≤ ωα . So for each derivation d of
T we eventually reduce d+ to a derivation d◦ of length < ε0 . Similarly, we can
assign a “cut-rank” to reducible infinite terms, and lower cut-complexity at the
same exponential cost of increasing ordinal bounds. See Tait [1968], Schwichtenberg
[1977], or Chapter ?? in this volume for more details concerning cut-elimination for
sequent calculi for infinitary languages, and Tait [1965] or Feferman [1977] for details
concerning normalization for infinitary term calculi.

More information can be extracted from these procedures as follows. Schwicht-
enberg [1977,section 4.2.2] shows in detail how the infinitary derivations generated
from those in PA, as described above, may be coded by indices for primitive recursive
functions. For each derivation d′ in the sequence of reductions from d+ to d◦ , the
code of d′ both determines the structure of d′ as a tree and contains a bound on
its cut-rank (< ω) and on its length (< ε0 , in a primitive recursive notation system
for ε0). Exactly the same kind of thing can be done for each infinite term t′ in the
reduction sequence from t+ to t◦ . This allows one to define an effective valuation
function on t◦ when the initial t is a closed term of type 1 (i.e. 0 → 0), and that
leads one to

4.4.2. Theorem. The functions of type 1 generated by the primitive recursive
functionals may be defined by schemata of effective transfinite recursion on ordinals
< ε0.

The schemata referred to define, for any given ordinal α < ε0 , a function F (x, y)
of numbers x, y by F (0, y) = G(y) and for x 6= 0, F (x, y) in terms of F (Hi(x, y), y)
where the Hi are one or more functions with Hi(x, y) <α x. The collection of F
definable using such schemata coupled with the usual schemata for primitive recursive
definition is denoted REC(<ε0). In this way one obtains the following result due to
Kreisel [1951,1952] from Corollary 3.2.4 and Theorem 4.4.2:
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4.4.3. Theorem. The provably recursive functions of PA (and hence also of HA)
are exactly those in REC(<ε0).

A similar characterization can be obtained of the functionals which are asserted
to exist in Kriesel’s no-counterexample interpretation of PA, here via the ND-
interpretation of PA in T (Corollary 3.2.6).

Returning to Theorem 4.4.2, for its proof one makes use of the following simple
description of the normal terms t[x1, . . . , xn] of type 0 in which all the free variables
xi are of type 0: either

1. t = 0 or
2. t = Sc(s) where s is normal or
3. t is a variable of type 0 or
4. t = 〈tn〉(s) where each tn and s is normal of type 0, but s is not a numeral.

It follows that the only closed terms of type 0 are numerals. The closed normal terms
of type 1 are just those of the form λx0.t[x] where t is normal of type 0.

5. The interpretation of fragments of arithmetic

5.1. IΣ1 and the primitive recursive functions

In the interpretation of PA and HA the recursors Rσ were used to interpret the
induction axioms, and it should not be surprising that weaker forms of recursion
can be used to interpret weaker forms of induction. Let IΣ1 be the fragment of
PA in which induction is restricted to Σ0

1 formulas. A nice application of the
D-interpretation due to Parsons (cf. [1970,1972]) shows that any provably total
recursive function of IΣ1 is in fact primitive recursive.

The definition of the recursors Rσ in section 2.2 for σ 6= 0 is “impredicative,” in
that the evaluation of Rσ(f, g, n′) at a given argument x presumes that Rσ(f, g, n)
has already been defined for arbitrary arguments z . A “predicative” restriction of
this scheme is given by the recursors R̂σ due to Kleene, which have the defining
schemata

R̂σ(f, g, 0, b) = f(b)
R̂σ(f, g, n′, b) = g(n, R̂σ(f, g, n, b), b).

Note that each type σ is uniquely of the form (σ1, . . . , σk) → 0 for some sequence
(σ1, . . . , σk). In the equations above, then, f is of type σ, g is of type 0 → 0 → σ,
and b = (bσ1

1 , . . . , b
σk
k ) is a sequence of variables chosen so that R̂σ(f, g, n, b) is of type

0.10 We let T̂ denote the restriction of T which only allows this type of recursion.11

10 In contrast to Gödel’s recursors, each R̂σ can in fact be defined from R̂0 by the equation
R̂σ = λf, g, n, b R̂0(f(b), λk, l g(k, l, b), n).

11In the versions T̂0 and I -T̂ we need to add, as in Parsons [1972], conditional functionals
Condρ : (0, ρ, ρ)→ 0. These functionals have defining equations Condρ(w, u, v) = u if w = 0 and
Condρ(w, u, v) = v otherwise; in these theories they are no longer definable using the R̂ recursors.

Draft July 20, 1999
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5.1.1. Theorem. The closed level 1 terms of T̂ denote primitive recursive func-
tions. Moreover, there is a natural translation of type 0 terms t of T̂ whose only free
variables are of type 0 to terms tPRA of PRA, such that if T̂ proves t = s, then PRA
proves tPRA = sPRA.

5.1.2. Proof. The proof of the first assertion is by adaptation of Kleene [1959b,
sections 1.5–1.7] to the present framework.12 The idea is to define a class KL of
functionals F (b) of lists of arguments b of arbitrary finite type but with values of
type 0 only, such that each F in KL is defined by a term in T̂ , while each term t in
T̂ is represented by an F in KL either directly (if it is of type 0) or by abstraction
on some of the variables of F (otherwise).

In defining KL and in the proof of these facts we modify the conventions of
section 2.2 as follows. We will use σ to denote (possibly empty) sequences of types
(σ1, . . . , σk), and by (σ → 0) we mean 0 if k = 0 and (σ1 → . . .→ σk → 0) otherwise.
We will use uσ to denote a sequence of terms (uσ1

1 , . . . , u
σk
k ), and λuσ.F (u, . . .) means

F (. . .) when n = 0 and λuσ1
1 . . . λuσkk .F (u1, . . . , uk, . . .) otherwise. So each type τ is

uniquely of the form (σ → 0) for some σ, and lev(τ) = max1≤i≤k(lev(σi) + 1).
The functionals F in KL are generated by the following schemata, in which n is

a variable of type 0 and b = (bτ11 , . . . , b
τ`
` ):

1. F (b) = 0
2. F (n, b) = n

3. F (n, b) = n′

4. F (aτ , b) = a(t1, . . . , tk) where τ = (σ → 0), τ 6= 0, σi = (ρ
i
→ 0) (possibly 0)

and ti = λw
ρ
i
i Gi(wi, a, b) for i = 1, . . . , k

5. F (b) = G(H(b), b) where the first argument of G is of type 0
6. F (b) = G(bπ) where bπ is a permutation of b by π
7. F (0, b) = G(b), F (k′, b) = H(k, b, F (k, b))

Then the following facts are established:
1. The functionals F of KL are closed under substitution of one or more terms t of

type τ for variables aτ of F where τ = (σ → 0), τ 6= 0 and t = λuσ.H(u, . . .).

2. For each F (b) in KL we can find a term t of T̂ with free variables b, which
defines F .

3. If t is a term of T̂ with free variables b, and t is of type (σ → 0) (possibly 0),
then we can find a functional F (u, b) of KL such that t(u) = F (u, b) for all
u, b.

4. If F (b) has all its variables b1, . . . , b` of type 0, then F is primitive recursive.
Fact 1 corresponds to the Full Substitution Theorem of Kleene [1959b,section 1.6].

It is proved by induction on the maximum m of the levels τ of the variables aτ being
substituted for and, for given m, by induction on the generation of F in KL. Facts
2 and 3 are straightforward, using 1 for the application step in 3. Finally, fact 4

12Here we do not consider the version I -T̂ , with its additional functionals Eρ .

Draft July 20, 1999



28 J. Avigad and S. Feferman

follows by observation that scheme 4 of the definition of KL can never be applied in
the generation of functionals all of whose arguments are of type 0.

This shows that the type 1 terms of T̂ denote primitive recursive functions.
The conservation result of Theorem 5.1.1 is obtained by using the argument above
to transform proofs in T̂ to proofs from schemata 1–7, and then using fact 4 to
transform this to a proof in PRA.

(Remark. One can think of the proof of fact 1 as a normalization argument
for a system of terms generated from schemata 1–7 together with a scheme of full
substitution in place of scheme 4. Another route to the proof of Theorem 5.1.1 should
be possible by normalization of the terms of T̂ , but that would apparently require
more work. For a proof of an analogous result for a system of feasible functionals of
finite type, see the reference after Theorem 5.2.1 below.) 2

Let ĤA
#

and P̂A
#

denote variants of HA# and PA# respectively, in which
induction is restricted to existential formulas. The reader can verify that the recursors
R̂ are sufficient to interpret induction for these formulas, yielding

5.1.3. Theorem. ĤA
#

is D-interpreted in T̂ , and P̂A
#

is ND-interpreted in T̂ .

Since P̂A
#

proves that any Σ0
1 formula is equivalent to an existential one, IΣ1

can be embedded in this theory, and Theorems 5.1.1 and 5.1.3 yield

5.1.4. Theorem. IΣ1 is conservative over PRA for Π0
2 formulas, in the sense

that if IΣ1 proves ∀x ∃y ϕ(x, y) for a ∆0
0 formula ϕ, then there is a term f such that

PRA proves ϕ(x, f(x)). Every provably total recursive function of IΣ1 is primitive
recursive.

Since IΣ1 can prove each primitive recursive function to be total, this last character-
ization is exact.

5.2. S 1
2 and the polynomial-time computable functions

When it comes to bounded arithmetic (cf. Chapter II), IΣ1 is analogous to
Buss’ theory S 1

2 , and PRA is analogous to Cook’s theory PV , which axiomatizes the
polynomial-time computable functions as characterized in section ?? of Chapter II. In
Buss [1986] it is shown that S 1

2 is conservative over PV in the sense of Theorem 5.1.4.
This result has been reobtained using a D-interpretation in Cook and Urquhart [1993],
and it is this presentation that we now sketch (cf. also Feferman [1990]).

Cook and Urquhart start by defining a higher-type version PV ω of the theory PV .
Aside from a careful choice of initial functions, which hinge on the fact that one is
supposed to think of the natural numbers in terms of their binary representations, the
computational strength of PV ω comes from recursors R̃, which allow for “higher-type
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limited recursion on notation.” These are described by the equations

R̃(f, g, h, 0, b) = f(b)

R̃(f, g, h, n′, b) =

 g(n, R̃(f, g, h, bn/2c, b), b) if this has length less than
that of h(n, b)

h(n, b) otherwise.

Here b once again denotes a sequence of variables chosen so that R̃(f, g, h, 0, b) is of
type 0, h is a type 1 function which provides a bound on the growth of the function
being defined, b·/2c is among the initial functions of PV ω , and additional initial
functions representing “length” subtraction and a conditional are used to express the
second equation.13 The following theorem is analogous to Theorem 5.1.1.

5.2.1. Theorem. The level 1 terms of PV ω denote polynomial-time computable
functions. Moreover, there is a natural translation of type 0 terms t of PV ω whose
only free variables are of type 0 to terms tPV of PV , so that if PV ω proves t = s,
then PV proves tPV = sPV .

Full details are provided in Cook and Urquhart [1993,pp. 140–146].
Finally, IPV ω and CPV ω are defined to be quantifier versions of PV ω based on

intuitionistic and classical logic respectively, where only type 0 equality is allowed. In
these theories, induction is allowed for “NP-predicates,” that is, formulas of the form
∃y ≤ t (r = s) where all the free variables of t have type 0. Since the recursors R̃ are
sufficient to interpret this form of induction, we have, in analogy to Theorem 5.1.3,

5.2.2. Theorem. IPV ω + (MP) is D-interpreted in PV ω , and CPV ω is ND-
interpreted in PV ω .

S 1
2 can be embedded in CPV ω , since the latter theory can prove any Σb

1 formula
equivalent to an NP-predicate as described above. Hence we have the following

5.2.3. Theorem. S 1
2 is conservative over PV for ∀Σb

1 sentences, in the sense that
if S 1

2 proves ∀x ∃y ϕ(x, y) for ϕ a Σb
1 formula, then there is a term f such that PV

proves ϕ(x, f(x)). Every Σb
1-definable function of S 1

2 is polynomial-time computable.

By Theorem ?? of Chapter II this last characterization is exact.

6. The interpretation of analysis

6.1. Towards the interpretation of stronger theories

At the end of his 1958 paper, Gödel made the following suggestions regarding the
functional interpretation of stronger theories.

13In Cook and Urquhart [1993,section 6] only the type 0 recursors are taken to be basic, with
the others defined as in footnote 10.
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It is clear that, starting from the same basic idea, one can also construct
systems that are much stronger than T , for example by admitting trans-
finite types or the sort of inference that Brouwer used in proving the “fan
theorem.”

In section 10 we will address the first proposal, expanding the notion of “type” to
the transfinite. In this section we explore the second proposal. The fan theorem that
Gödel refers to is, from a classical point of view, equivalent to weak König’s lemma,
to be dealt with in section 7. Brouwer was able to prove the fan theorem using a
principle of “bar induction” which he felt was justified by a constructive interpretation
of the terms involved (cf. Beeson [1985], Troelstra and van Dalen [1988]). In a
posthumous paper, C. Spector [1962] used a generalization of this principle to justify
a computational scheme which he dubbed “bar recursion.” With this scheme Spector
was able to provide a functional interpretation of full second-order arithmetic, that
is, the theory PA2 + (CA) defined in section 6.2 below.14

While Spector used bar induction to justify bar recursion, he apparently intended
to show that, conversely, bar recursion could be used to obtain a functional interpre-
tation of bar induction. This task was in fact carried out by Howard [1968], and is
the approach we outline here.

6.2. Analysis and higher type extensions

The language of second-order arithmetic extends the language of Peano arithmetic
with variables that range over sets of numbers, and a binary membership relation
x ∈ Y . In this language we only allow first-order equality, defining the assertion
Y = Z to mean

∀x (x ∈ Y ↔ x ∈ Z).

The theory of second-order arithmetic, PA2 + (CA), extends Peano arithmetic with
induction for formulas in the expanded language, and the comprehension scheme

(CA) ∃Y ∀x (x ∈ Y ↔ ϕ(x))

for arbitrary formulas ϕ. (As usual we denote the scheme in which ϕ is restricted
to formulas in Γ by (Γ -CA).) The theory PA2 + (CA) is often called “analysis”
due to the observation that, via the coding of real numbers and continuous functions
as sets of natural numbers, one can develop a good theory of the continuum from
these axioms. (In fact, by the work of Weyl [1918,1994], first-order arithmetic
comprehension with parameters suffices for most practical purposes.)

In order to embed PA2 + (CA) in an extension of PA# , we identify sets Y with
their characteristic functions χY , and read t ∈ Y as χY (t) 6= 0. This provides a

14 We should mention in this connection Kreisel [1959], in which it is shown that if second-order
arithmetic proves a formula ϕ, the witnessing functions can be taken to be “recursively continuous,”
in a sense defined, independently, by Kreisel [op. cit.] and Kleene [1959a] (cf. also Feferman [1993]).
For an interesting extension of bar recursion to transfinite types, see Friedrich [1985].
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natural way of interpreting the set variables of PA2 + (CA) with function variables
of type 1.

Recall the axiom of choice

(AC ) ∀x ∃y ϕ(x, y)→ ∃f ∀x ϕ(x, f(x)).

We will denote the scheme in which the variables x and y are restricted to be of type
σ and τ respectively by (ACστ ). We have seen that adding the axiom of choice (AC )
to HAω results in a theory that is no stronger than Heyting arithmetic. In contrast,
the addition of even (AC00 ) to PAω results in a theory that includes (CA), since one
can apply this choice principle to the classically valid formula

∀x ∃y ((y = 0 ∧ ¬ϕ(x)) ∨ (y = 1 ∧ ϕ(x))).

More generally, assuming that Γ satisfies some basic closure conditions (including
closure under negations), (Γ -CA) follows classically from (Γ -AC00 ). So, to interpret
analysis, it clearly suffices to interpret the theory PAω + (AC00 ).

6.3. The principle of bar induction

In the following statement of the principle of bar induction used in the Spector-
Howard interpretation, the variable c represents a finite sequence 〈c0, c1, . . . , ck−1〉 of
objects of type σ (suitably coded), while the variable f ranges over infinite sequences
of objects of type σ, which is to say that f is a functional of type 0→ σ. Given such
an f , let f(k) to denote the initial segment of f of length k, i.e. the finite sequence

〈f(0), f(1), . . . , f(k − 1)〉.

Finally, if u is an element of type σ, ĉ u denotes the sequence obtained by appending
u to c.

6.3.1. Principle of bar induction at type σ. Suppose ϕ and ψ are predicates
of finite sequences of objects of type σ, with the following four properties:

1. ∀f ∃k ψ(f(k))
2. ∀c (ψ(c) ∨ ¬ψ(c))
3. ∀c (ψ(c)→ ϕ(c))
4. ∀c (∀u ϕ(ĉ u)→ ϕ(c))

Then ϕ holds at the empty sequence, 〈〉.

To make sense of this principle, imagine the tree of all finite sequences of objects
of type σ. Clauses (1–3) imply that every path through the tree passes through a
node c where ψ holds, and hence ϕ holds as well. The first nodes c where ψ(c)
hold form, in Brouwer’s terminology, a “bar.” Clause (4) asserts that if ϕ holds at
every child of a node, then it holds at the node as well, allowing the property ϕ to
“percolate” towards the root.
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The principle of bar induction may be read as a statement of induction over a
well-founded relation. Classically, it follows from an appropriate axiom of dependent
choices. Assuming Clause (4), the failure of ϕ to hold at the empty sequence would
allow one to construct an infinite sequence

c0, c1, c2, . . .

with the property that ϕ does not hold at any initial segment 〈c0, . . . ck−1〉. Defining
the function f by

f(k) =def ck

would then provide a counterexample to (1) and (3).
In the special case in which σ is the type of natural numbers, Principle 6.3.1 is

Kleene’s exposition of Brouwer’s “bar theorem” (cf. Kleene and Vesley [1965]). The
generalization to higher types is due to Spector.

To express this principle in the language of HA# , note that we may identify each
sequence 〈c0, c1, . . . , ck−1〉 with the pair C, k, where C is of type 0→ σ and

C(x) =
{
cx if x < k
0σ otherwise.

(Inductively one can define for each σ a constant “zero” functional denoted by 0σ .)
References to such c can then be taken as shorthand for references to such pairs C, k.
For this representation we will use ĉ and length(c) to denote C and k respectively.

Let (BIσ) denote the principle of bar induction for sequences of objects of type
σ, and let (BI ) denote the same principle for arbitrary σ. We will see in section 6.5
that the theory HA# + (BI ) is in fact strong enough to interpret PAω + (AC00 ),
and hence analysis. First, however, we show that bar induction has a computational
analogue in a form of recursion, much in the way that arithmetic induction has its
computational analogue in the recursors R of section 2.2.

6.4. The interpretation of bar induction using bar recursion

For each σ and τ , the principle of bar recursion uniformly associates with given
functionals G, H , and Y a new functional F which maps finite sequences c of objects
of type σ to objects of type τ , according to the defining equation

F (c) =
{
G(c) if Y (ĉ) < length(c)
H(λu.F (ĉ u), c) if Y (ĉ) ≥ length(c).

To make the uniformity clear, and in analogy to the recursions in section 2.2,
one introduces a single functional Bστ for each σ and τ and replaces F above by
Bστ (G,H, Y ).

From the definition of F we see that if Y (ĉ) < length(c) then F (c) is defined
outright, and otherwise F (c) depends on the values F (ĉ u), for arbitrary u. One
should think of the values of F as being computed by recursion along a well-founded
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tree of sequences determined by Y , in a way that will be made more explicit below.
Spector showed that the principle of bar induction can be used to justify bar recursion,
when the argument Y is taken to be a continuous functional (in the Kleene-Kreisel
sense referred to in Section 4.1 and footnote 14).

The following informal argument gives a hint as to how bar induction comes
into play. Given the functional F described above, we would like to see that the
value F (〈〉) is “defined.” Let ψ(c) denote the property Y (ĉ) < length(c), and let
ϕ(c) denote the property that F (c) is defined. Clauses (3–4) of Principle 6.3.1 are
clearly seen to hold, and in an appropriate formalization clause (2) can be justified
intuitionistically as well.

Seeing that the well-foundedness condition (1) holds requires verifying that for
every function f , there is a finite initial segment c = f(k) so that Y (ĉ) < k. Suppose
Y (f) = n. The computation of Y on f can only depend on finitely many values
of f , contained among the list f(0), f(1), . . . , f(m) for some m. In particular, if
k = max(m,n+ 1) and c = f(k), then

Y (ĉ) = Y (f) = n < k = length(c),

as desired.
The following lemma shows that conversely, bar recursion can be used to justify

bar induction. We use HA# + (BR) to denote HA# augmented by the principle of
bar recursion for arbitrary types.

6.4.1. Lemma. HA# + (BR) proves the principle of bar induction, (BI ).

While the proof requires some effort, the underlying idea is straightforward. By
Theorem 3.1.1, HA# proves (BI ) equivalent to its D-interpretation, which asserts
the existence of various functionals. One shows how to define these functionals
explicitly, using bar recursion in a key instance, and employing a trick due to Kreisel
to verify that these functionals have the desired properties. We refer the reader to
Howard [1968] for details.

On the other hand, by Theorem 3.1.2, HA# + (BR) is clearly D-interpreted in
T + (BR). Combining this observation with the previous lemma yields

6.4.2. Theorem. HA# + (BI ) is D-interpreted in T + (BR).

6.5. Interpreting PAω + (AC00 )

We have seen that full second-order arithmetic can be embedded in the theory
PAω + (AC00 ). Spector’s interpretation applies not only to this but more generally
to (AC0σ) and an even stronger axiom scheme, (DCσ), which asserts the existence of
sequences formed by making dependent choices:

∀x, a ∃b ϕ(x, a, b)→ ∃f ∀x ϕ(x, f(x), f(x+ 1)),
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where x is of type 0 and a and b are of type σ. Let (DC ) denote the union of the
(DCσ). In section 6.3 we pointed out that, classically, (DC ) can be used to justify
bar induction. The following theorem represents a kind of converse, and shows the
full strength of Spector’s interpretation.

6.5.1. Theorem. PAω + (DC ) is N-interpreted in HA# + (BI ).

By Theorem 3.1.1 this is tantamount to the assertion that the double-negation
interpretation of (DC ) is provable in the latter theory. Howard was able to obtain
this result by first reducing (DC ) to a special case of bar induction in an appropriate
extension of PAω (which is plausible when one considers the contrapositive of (DC )),
and then deriving the double negation of this special case in HA# + (BI ). The
entire proof would take us too far afield, and so once again we refer the reader to
Howard [1968] for details.

Together with Theorem 6.4.2 this yields

6.5.2. Corollary. PAω + (DC ) is ND-interpreted in T + (BR).

Since PAω + (AC00 ) is contained in PAω + (DC ), we have

6.5.3. Corollary. The consistency of T + (BR) implies the consistency of
PA2 + (CA). Moreover, every provably total recursive function of PA2 + (CA) is
represented by a type 1 term of T + (BR).

We have both a functional and a term model for T + (BR). The former is given
by the continuous functionals of Kleene and Kreisel indicated in section 4.1 and
footnote 14, with the constants interpreted by recursively continuous functionals.
The latter is established by work of Tait [1971] and independently Luckhardt [1973],
which shows that T + (BR) is normalizing and confluent. Both models can be
formalized in PA2 + (CA), thus proving

6.5.4. Theorem. The provably total recursive functions of PA2 + (CA) are exactly
the ones represented by bar-recursive terms.

6.6. Evaluation of Spector’s interpretation

Spector was careful not to claim that the generalization of bar induction to higher
types, which he used to justify bar recursion for continuous functionals, should be
accepted on intuitionistic grounds. In fact, he offers the following caveat:

The author believes that the bar theorem is itself questionable, and that
until the bar theorem can be given a suitable foundation, the question of
whether bar induction is intuitionistic is premature.

The question of whether bar recursion can be justified on constructive grounds was
taken up in a seminar on the foundations of analysis led by G. Kreisel at Stanford in
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the summer of 1963. The seminar’s conclusion, summarized by Kreisel in an ensuing
report, was that

. . . the answer is negative by a wide margin, since not even bar recursion
of type 2 can be proved consistent [by constructively accepted principles].

Despite this disappointing assessment, we feel that Spector’s reduction of all of
classical analysis to the prima facie simple computational construct of bar recursion
is, in the end, rather remarkable.

7. Conservation results for weak König’s lemma

7.1. The theory WKL0

In this section we study a subsystem of second-order arithmetic known as WKL0 .
WKL0 is an interesting theory because it is just strong enough to prove, among
other things, the Heine-Borel theorem, and the completeness and compactness of
first-order logic (cf. Simpson [1987]). These facts make it all the more surprising that
from a proof-theoretic standpoint the theory is fairly weak.

Formally WKL0 is the fragment of PA2 + (CA) in which induction is restricted
to Σ0

1 formulas (set parameters are allowed), and instead of full comprehension the
only set existence principles are given by a recursive comprehension scheme, (RCA),
which asserts the existence of ∆0

1-definable sets, and a weak version of König’s lemma.
The latter, denoted (WKL), asserts that every infinite binary tree has a path.

In order to express (WKL), let {0, 1}k (resp. {0, 1}<ω , {0, 1}ω) denote the set
of length-k (resp. finite, infinite) binary sequences, and fix a reasonable encoding of
finite binary sequences as natural numbers. If s and t are sequences so coded, let
length(s) denote the length of s and let the primitive recursive predicate t ⊆ s assert
that t is an initial segment of s. If b is an element of {0, 1}ω , let b denote the initial
segment function

b(x) =def 〈b(0), b(1), . . . , b(x− 1)〉.
Finally, define the predicates

BinFunc(b) ≡def ∀x (b(x) = 0 ∨ b(x) = 1)

which asserts that b is an element of {0, 1}ω ,

BinTree(f) ≡def ∀s ∈ f (s ∈ {0, 1}<ω ∧ ∀t ⊆ s (t ∈ f))

which asserts that f is a binary tree, that is, a set of binary sequences closed under
initial segments, and

Bounded(f, k) ≡def ∀s ∈ {0, 1}k (s 6∈ f)

which asserts that the height of the binary tree f is less than or equal to k. Weak
König’s lemma can be now be written

∀f (BinTree(f) ∧ ∀k ¬Bounded(f, k)→ ∃b (BinFunc(b) ∧ ∀k b(k) ∈ f)).
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In words, if f is a binary tree with branches at every level, then there is a path b
through f .

Although the predicate Bounded is primitive recursive (since there are only
finitely many binary sequences of length k), both BinFunc and BinTree require a
universal quantifier. To avoid these, it turns out to be useful to employ the following
trick. Given a function b, define bbin by

bbin =def

{
0 if b(x) = 0
1 otherwise,

denoting the casting of b to a binary function. (Formally, bin is a functional of type
(0→ 0)→ (0→ 0).) Similarly, define f tree so that for any s

s ∈ f tree ↔ (s ∈ {0, 1}<ω ∧ ∀t ⊆ s (t ∈ f)),

so that f tree is a binary tree obtained from f by pruning away extraneous sequences.
The theory ĤA

ω
can then prove

BinFunc(bbin) ∧ (BinFunc(b)→ b = bbin)

and, similarly,
BinTree(f tree) ∧ (BinTree(f)→ f = f tree).

As a result, when we are working in the language of ĤA
ω

, we can just as well take
(WKL) to be given by

∀f (∀k ¬Bounded(f tree, k)→ ∃b ∀k (bbin(k) ∈ f tree)).

Since ∆0
1 comprehension follows from (QF -AC ), we can take WKL0 to be con-

tained in
P̂A

#
+ (WKL).

The fact that WKL0 is proof-theoretically weak is shown by the following celebrated
theorem of H. Friedman.

7.1.1. Theorem. WKL0 is conservative over PRA for Π0
2 formulas.

While Friedman’s original proof of Theorem 7.1.1 was model-theoretic, Kohlen-
bach [1992] showed how to use a D-interpretation to obtain the same result. In fact,
Kohlenbach’s work was dedicated to somewhat more general results; the approach
we present here is a simplification of his methods applied to the specific case at hand.
The details are manageable enough so that we can present them here in full. (The
realization that hereditary majorizability, defined in the next section, can be used
to obtain Theorem 7.1.1 is due to Sieg [1985], who used it with Herbrand methods.
For other proof-theoretic approaches, as well as Harrington’s strengthening of this
theorem, see Hájek [1993], Avigad [1996a].)15

15A number of other interesting applications of the technique of majorization in combination
with functional interpretation have been made by Kohlenbach in a series of papers; cf. Kohlenbach
[1996a,1996b] among others.
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7.2. Hereditary majorizability

If one puts the discrete topology on the set {0, 1}, weak König’s lemma expresses
the compactness of {0, 1}ω under the associated product topology. Recall that T̂
has models in which functionals F of type (0 → 0) → 0 are computable, and hence
continuous, since, for any g, the computation of F (g) depends on only finitely many
values of g. As a result, the compactness of {0, 1}ω implies that any such F is
necessarily bounded when restricted to functions in this space.

The notion of hereditary majorizability, due to Howard [1973], is an effective
generalization of this observation.

7.2.1. Definition. For each type σ, we define a relation a ≤∗ b for terms a and b
of type σ, as follows.

1. If σ = 0, a ≤∗ b is just a ≤ b.
2. If σ = (τ → ρ), then a ≤∗ b if and only if

∀x, y (x ≤∗ y → a(x) ≤∗ b(y))

where the variables x and y are of type τ .
The relation a ≤∗ b is read “a is hereditarily majorized by b.”

Notice that
∀f (BinFunc(f)↔ f ≤∗ λx.1).

It is not difficult to majorize type 1 functions:

7.2.2. Proposition. Given a type 1 term f , define

f ∗(x) =def max
y≤x

f(y).

Then f ≤∗ f ∗.

Though we cannot prove in T̂ that for every functional F there is another
functional G that majorizes it, we can majorize closed terms.

7.2.3. Proposition. For every closed term F in the language of T̂ there is another
closed term G such that ĤA

ω
proves F ≤∗ G.

7.2.4. Proof. Inductively, for each term F [x1, . . . , xn] with free variables shown,
one constructs a term G[y1, . . . , yn] such that T̂ proves

x1 ≤∗ y1 ∧ . . . ∧ xn ≤∗ yn → F ≤∗ G.

The main case is for F = R̂. Here we can take G defined by

G(f, g, 0, b) = f(b)
G(f, g, n′, b) = max(G(f, g, n, b), g(n,G(f, g, n, b), b)).

See Howard [1973] for further details. 2
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Notice that if F is a closed term of type (0→ 0)→ 0, F ≤∗ G, and k = G(λx.1),
then Definition 7.2.1 and the remark immediately following imply that for every b in
{0, 1}ω , we have that F (b) < k.

The following technical lemma will be needed in section 7.4.

7.2.5. Lemma. If the term B is of type (0→ 0)→ (0→ 0), then T̂ proves

∀f BinFunc(B(f))↔ B ≤∗ λfλx.1.

7.2.6. Proof. B ≤∗ λfλx.1 is equivalent to

∀f, g (f ≤∗ g → B(f) ≤∗ λx.1),

that is,
∀f, g (f ≤∗ g → BinFunc(B(f))). (1)

Taking g = f ∗ from Proposition 7.2.2 we see that (1) implies ∀f BinFunc(B(f)),
and the converse is trivial. 2

7.3. Reducing WKL0 to ĤA
#

+ (WKL′)

Since WKL0 is contained in P̂A
#

+ (WKL), to obtain Theorem 7.1.1 it is suf-
ficient, by Theorems 5.1.3 and 5.1.1, to show that the latter theory is conservative
over ĤA

#
for Π0

2 sentences. Our first step is to reduce it to an intuitionistic variant.

7.3.1. Lemma. The theory P̂A
#

+ (WKL) is N-interpreted in ĤA
#

+ (WKL).

7.3.2. Proof. P̂A
#

is N-interpreted in ĤA
#

, and the double-negation interpreta-
tion of (WKL), given by

∀f (∀k ¬Bounded(f tree, k)→ ¬¬∃b ∀k (bbin(k) ∈ f tree)),

follows from (WKL) since the double-negation only weakens the conclusion. 2

We define a convenient variant of (WKL) as follows:

(WKL′) ∀f ∃b ∀k (¬Bounded(f tree, k)→ bbin(k) ∈ f tree).

Proving the following lemma is a simple exercise in intuitionistic logic.

7.3.3. Lemma. Over intuitionistic logic, (WKL) is implied by (WKL′).

In fact, the two principles are equivalent over ĤA
#

, but the converse direction
requires more work and is not needed below.
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7.4. Reducing ĤA
#

+ (WKL′) to ĤA
#

Though ĤA
#

doesn’t prove (WKL), we can show that adding (WKL) doesn’t

allow ĤA
#

to prove any new Π0
2 sentences. The main avenue to this result is

abstracted in the following

7.4.1. Lemma. Suppose ĤA
#

proves

∃a ∀b, c S(a, b, c)→ ∀x ∃y R(x, y). (2)

Then there is a specific term c̃(a, x) (whose other free variables are among those of R

and S) such that ĤA
#

proves

∀x ∃a ∀b S(a, b, c̃(a, x))→ ∀x ∃y R(x, y).

The proof is straightforward, using the scheme ϕ ↔ ϕD of ĤA
#

to convert (2)
with “∀x” deleted to its D-translation, applying Theorem 5.1.3 to extract a term
c̃ of T̂ , and then manipulating quantifiers. The upshot is that to eliminate the
assumption ∃a ∀b, c S(a, b, c) from a proof of ∀x ∃y R(x, y) in ĤA

#
, it suffices to

show that one can prove
∃a ∀b S(a, b, c̃(a, x))

for any specific term c̃.
We now apply this to the situation at hand.

7.4.2. Lemma. ĤA
#

+ (WKL) is conservative over ĤA
#

for Π0
2 sentences.

7.4.3. Proof. By Lemma 7.3.3 and the deduction theorem, if ĤA
#

+ (WKL)
proves

∀x ∃y R(x, y),

then ĤA
#

proves

∀f ∃b ∀k (¬Bounded(f tree, k)→ bbin(k) ∈ f tree)→ ∀x ∃y R(x, y).16

Applying (AC ) to the hypothesis, we obtain

∃B ∀f, k (¬Bounded(f tree, k)→ B(f)bin(k) ∈ f tree)→ ∀x ∃y R(x, y).

Applying Lemma 7.4.1 with k in place of c, we are reduced to showing that HA#

proves
∃B ∀f (¬Bounded(f tree, k̃(B, x))→ B(f)bin(k̃(B, x)) ∈ f tree) (3)

16Here we need to use ĤA
#
0 or I -ĤA

#
instead of WE -ĤA

#
, since the deduction theorem fails

for the latter theory; cf. 3.1. However, for a way around this, see Kohlenbach [1992], p. 1246.
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for any closed term k̃.
We now bring in the notion of hereditary majorizability to bound the value of

k̃(B, x). By Proposition 7.2.3, we can find a term k∗ that hereditarily majorizes k̃.
Define

k′(x) =def k
∗(λxλf.1, x).

Since x ≤∗ x, from Lemma 7.2.5 we see that ĤA
#

proves

∀f BinFunc(B(f))→ k̃(B, x) ≤ k′(x). (4)

To verify (3), we only need construct an appropriate B . Define B′(x, f) as
follows. Let l be the maximum value less than or equal to k′(x) such that f tree has
an element of length l, and let s be any (e.g. the leftmost) such element. Let

B′(x, f)(y) =def

{
sy if y < l
0 otherwise,

so that B′(x, f), as an element of {0, 1}ω , consists of s followed by a string of zeros.

In particular, ĤA
#

proves

l ≤ k′(x) ∧ ¬Bounded(f tree, l)→ B′(x, f)(l) ∈ f tree. (5)

Finally, let B(x) =def λf.B
′(x, f). Then ĤA

#
proves

∀f BinFunc(B(x, f))

and so, using (4),
∀x (k̃(B(x), x) ≤ k′(x)).

By (5) we then have

∀f (¬Bounded(f tree, k̃(B(x), x))→ B(x, f)bin(k̃(B(x), x)) ∈ f tree).

So B(x) witnesses the existential quantifier in (3). 2

Friedman’s Theorem 7.1.1 now follows from Lemmas 7.3.1 and 7.4.2, together
with Theorems 5.1.3 and 5.1.1.

Harrington’s theorem states that WKL0 is conservative over its subtheory RCA0

(which omits (WKL)) for Π1
1 sentences. Since RCA0 is easily interpretable in

IΣ1 , this, together with Theorem 5.1.4, yields another proof of Friedman’s result.
However, the question as to whether a functional interpretation can be used to obtain
Harrington’s strengthening is still open.

The proof above can be adapted to yield similar conservation results for weaker
fragments of second-order arithmetic, such as “elementary analysis,” whose provably
total recursive functions are all elementary recursive (cf. also Kohlenbach [1996b]).
It is reasonable to conjecture that functional interpretations can be used to obtain
similar results for systems of polynomial-time-computable arithmetic, especially in
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view of the conservation result of Ferreira [1988,1994], which showed that a suitable
version of (WKL) is conservative over S 1

2 for Π0
2 formulas (cf. also Cantini [1996]).

However, the functional B′ and the relation Bounded(f, k) from the proof above
cannot be defined in, say, PV ω , so new considerations seem to be necessary. (If
the reader is concerned with polynomial bounds rather than a polynomial-time-
computable Skolem function, he or she should consult Corollary 4.28 of Kohlenbach
[1996b].)

8. Non-constructive interpretations and applications

8.1. Overview of the section; general pattern.

This section shows how the D-interpretation can be extended by inclusion of
certain non-constructive functional operators in order to obtain conservation results
of various finite type systems contained in PAω + (AC ) over related second-order
systems. As we have noted in section 3.1, (QF -AC ) is automatically preserved
under the ND-interpretation. This can be extended to (Γ -AC ) for some larger
classes of formulas Γ by adjunction of suitable (necessarily non-constructive) Skolem
functionals with associated axioms which imply that each formula in Γ is equivalent
to a QF- (i.e. quantifier-free) formula.

The paradigm case is given by adjunction of the non-constructive minimum
operator µ, which allows us to reduce every arithmetical formula to QF form.
Then axioms (µ) for this with PAω + (QF -AC ) imply the second-order system
Σ 1

1 -DC , and it is shown that the system PAω + (µ) + (QF -AC ) is ND-interpreted
in T + (µ). Normalization of a system of infinite terms for the latter, just as
described in section 4.4 above for T by the methods of Tait [1965], shows that the
type 1 functions thus generated lie in the hierarchy of hyperarithmetic functions
Hα for α < ε0 . Then formalization of this model can be carried out in a theory
(Π 0

1 -CA)<ε0 of relative arithmetical comprehension iterated up to ε0 , yielding a
number of conservation results, including a well-known one due to Friedman [1970].
The arguments for this are detailed in sections 8.2 and 8.3. It is also shown that when
the Bar Rule is adjoined to the above finite type system, we obtain conservation over
the full predicative system (Π 0

1 -CA)<Γ0 .

Analogous results to those in sections 8.2–8.3 are sketched in section 8.4 for
adjunction of the Kleene basis operator which transforms every Σ1

1 formula into an
equivalent Π0

1 formula and thence a QF-formula using µ. This allows us to lift the
preceding results throughout one step up in the analytical hierarchy. The results of
sections 8.2–8.4 are due to Feferman [1971,1977,1979].
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8.2. Finite type systems with non-constructive µ-operator, and related
second-order systems

8.2.1. Subsystems of PAω

Besides the classical finite type theory PAω which includes the constants K, S and
R in all types and full induction for all formulas, we shall consider also its subsystems
P̂A

ω
in which R is replaced by the predicative recursion operator R̂ introduced in

section 5.1, and subsystems of both, obtained by restricting induction as follows:

(Res-Ind) 0 ∈ X ∧ ∀x (x ∈ X → x′ ∈ X)→ ∀x (x ∈ X).

Here X ranges over sets of type 1 (identified with characteristic functions as in
section 6.3). When we add principles which imply (Γ -CA) for various classes of
formulas Γ, we can infer from (Res-Ind) all substitution instances for X by formulas
ϕ in Γ, but not full induction in general. If S is any system of second or higher order
which includes the scheme of full induction, we shall denote by Res-S the system
obtained by replacing that scheme by the axiom (Res-Ind) above. (In the literature
this is also denoted S� or S0 .) The higher type systems which will figure prominently
in the following are PAω , Res-PAω , P̂A

ω
and Res-P̂A

ω
, together with (QF -AC ) and

some special axioms for non-constructive functionals.

8.2.2. Functionals for numerical quantification and choice

The functional E0 of type 2 with values 0 and 1 only is defined by

(E0) E0(f) = 0↔ ∃x (f(x) = 0).

(This functional is also denoted 2E in the recursion-theoretic literature.) Using this
axiom, every arithmetical formula is equivalent to a QF-formula. If we are to use it
with an ND-interpretation, we should consider the two implications:

f(x) = 0→ E0(f) = 0 and E0(f) = 0→ ∃x (f(x) = 0).

The ND-interpretation preserves the first of these but requires for the second a
functional X such that E0(f) = 0 → f(X(f)) = 0. Combining this with the first
implication gives f(x) = 0 → f(X(f)) = 0. Such an X is then a choice or Skolem
functional for type 0 quantification. We shall use the new symbol µ for such a
functional and take as its axiom

(µ) f(x) = 0→ f(µ(f)) = 0.

Then E0 may be defined simply in terms of µ by E0(f) = 0 if f(µ(f)) = 0,
otherwise E0(f) = 1. The advantage of using µ in place of E0 is that its axiom is
preserved directly under the ND-interpretation without requiring any supplementary
functionals. Note that the non-constructive minimum operator in its usual sense,
defined as the least x such that f(x) = 0 if ∃x (f(x) = 0) and 0 otherwise, is also
definable in terms of µ and the primitive recursive bounded minimum operator.
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8.2.3. Second-order forms of (CA), (AC ) and (DC )

We shall consider various restricted forms of these principles for the usual arith-
metical (Π0

n and Σ0
n) and analytical (Π1

n and Σ1
n) hierarchies. That is, for Γ one of

these classes of formulas, we shall consider the schemata

(Γ -CA) ∃Y ∀x (x ∈ Y ↔ ϕ(x))

(Γ -AC01 ) ∀x ∃f ϕ(x, f)→ ∃g ∀x ϕ(x, gx)

(Γ -DC1 ) ∀x, f ∃g ϕ(x, f, g)→ ∀f ∃g (g0 = f ∧ ∀x ϕ(x, gx, gx+1))

where in each case ϕ ranges over formulas in Γ, and in the two choice principles gx
is written for λy.g(x, y). In addition, we shall consider the scheme

(∆Γ -CA) ∀x (ϕ(x)↔ ¬ψ(x))→ ∃Y ∀x (x ∈ Y ↔ ϕ(x))

where ϕ and ψ again range over formulas in Γ. In the context of second-order
systems, we omit the subscripts from the (AC ) and (DC ) principles. Also we use
these principles to name the second-order system S obtained by adjoining them to
PA together with full induction for second-order formulas. Then, in accordance
with 8.2.1, we use Res-S to name the same system with restricted induction. The
systems of particular concern to us in this section and the next are: Π 0

1 -CA, ∆1
1 -CA,

Σ 1
1 -AC , Σ 1

1 -DC , and their restricted versions, while in section 8.4 we shall take
up the corresponding systems one level up in the analytic hierarchy. Note that
the system Π 0

1 -CA proves the same theorems as the system ACA based on the
arithmetical comprehension axiom, i.e. (Γ -CA) where Γ is the class of arithmetical
formulas. For, we can derive closure under complement from (Π 0

1 -CA) and hence the
principle (Σ 0

1 -CA), and then by iterating these we obtain (ACA) in general. We note
this for the record in the following; the further relationships below are established
just as easily.

8.2.4. Theorem.
1. Π 0

1 -CA = ACA

2. Π 0
1 -AC = Σ 1

1 -AC

3. Π 0
1 -DC = Σ 1

1 -DC

4. Π 0
1 -CA ⊆ ∆1

1 -CA ⊆ Σ 1
1 -AC ⊆ Σ 1

1 -DC

5. The same results hold for the corresponding theories with (Res-Ind).

Apropos of this last, it is a familiar result that Res-Π 0
1 -CA or ACA0 is a conservative

extension of PA; a model-theoretic argument gives the quickest proof of that.
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8.2.5. Transfinite induction below ε0.

In the following we shall use variables α, β, γ, . . . to range both over ordinals and
over terms in a natural recursive ordinal representation system for ordinals up to ε0 .
We write <α for the initial segment determined in this ordering by α. The scheme
of transfinite induction up to α for a formula ϕ(x) is given by

(TIα(ϕ)) ∀x (∀y (y <α x→ ϕ(y))→ ϕ(x))→ ∀x ϕ(x).

It was proved by Gentzen that this scheme is derivable in PA for each formula ϕ of
arithmetic and each α < ε0 . Analysis of his argument actually shows more:

8.2.6. Theorem. Suppose S is any system whose language contains that of PA
and which contains full induction. Then for each formula ϕ of S and each α < ε0 we
can prove (TIα)(ϕ) in S .

The argument for this proceeds by showing that transfinite induction up to ωα

with respect to ϕ can be reduced to transfinite induction up to α with respect to
a formula ϕ∗ which is built by propositional operations and numerical (first-order)
quantification from ϕ. (For a simple choice of ϕ∗ due to Schütte, cf. Feferman [1977,p.
946].)

8.2.7. Transfinitely iterated arithmetical comprehension

The hyperarithmetic hierarchy up to any α and relative to any initial set X is
the sequence of sets 〈HX

β 〉β<α for which HX
0 = X , (HX

β+1) = (HX
β )′ , and for limit β ,

HX
β is the join of the sequence HX

γ for γ < β . (Here Y ′ represents the set obtained
by applying the Turing jump operator to Y .) Such a sequence may be represented
by its join, which is a single set HX(α) consisting of the pairs 〈β, x〉 such that β < α
and x ∈ HX

β . The assertion that HX(α) exists for each X is denoted (Π 0
1 -CA)α ,

since the successor step from β to β + 1 may be considered as being obtained by
one application of (Π 0

1 -CA). We use (Π 0
1 -CA)<ε0 to denote the collection of all

(Π 0
1 -CA)α for α < ε0 , as well as the system based on this collection. In these terms

we can strengthen the first inclusion in part 4 of the Theorem 8.2.4 to the following

8.2.8. Theorem. (Π 0
1 -CA)<ε0

⊆ ∆1
1 -CA.

The proof consists in showing, for each α < ε0 , the existence of HX(β) for
β < α by the scheme of transfinite induction up to α. When passing to the limit
β one makes use of the fact that if HX(γ) exists then it is uniquely determined by
its recursive defining conditions, so the set HX(β) can be defined in ∆1

1 form (cf.
Feferman [1977,pp. 944–947] for further details).

Note that what is essential for this proof is availability of transfinite induction for
Σ1

1 formulas in the system ∆1
1 -CA, which we do not have in its restricted version. Our

next step is to put these second-order systems together with the finite-type systems
of 8.2.1. This leads to two chains of interest:
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8.2.9. Theorem.
1. (Π 0

1 -CA)<ε0
⊆ ∆1

1 -CA ⊆ Σ 1
1 -AC ⊆ Σ 1

1 -DC ⊆ PAω + (µ) + (QF -AC )

2. PA ⊆ Res-Π 0
1 -CA ⊆ Res-∆1

1 -CA ⊆ Res-Σ 1
1 -AC ⊆ Res-P̂A

ω
+ (µ) + (QF -AC ).

What’s added here to the information from above are the final inclusions. In 1,
from ∀x, f ∃g ϕ(x, f, g) with ϕ arithmetical, one uses (µ) and (QF -AC ) to infer

∃G ∀x, f ϕ(x, f,G(f)).

Then, given any initial f , a sequence 〈gx〉 with g0 = f ∧ ∀x ϕ(x, gx, gx+1) is defined
by the recursion gx+1 = G(gx) using the recursor R with values at type 1. The
reason the same sort of argument cannot be carried out in 2 is that there we only
have availability of the recursor R̂ whose values are confined to type 0. Recursion is
not needed though to infer the principle (Σ 1

1 -AC ) from (µ) and (QF -AC ).
The next section is devoted to showing how these chains of inclusions can be

closed proof-theoretically.

8.3. Functional interpretations using the (µ) operator

As noted above, the (µ) axiom is preserved under the ND-interpretation; in
combination with the Theorems 3.1.3 and 3.1.4, this immediately yields:

8.3.1. Theorem. PAω + (µ) + (QF -AC ) is ND-interpreted in T + (µ).

The next step is to show how T + (µ) can be modeled in (Π 0
1 -CA)<ε0

. This is by an
extension to µ, as a type 2 constant symbol, of Tait’s infinite term model of T from
section 4.4. No new arguments are needed for normalization and so, just as before,
every term of T + (µ) translates into a (possibly) infinitely long term which, in turn,
reduces effectively to a normal term t with |t| < ε0 . Only the description of normal
infinitely long terms t at type 0 needs to be modified. For this purpose, one examines
such t which may contain free variables x of type 0 and/or f of type 1, and arrives
at the following possibilities (cf. the end of 4.4): either

1. t = 0 or
2. t = Sc(s) where s is normal or
3. t is a variable of type 0 or
4. t = 〈tn〉(s) where each tn is normal and s is normal or
5. t = f(s) where f is a type 1 variable and s is normal or
6. t = µ(λx.s) where s is normal or
7. t = µ(〈tn〉) where each tn is normal.

Every closed term of type 1 in T + (µ) then reduces effectively to a normal term
of the form λx.t where t is normal of type 0 or of the form 〈tn〉 where each tn is
normal. What these represent as functions is the effective transfinite iteration of the
µ operator, or equivalently the jump (E0) operator, up to ordinals less than ε0 . Thus
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each closed term t of type 1 in T + (µ) represents a function which is recursive in Hα

for some α < ε0 . More generally, if t is a term with a free variable f of type 1, then
t represents a function recursive uniformly in Hf

α for some α < ε0 . Formalization of
this argument leads finally to the following:

8.3.2. Theorem. PAω + (µ) + (QF -AC ) is a conservative extension of
(Π 0

1 -CA)<ε0
for Π1

2 sentences.

For, given a provable Π1
2 sentence ∀f ∃g ϕ(f, g) with ϕ arithmetical, we use

8.3.1 to obtain a term t[f ] of type 1 such that T + (µ) proves ϕ′(f, t[f ]), where
ϕ′ is quantifier- free and equivalent to ϕ under (µ), and then apply the preceding
modeling argument.

8.3.3. Corollary. Σ 1
1 -DC is a conservative extension of (Π 0

1 -CA)<ε0
for Π1

2
sentences.

This result is due originally to Friedman [1970], who established it by model-
theoretic techniques. Subsequently to the appearance of the above approach in the
publications referred to in section 8.1, Feferman and Sieg [1981] used Herbrand-
Gentzen methods with the µ operator to the same end.

Now turning to the restricted systems, the main result is

8.3.4. Theorem. Res-P̂A
ω

+ (µ) + (QF -AC ) is a conservative extension of
Res-Π 0

1 -CA for Π1
2 sentences, and hence of PA for arithmetical sentences.

Here, for the proof, one makes use of the ND-interpretation of our higher type
system in T̂ + (µ). The recursor R̂ can then be eliminated from the picture, since
it can be defined arithmetically, hence by means simply of +, ·, and µ. Terms of
the resulting system then normalize without passing to infinite terms, and so the
functions represented by closed terms of type 1 are also arithmetical. The same holds
for terms t[f ] of type 1 uniformly in a type 1 variable f .

8.3.5. Corollary. Res-Σ 1
1 -AC is a conservative extension of Res-Π 0

1 -CA for Π1
2

sentences, and hence of PA for arithmetical sentences.

This was first established by model-theoretic methods by Barwise and Schlipf
[1975] and independently Friedman [1976]. Again, Feferman and Sieg [1981] used
Herbrand-Gentzen methods with µ to obtain the same result. Note that Res-Σ 1

1 -DC
is stronger than Res-Π 0

1 -CA because it proves the existence of Hω .
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8.3.6. Predicatively provable ordinals

By formalizing work of Kleene, the systems (Π 0
1 -CA)<α are another form of

ramified analysis RAα when α = ω · α. The proof-theoretic ordinals17 of these
were established by Schütte [1960] (cf. also Schütte [1977]) in terms of the Veblen
hierarchy of normal functions ϕa of ordinals, defined by:

1. ϕ0(ξ) = ωξ

2. For α 6= 0, ϕα enumerates {ξ : ϕβ(ξ) = ξ for all β < α}.
Each ϕα+1 is then the critical function of ϕα , i.e. it enumerates the set of fixed points
{ξ : ϕα(ξ) = ξ}. In particular, ϕ1(ξ) = εξ , etc. The diagonal function λξ.ϕξ(0)
is also normal and its least fixed point is denoted Γ0 . There is a natural notation
system for ordinals up to Γ0 (Feferman [1968b]), and we shall now use α, β, γ, . . . to
range over that system as well as over ordinals in the usual sense. It follows from
Schütte’s work referenced above that

8.3.7. Theorem. For α = ω · α (α not 0), the proof-theoretic ordinal of RAα or,
equivalently, of (Π 0

1 -CA)<α, is ϕα(0).

Now, the so-called autonomous ordinals of ramified analysis were defined to be
those generated by the following “boot-strap” procedure:

1. 0 is an autonomous ordinal.
2. If β is an autonomous ordinal and α is a provably recursive ordinal of RAβ

then α is an autonomous ordinal.
The systems RAα for α autonomous were proposed by Kreisel as a characterization
of predicative analysis, and so the autonomous ordinals are identified with the pred-
icatively provable ordinals. Using 8.3.7, it was established independently by Schütte
and Feferman in the mid 1960s that Γ0 is the least non-autonomous ordinal, hence
the least impredicative ordinal. In order to investigate the extent of predicativity in
ordinary, unramified, analysis, Feferman [1964] described an unramified second-order
system with finitely many schemata whose proof-theoretic ordinal is Γ0 . This was
strengthened later in Feferman [1979] to the following:

8.3.8. Theorem. The system Σ 1
1 -DC + (Bar-Rule) has proof-theoretic ordinal

Γ0; it is conservative over (Π 0
1 -CA)<Γ0

for Π1
2 sentences.

The Bar-Rule, which is related to the principle of Bar Induction described in
section 6.3 above, allows one to infer the scheme of transfinite induction on a recursive
ordering when its well-foundedness has been established. The idea of the proof of
Theorem 8.3.8 sketched op. cit. is to apply a functional interpretation to the still larger
system PAω + (µ) + (QF -AC ) + (Bar-Rule), carrying it into T + (µ) + (Bar-Rule),

17The proof-theoretic ordinal of a system S is defined in several ways, e.g. as the least ordinal
α which is not the order-type of a provably recursive well-ordering of the system, or as the least
α (in a standard notation system) for which the consistency of S can be proved by transfinite
induction up to α over a weak base system. These are equivalent in practice.
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and then to model the latter in a boot-strap fashion in a system of infinitely long
terms of length less than Γ0 . The final result is then obtained by formalization
of the type 1 functions of that model as for Theorem 8.3.2 above. The details of
this are rather complicated, and in its place a more digestible proof of Theorem
8.3.8 was subsequently obtained by Feferman and Jäger [1983] by Herbrand-Gentzen
methods with the µ operator. But the functional interpretation served an important
intermediate, partly heuristic role in arriving at this result.

8.4. Functional interpretations using the Kleene basis operator

8.4.1. Testing for (non-)well-foundedness as a functional

As in sections 6 and 7, we write g(x) for the sequence number coding the sequence
〈g(0), . . . , g(x − 1)〉 when g is of type 1. Then a type 1 function f represents a
well-founded tree if ∀g ∃x f(g(x)) 6= 0, where the tree consists of all sequence
numbers s with f(s) = 0. Kleene’s basis theorem for Σ1

1 predicates provides a
functional µ1 which chooses a descending branch in this tree if it is not well-founded,
recursive in the Suslin quantifier E1 with values 0 and 1, given by

(E1) E1(f) = 0↔ ∃g ∀x f(g(x)) = 0.

Specifically, when E1(f) = 0, µ1 is the left-most descending branch in this tree,
with the successive values of µ1(f) = g defined recursively by taking g(x) to be
the least y such that there is an infinite descending branch in the f -tree extending
g(x)̂ 〈y〉. Thus µ1 satisfies the axiom

(µ1 ) ∀x f(g(x)) = 0→ ∀x f(µ1(f)(x)) = 0.

Of course then E1 is definable in terms of µ1 . This axiom is preserved under the
N-interpretation, and in the presence of the axiom (µ) is equivalent to a quantifier-free
statement,which is further preserved under the D-interpretation. So this leads us to
consider the systems of 8.2.1 augmented by the axioms for both µ and µ1 . Then
we obtain conservation results for these over second-order systems involving Π 1

1 -CA,
Σ 1

2 -AC and Σ 1
2 -DC . In addition, we have to consider the following.

8.4.2. Transfinitely iterated (Π 1
1 -CA)

The explanation of the systems (Π 1
1 -CA)α and (Π 1

1 -CA)<α is analogous to that
for the systems of iterated arithmetical comprehension. These formalize the existence
of relative hierarchies based on iteration of the hyperjump operator, definable by E1 .
Then in analogy to Theorem 8.2.9, we easily obtain the following chains of inclusions:

8.4.3. Theorem.
1. (Π 1

1 -CA)<ε0
⊆ ∆1

2 -CA ⊆ Σ 1
2 -AC ⊆ Σ 1

2 -DC ⊆ PAω + (µ) + (µ1 ) + (QF -AC )
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2. Res-Π 1
1 -CA ⊆ Res-∆1

2 -CA ⊆ Res-Σ 1
2 -AC ⊆ Res-P̂A

ω
+ (µ) + (µ1 ) + (QF -AC )18

Next, in analogy to 8.3.2, using the ND-interpretation of PAω + (µ) + (µ1 ) + (QF -AC )
in T + (µ) + (µ1 ) we can obtain:

8.4.4. Theorem. PAω + (µ) + (µ1 ) + (QF -AC ) is a conservative extension of
(Π 1

1 -CA)<ε0
for Π1

3 statements.

8.4.5. Corollary. Σ 1
2 -DC is a conservative extension of (Π 1

1 -CA)<ε0
for Π1

3
statements.

Similarly we obtain a conservation result for Res-Π 1
2 -AC over Res-Π 1

1 -CA.
Corollary 8.4.5 is again a result first obtained by Friedman [1970]. For more details of
the arguments using the approach sketched here through functional interpretations,
see Feferman [1977,section 8].

8.4.6. Autonomously iterated Π 1
1 -CA

Just as for the case of autonomously iterated ramified analysis or Π 0
1 -CA, we may

explain what are the autonomous ordinals for iteration of (Π 1
1 -CA). A much larger

recursive ordinal notation system is needed to determine these, using the so-called
Bachmann hierarchies of ordinal functions (subsequently simplified through work of
Feferman, Aczel and Buchholz — cf. Schütte [1977,Chapter IX]). We shall not try to
describe these here, except to take up the first ordinal of proof-theoretical interest
from that hierarchy, the so-called Howard ordinal, in section 9.7 below. We content
ourselves instead with the statement of an analogue of Theorem 8.3.8 in the following
form.

8.4.7. Theorem. Σ 1
2 -DC + (Bar-Rule) is a conservative extension of au-

tonomously iterated Π 1
1 -CA for Π1

3 statements.

This can be proved by an extension of the functional interpretation meth-
ods indicated above, thus also giving conservation for the finite type system
PAω + (µ) + (µ1 ) + (QF -AC ) + (Bar-Rule) over autonomously iterated Π 1

1 -CA.
Theorem 8.4.7 has also been proved by Herbrand-Gentzen methods with the func-
tionals µ and µ1 in Feferman and Jäger [1983].

8.4.8. Further results and methodological discussion

Friedman [1970] obtained further analogues to Corollaries 8.3.5 and 8.4.5, of the
following form:

18Actually, it is known from the Kondô-Addison theorem that we can strengthen two of the
inclusions in 1 by ∆1

2 -CA = Σ 1
2 -AC = Σ 1

2 -DC .
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8.4.9. Theorem. For n ≥ 2, Σ 1
n+1 -DC is a conservative extension of (Π 1

n -CA)<ε0

for Π1
4 statements.

This can be improved to conservation results for finite type extensions of Σ 1
n+1 -DC

by means of additional axioms for suitable Skolem functionals. However, those
functionals do not occur naturally in practice, unlike the non-constructive minimum
operator and the Kleene basis operator, so such results would be somewhat artificial
to state. Friedman’s own proof of this theorem was by model-theoretic methods,
and later Feferman and Sieg [1981] gave a proof by Herbrand-Gentzen methods.
Subsequently Feferman and Jäger [1983], using the same methods, obtained the
related analogues of Theorem 8.4.7:

8.4.10. Theorem. For n ≥ 2, Σ 1
n+1 -DC + (Bar-Rule) is a conservative extension

of autonomously iterated Π 1
n -CA for Π1

4 statements.

9. The interpretation of theories of ordinals

9.1. A classical theory of countable tree ordinals

We now extend the methods of the previous section to a finite type theory ORω
1 of

countable (tree) ordinals including the µ operator, in order to obtain a conservation
result over a classical theory ID1 of one arithmetical inductive definition.19 This
work is compared with that of Howard [1972] on analogous constructive theories;
it is an interesting open question how these results may be combined. The work
described here is based on an unpublished paper, Feferman [1968a].

The system ORω
1 , to which the ND-interpretation is to be applied, is a variant

of that used in Feferman [1968a]. It extends PAω + (µ) as follows. We expand the
type structure by an additional ground type, denoted Ω. Then types σ, τ, . . . are
generated from the ground types 0 and Ω by closing under (σ → τ) as before. We
have infinitely many variables of each type; we use the letters α, β, γ, . . . , ξ, η, ζ for
variables of the new type Ω. These are informally understood to range over countable
tree ordinals, which are closed under formation of suprema in the sense that if f is
of type 0 → Ω then Sup(f) ∈ Ω and Sup(f) represents the tree whose immediate
subtrees are given by the sequence of values f(x) for x a natural number. Formally,
the constants of ORω

1 besides those of PAω + (µ) are as follows:
1. 0Ω is a constant of type Ω

2. Sup is a constant of type (0→ Ω)→ Ω

3. Sup−1 is a constant of type Ω→ (0→ Ω)

4. For each σ, RΩ,σ is a constant of type (Ω, (0→ σ)→ σ), σ,Ω→ σ.

19Recent work of Burr and Hartung [n.d.] and Burr [1997] extends these results with an
interpretation of KPω (essentially a set-theoretic analogue of ID1 ) in a theory of primitive
recursive set functionals of finite type, instead of the ordinal functionals of ORω .
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We shall omit the subscript ‘σ’ from the ordinal recursor whenever there is no
ambiguity. In the following we shall write αx for (Sup−1(α))(x) for x of type 0; for
α non-zero, this represents the immediate subtree at position x. Just as we do not
assume extensionality for functions, we do not assume extensionality for ordinals,
i.e. it does not follow from ∀x (αx = βx) that α = β . Nevertheless we shall assume
there is a one-one correspondence between non-zero ordinals and functions of which
they are the suprema, so that Sup−1 will indeed be the inverse of the Sup operation.
This is not necessary, but simplifies some points.

The logic taken for ORω
1 is full classical quantificational logic in its finite type

language. The axioms of ORω
1 consist of:

1. The axioms of PAω + (µ) with the induction scheme extended to all formulas
of the language

2. Sup(f) 6= 0Ω ∧ Sup−1(Sup(f)) = f , for f of type (0→ Ω)
3. α 6= 0Ω → Sup(Sup−1(α)) = α

4. (0Ω)x = 0Ω

5. (a) RΩ(f, a, 0Ω) = a

(b) α 6= 0Ω → RΩ(f, a, α) = f(α, λx.RΩ(f, a, αx)) for each type σ, where the
variable a is of type σ, and the variable f is of type Ω, (0→ σ)→ σ

6. ϕ(0Ω) ∧ ∀α (α 6= 0Ω ∧ ∀x ϕ(αx)→ ϕ(α))→ ∀α ϕ(α)
7. (QF -AC )

The quantifier-free subsystem of ORω
1 may be axiomatized as follows.

1′ . T + (µ), with induction rule extended to all quantifier- free formulas of ORω
1

2′ .-5′ . The same as 2-5 in ORω
1

6′ . The rule of induction on ordinals, i.e. from ϕ(0Ω) and (α 6= 0Ω ∧ ∀x ϕ(αx) →
ϕ(α)) infer ϕ(α) for all quantifier-free ϕ.

(This last is to be expressed in quantifier-free form using the µ operator.) We denote
this system by TΩ + (µ). Just as for Theorem 8.3.1 we readily obtain:

9.1.1. Theorem. ORω
1 is ND-interpreted in TΩ + (µ).

9.2. The classical systems ID1 of one arithmetical inductive definition

We remind the reader briefly of these relatively familiar systems. Here θ(P+, x)
denotes a formula in the language of arithmetic with one additional predicate or set
symbol P that has only positive occurrences in θ. This determines a monotonic
operator from sets P to sets {x : θ(P, x)}, which thus has a least fixed point. The
theory ID1 (θ) associated with θ is given by the following axioms expressing that P is
such a least fixed point, to the extent possible within the given first-order language:

1. The axioms of PA with induction expanded to include all formulas containing
the symbol P .

2. θ(P, x)→ P (x)
3. ∀x (θ(ψ/P, x)→ ψ(x))→ ∀x (P (x)→ ψ(x)), for each formula ψ.
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Here θ(ψ/P, x) denotes the result of substituting any occurrence of the form P (t)
in θ by ψ(t/x). The logic of ID1 (θ) is, of course, classical. When referring to any
system described in this way, we simply write ID1 .

We will use ID i
1 to denote the corresponding theories based on intuitionistic

logic. Here, however, we need to specify how the positivity requirement on θ is
to be interpreted. We will say that θ is weakly positive if it is positive in the
classical sense, and strongly (or strictly) positive if there are no occurences of P in
the antecedent of an implication, where the basic logical connectives are taken to
be those of Section 2.1. An even more restrictive requirement on θ is that it be
an accessibility inductive definition, as described in Section 9.6; cf. Section 9.8 for a
discussion.

9.3. Translation of ID1 into ORω
1

The obvious way to carry out the translation of ID1 (θ) into ORω
1 is to define

the approximations to the least fixed point from below. For this purpose, we need
a form of ordinal recursion which defines a function at an ordinal α in terms of its
values at all smaller ordinals β . The appropriate less-than relation for tree ordinals is
introduced as follows. We use the letter ‘s’ to range over numbers of finite sequences
of natural numbers. The number 0 is chosen to code the empty sequence, and the
extension of a sequence s by one new term x is denoted ŝ 〈x〉.
For an ordinal α, the predecessor αs of α “down along s” is defined recursively by:

1. α0 = α

2. αŝ 〈x〉 = (αs)x .
Then we define

3. β < α↔ α 6= 0Ω ∧ ∃s (s 6= 0 ∧ β = αs).

9.3.1. Lemma.
1. The < relation between ordinals is transitive.
2. ∀α, β ∃γ (α < γ ∧ β < γ).
3. (“Ω-upper bounds”, or Quantifier-free collection) For every quantifier-free for-

mula ϕ, we have ∀x ∃β ϕ(x, β)→ ∃α ∀x ∃β < α ϕ(x, β).

9.3.2. Proof. Claim 1 is immediate by definition. For claim 2, define f with
f(0) = α, f(x′) = β , and take γ = Sup(f). Finally, under the hypothesis of claim
3, we have by (QF -AC ), existence of an f such that ∀x ϕ(x, f(x)); then take
α = Sup(f). 2

Given a function f of type Ω → σ, the restriction of f to α for α 6= 0Ω is
definable as λs, x. f(αŝ 〈x〉), which we also write both as λs 6= 0. f(αs) and as
λβ < α. f(β). Then one can derive by use of our recursor RΩ the following more
general form of recursion with values in any type σ, given any a of type σ and G of
type Ω, (0→ σ)→ σ:

(< -RecΩ) F (0Ω) = a, and for α 6= 0Ω , F (α) = G(α, λβ < α. F (β)).
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Correspondingly we can derive the following more general form of induction on Ω:

(< -IndΩ) ϕ(0Ω) ∧ ∀α (α 6= 0Ω ∧ ∀β < α ϕ(β)→ ϕ(α))→ ∀α ϕ(α)

9.3.3. Lemma. Given arithmetical θ(P, x), we can define a function F of type
Ω, 0 → 0 in ORω

1 satisfying: F (α, x) = 0 ↔ θ({y | ∃β < α F (β, y) = 0}, x) for all
α.

The proof of this depends essentially on the use of µ to eliminate all the quantifiers
in θ and to eliminate the quantifier ‘∃β < α’, which is just a quantifier over non-zero
sequence numbers, so that we can then apply the principle (< -RecΩ) above.

Now suppose that θ(P, x) has just positive occurrences of P . Using the function
F from the preceding lemma, define

P (x)↔ ∃α P (α, x), where P (α, x)↔ F (α, x) = 0, (6)

so that
P (α, x)↔ θ({y | ∃β < α P (β, y)}, x), for all α. (7)

9.3.4. Theorem. The predicate P thus defined provably satisfies the axioms of
ID1 (θ) in ORω

1 .

9.3.5. Proof. First, to show θ(P, x)→ P (x), we must show

θ({y | ∃β P (β, y)}, x)→ ∃α P (α, x).

Using the positivity of P in θ, we may bring the hypothesis of this implication to
prenex normal form

Q1z1 . . . Qnzn ∃β1 . . .∃βm θ0(x, z1, . . . , zn, β1, . . . , βm),

where Qi is ∀ or ∃ and θ0 is quantifier-free. Then by successive application of parts
2 and 3 of Lemma 9.3.1 we obtain

∃α Q1z1 . . . Qnzn ∃β1 < α . . .∃βm < α θ0(x, z1, . . . , zn, β1, . . . , βm),

which is equivalent back to

∃α θ({y | ∃β < α P (β, y)}, x).

Hence by (6) and (7) we may conclude ∃α P (α, x), i.e. P (x).
Next, to show

∀x (θ(ψ/P, x)→ ψ(x))→ ∀x (P (x)→ ψ(x)),

we simply prove by use of the principle (< -IndΩ) that, under the hypothesis, we have
∀α ∀x (P (α, x)→ ψ(x)). This proceeds as usual. 2
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9.4. Models of TΩ + (µ)

We can build models of this system which parallel those of T in section 4.1. First
of all, a full, extensional, set-theoretical model 〈Mσ〉 is definable as follows:

1. M0 = N
2. MΩ is the smallest set X which contains 0 and which is such that whenever
f : N → X , then 〈1, f〉 ∈ X .

3. Mσ→τ = {f | f maps Mσ into Mτ }.
Then we define

4. 0Ω = 0, Sup(f) = 〈1, f〉 for f : N →MΩ , and Sup−1(〈1, f〉) = f .
So for α = Sup(f) we have αx = f(x). With each α ∈ MΩ is associated an ordinal
|α|, in the usual set-theoretical sense, by

5. |0| = 0 and |Sup(f)| = sup {|f(x)|+ 1 | x ∈ N}.
Then |αx| < |α| whenever α 6= 0, and thus RΩ is definable by classical ordinal
recursion so as to satisfy axiom 5 of TΩ + (µ).

For an intensional recursion-theoretic model analogous to HRO we make use of
recursion in the µ operator as a type 2 functional, which is a special case of the Kleene
[1959b] development of recursion in finite type objects. In the following we shall use
f, g, h, . . . to range over N and write f(x1, . . . , xn) for Kleene’s {f}(µ, x1, . . . , xn)
whenever it is defined. Now the model 〈Nσ〉 is defined by

1. N0 = N
2. NΩ = the smallest set X ⊆ N such that 0 ∈ X and whenever f : N → X

then 〈1, f〉 ∈ X (where the pairing function 〈x, y〉 is assumed to be from N2 to
N− {0}).

3. Nσ→τ = {f | ∀x (x ∈ Nσ → f(x) ∈ Nτ )}.
Then, just as above, we take

4. 0Ω = 0, Sup(f) = 〈1, f〉 for f ∈ N0→Ω , and Sup−1(〈1, f〉) = f.

Thus, again, αx = f(x) for α = Sup(f), and we may assign set-theoretical ordinals
|α| to members α of NΩ by the same definition as in 5 above. Finally, we may define
the interpretations of the ordinal recursors RΩ,σ as functionals partial recursive in
µ for each type σ, by means of the recursion theorem, which is used to produce
numbers r satisfying

r(f, a, 0) = a, and r(f, a, (1, g)) ' f(g, λx.r(f, a, g(x))).

Then induction on |α| shows that r(f, a, α) is defined on the objects f, a of appro-
priate type, for all α ∈ NΩ .

Finally, one can define an analogue of the hereditarily extensional recursion-
theoretic HRE model by first defining the notion α =Ω β inductively, and then
defining =σ→τ in terms of =σ and =τ as for HRE , with the objects at each type
being those which preserve the defined equality relations at each type.
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9.5. Interpreting ORω
1 in ID1

We can interpret ORω
1 in ID1 (O), where O is the set of Church-Kleene con-

structive ordinal notations, by first applying the ND-interpretation of ORω
1 in its

quantifier-free subtheory TΩ + (µ) and then formalizing the HRO model of the latter
in ID1 . For this, though, instead of making use of Kleene’s definition of recursion in µ
as a special case of recursion in finite type objects, one takes a more concrete version
which is possible from the fact that the partial-recursive-in-µ functions are exactly
the Π1

1 partial functions; those can be enumerated by uniformizing the Π1
1 relations

in a standard enumeration. Since O is a complete Π1
1 predicate, this generalized

recursion theory can be formalized in ID1 (O) and, further, the definitions of the
Nσ can be given for each σ in that theory. The resulting interpretation preserves
arithmetical statements, and is such that with each closed term t of type Ω is
associated a number nt for which ID1 (O) proves nt ∈ O, and such that |t| ≤ |nt|. It
follows that the provable ordinals of ORω

1 are the same as those of ID1(O), and that
is the same as its proof-theoretic ordinal. The latter will be described in section 9.8.

9.6. Functional interpretation of a constructive theory of countable tree
ordinals

Howard [1972] introduced a first-order theory U that he called a system of
abstract constructive ordinals, with just two sorts of variables, numbers and ordinals.
In place of (QF -AC ) this made use of the principle of ω-upper bounds (Lemma 9.3.1
above, clause 3). Howard’s system can be translated directly into a finite type theory
U ω which is the same as ORω

1 , except that we omit the µ operator, and base it on
intuitionistic logic in place of classical logic. Then U ω has a D-interpretation in the
system TΩ of section 9.1, again without the µ operator; that system is just another
version of Howard’s quantifier-free finite-type theory V of abstract constructive
(tree) ordinals op. cit. Howard gave a term model of V which is an extension of
Tait’s term model of T using infinitely long terms (cf. section 4.4), and used that to
obtain an upper bound to the proof-theoretic ordinal of U as the least ordinal greater
than |t| for t a normal term of type Ω. The so-called (Bachmann-)Howard ordinal
thus obtained will be described in the next section. Howard also showed how to
translate intuitionistic ID i

1 (θ) for θ of a certain special form into his system U . This
special form includes “accessibility” inductive definitions, where θ(P, x) is of the form
∀y (y <t x → P (y)) and t is a closed term which determines y <t x by definition
as t(x, y) = 0. In the final part of Howard [1972] it was shown how to use work of
Gerber [1970] to establish transfinite induction up to each ordinal smaller than the
Howard ordinal in such a theory of an accessibility inductive definition. Thus the
Howard ordinal is the proof-theoretic ordinal of U and is a least upper bound for the
ordinals of all systems ID i

1 (θ) of the special form considered by Howard.
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9.7. The Howard ordinal

The original description of this ordinal made use of an extension of the Veblen
hierarchy of ordinal functions in a form due to Bachmann [1950], which gives sense
to ϕα for suitable uncountable α. For the specific purposes of 9.6, it is sufficient to
tell how this is to be done for α up to the first epsilon number greater than the least
uncountable ordinal ω1 , namely εω1+1 .20 Roughly speaking one first assigns to each
term α for a limit ordinal in a notation system for ordinals up to εω1+1 a fundamental
sequence of order type ≤ ω1 in a reasonably canonical way. If the cofinality type of
this sequence is countable, one proceeds to define ϕα in terms of the simultaneous
fixed points of the ϕβ for the terms β = αν in that fundamental sequence as with the
Veblen hierarchy; if its fundamental sequence is of length ω1 then one diagonalizes,
i.e. takes ϕα(ν) to be ϕαν (0). The Howard ordinal is then defined to be ϕα(0) for
α = εω1+1 .21

9.8. Discussion

From a foundational standpoint, it is desirable to have a reduction of classical
ID1 to a constructive theory. Although a slight variant of the double-negation
interpretation serves to reduce ID1 to its formally intuitionistic counterpart ID i

1 (cf.
Buchholz et al. [1981,p. 56]), the latter theory is not evidently constructive, in the
sense that there is no direct constructive justification of axioms 2 and 3 of Section 9.2
for θ in which the predicate symbol P occurs only in a weakly positive way. (An
indirect justification is provided by the intuitionistic theory of species — i.e. the
formal counterpart of second-order analysis — whose constructivity is, however, a
matter of dispute; cf. the discussion in Feferman [1982b,pp. 77–78].) What we really
desire is a reduction of ID1 to an intuitionistic theory of accessibility inductive
definitions, whose very form provides a clear picture of how the corresponding sets
are generated from the “bottom up”; or, alternatively, a reduction of ID1 to the
constructive theory U ω without the µ operator.

In fact, the first type of reduction has been given by work of Pohlers and Buch-
holz in a series of steps beginning in the mid-1970s using interesting (prima-facie)
uncountably infinitary extensions of Gentzen-Schütte style proof theory; cf. the
reports in Buchholz et al. [1981]. Indeed, they have succeeded in determining the
proof-theoretic ordinals of classical theories of iterated inductive definitions IDα and
in reducing them to corresponding intuitionistic theories of iterated accessibility
inductive definitions, thus showing the proof-theoretic ordinals to be the same. In
particular, in the special case of ID1 , the result of their work yields the Howard
ordinal as the proof-theoretic ordinal of the system whether taken in its classical or
restricted intuitionistic form.

20Here, ordinals are treated set-theoretically.
21The Bachmann approach has since been superseded by the Feferman-Aczel-Buchholz approach

described in Schütte [1977,Chapter IX]: the latter is simpler in not requiring a prior assignment
of fundamental sequences.
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We do not, however, know how to achieve this same result via the method of
functional interpretation, nor do we have a direct reduction of ID1 to U ω . In
addition, no one has yet extended the method of functional interpretation to iterated
IDα , either classical or intuitionistic, in an informative way specific to those systems.22

It would be of interest to know whether there is some fundamental methodological
obstacle for doing so, or if it is simply for lack of a new idea — or simply lack of
trying hard enough.

10. Interpretations based on polymorphism

10.1. Transfinite types and polymorphism

In this section we address strengthenings of T that provide mechanisms for
defining “transfinite” types. For example, recall the types (n) from section 2.2,
defined by (0) = 0 and (n + 1) = (n) → 0. One might want to define a function f
that, for each natural number n, returns an object of type (n). Such a function f is
an element of the product type

Πn∈0 (n),

and clearly goes beyond the finite-type capabilities of T . The function f is also
“polymorphic” in the sense that, for each n, the type of f(n) depends on its argument.

A down-to-earth example of polymorphism arises in the context of writing a
sorting algorithm. Instead of writing separate routines that sort lists of integers, real
numbers, strings, and so on, one would prefer to write a general routine that, given
a type X and a comparison function in X ×X → 0, sorts lists of objects of type X .
Assuming such lists are represented by the type List(X), for each type X we want
Sort(X) to have the type

(X ×X → 0)× List(X)→ List(X).

The type of the function Sort itself can then be written

ΠX ((X ×X → 0)× List(X)→ List(X))

where the product ΠX now ranges over (some collection of) types.
In this section we will consider two different kinds of polymorphism. In the first,

the variable X in the preceding example is allowed to range over all types, include
the type of Sort itself. This scheme is known as impredicative polymorphism and was
discovered independently by J.-Y. Girard, who was looking for a D-interpretation
for second-order arithmetic (cf. Girard [1971]), and J. Reynolds, who was exploring

22For α a provably recursive ordinal of analysis we can, in principle, treat IDα as a subsystem
of analysis and then apply Spector’s interpretation (section 6) or Girard’s interpretation (sec-
tion 10). But it would appear very difficult to extract meaningful descriptions of the associated
proof-theoretic ordinals and reductions to the corresponding intuitionistic systems via those
interpretations. At any rate this does not look at all like a practical possibility.
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type-theoretic constructs from a computational point of view (cf. Reynolds [1974]).
Given these independent motivations, Girard’s main theorem is quite satisfying: the
provably total recursive functions of second-order arithmetic are exactly the ones
computable in the Girard-Reynolds framework.

The circularity of allowing the variable X in a type ΠX T (X) to range over
all types, including ΠX T (X) itself, might seem disconcerting. Predicative poly-
morphism is more benign in that regard, since in this framework the variable X is
restricted to range over a pre-set universe of “smaller” types. For example, in the
type

ΠX∈U0 T (X)

the variable X takes values in the fixed universe U0 . This kind of polymorphism
was developed by Martin-Löf as a framework for constructive mathematics (cf.
Martin-Löf [1973]), and has been implemented in the underlying language of the
Nuprl proof-development system (cf. Chapter X or Constable et al. [1986]). Once
again, there is a result that nicely characterizes the axiomatic strength of this kind
of polymorphism: the provably total recursive functions of predicative analysis (cf.
section 8.3.6) are exactly the ones that can be defined using nested universes of types.

Here we will focus on the interpretative strength of polymorphism. For a detailed
discussion of the various computational aspects of the subject, we refer the reader to
Mitchell [1990] and Gallier [1990].

10.2. The second-order polymorphic lambda calculus, F

We now define Girard’s theory F , a polymorphic extension of T strong enough
to interpret second-order arithmetic. This allows for terms which can be applied to
(terms representing) types, and abstraction across types. It is simpler here to take
abstraction as basic operators rather than defined in terms of combinators. The
types of F are defined inductively, as follows:

1. There are infinitely many type variables X , Y , Z , . . .
2. 0 is a type.
3. If σ and τ are types, so are σ → τ and σ × τ .
4. If σ is a type and X is a type variable, then ΠX σ and ΣX σ are also types.

A term of type ΠX σ denotes a polymorphic function that, for each type τ , returns
an object of type σ[τ/X]. A term of type ΣX σ denotes a pair 〈τ, t〉, where τ is a
type and t is an object of type σ[τ/X].

The terms of F are also defined inductively, as follows:
1. For every type σ there are infinitely many variables, xσ , yσ , zσ , . . .
2. 0, Sc, the recursors Rσ , pairing operators 〈·, ·〉, and projection operators π0, π1

are terms of appropriate type.
3. If t is a term of type τ and x is a variable of type σ, then λx.t is a term of type
σ → τ .

4. If t is a term of type σ → τ and s is a term of type σ, then t(s) is of type τ .
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5. If t is a term of type τ , and the type variable X is not free in the type of a free
variable of t, then ΛX.t is a term of type ΠX τ .

6. If t is a term of type ΠX τ and σ is a type, then t(σ) is a term of type τ [σ/X].
7. If σ is a type and t is a term of type τ [σ/X], then 〈σ, t〉 is a term of type ΣX τ .
8. If t[xτ ] is a term of type σ and the type variable X is only free in the type of
xτ , then

∇〈X, xτ 〉.t

is a term of type ΣX τ → σ.
While clauses (1–4) are essentially imported from T , clauses (5–8) provide the new
polymorphic capabilities. The choice of lambda terms instead of combinators in
clause (3) conforms with the majority of the literature on this subject.

The term ΛX.t in clause (6) denotes a function that associates to every type σ
an object of type τ [σ/X], with defining equation

(ΛX.t)(σ) = t[σ/X].

The requirement that X is not free in the type of any free variable of t precludes
terms like

ΛX.xX ,

in which the free variable x cannot be assigned any reasonable type. On the other
hand, it does allow constructions such as the polymorphic identity function

ΛX.λxX .xX

and the Sort function defined in section 10.1. Strictly speaking, the application
operation (ΛX.t)(σ) in clause (6) is different from the application operation (λx.t)(s)
in clause (4), though we will use the same notation.

The function ∇〈X, xτ 〉.t in clause (8) is a bit trickier: it takes a pair 〈σ, s〉, for
which s is of type τ [σ/X], and returns the value of t with X replaced by σ and
xτ [σ/X] replaced by s. In other words, this term has the defining equation

(∇〈X, x〉.t)〈σ, s〉 = t[σ/X][s/xτ [σ/X]].

As usual, the variable X becomes bound in clause (6), and both variables X and x
become bound in clause (8).

For technical reasons the interpretation in the next section also requires a constant
zero functional 0σ of each type. We omit the rules defining its behavior, though they
can be found in Girard [1971].

10.3. The interpretation of analysis

Whereas in Spector’s interpretation of analysis the second-order objects of
PA2 + (CA) become identified with function variables, in Girard’s interpretation it is
more natural to treat them as predicates. (Moreover, the interpretation extends to a
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higher-type version of this system, with predicates instead of functions at each level.)
As in the interpretation of PA, we first apply the double-negation interpretation to
reduce PA2 + (CA) to its intuitionistic variant, HA2 + (CA). Unlike the case of
(AC ) in Spector’s interpretation, (CA)N follows directly from (CA) in HA2 .

The D-interpretation we are about to define translates formulas ϕ in the language
of second-order arithmetic to formulas ϕD of the form

∃xσ ∀yτ Fϕ(x, y) = 0 (8)

where ϕD is quantifier-free with only type 0 equality. Adding dummy quantifiers
as necessary and using the pairing and projection operations to combine quanti-
fied variables, we can assume that there is always exactly one variable after each
quantifier.

The first new step needed in defining ϕD beyond first-order formulas is to find a
suitable translation for formulas of the form t ∈ Z . Since we are aiming to interpret
the comprehension axioms, we want the variable Z to “range” over arbitrary formulas
ϕ. We define (t ∈ Z)D to be

∃xX ∀yY f(x, y, t) = 0 (9)

where now X and Y are type variables and f is a function variable of type

X × Y × 0→ 0.

Intuitively, (t ∈ Z)D represents an “arbitrary” formula of the form (8).
The translation is extended to the logical connectives and first-order quantifiers

as before. To define (∃Z ϕ(Z))D , suppose ϕ(Z)D is given by

∃xσ[X,Y ] ∀yτ [X,Y ] F (x, y, f) = 0

where X , Y , and f are the variables we have associated with Z in the preceding
paragraph. The formula ∃Z ϕ(Z) should then translate to

∃X,Y, f, xσ[X,Y ] ∀yτ [X,Y ] F (x, y, f) = 0.

But now the type of y depends on the existentially quantified types X and Y , which
is problematic. We remedy this by replacing y with an element of the appropriate
product type to obtain

∃X,Y, f, xσ[X,Y ] ∀yΠX,Y τ [X,Y ] F (x, y(X,Y ), f) = 0.

Finally, we replace the existentially quantified variables X , Y , and f by a single
variable u of type ΣX ΣY (X × Y × 0 → 0). Then u may be paired with x to put
(∃Z ϕ(Z))D again in the form (8).

Similar manipulations are used to define the translation of the formula ∀Z ϕ(Z).
When this is done, the interpretation of HA2 is verified just as in section 2.4. The
comprehension axioms (CA) are also easily dealt with, as a consequence of the
translation we have chosen for x ∈ Z . Details can be found in Girard [1971].23

This yields
23There, and in the literature, F is often used more specifically to denote the set of reduction
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10.3.1. Theorem. PA2 + (CA) is ND-interpreted in F .

10.4. Strong normalization for F

In his doctoral dissertation Girard [1972] presented a powerful generalization of
Tait’s convertibility methods (cf. section 4.3), and used it to show that F is strongly
normalizing.

Since the normalization of F implies the consistency of second-order arithmetic,
the full argument cannot be formalized in that theory. To appreciate the difficulties
that arise in trying to adapt the argument of section 4.3, consider the problem of
extending the reducibility predicate defined there to a term t of type ΠX τ . We
would like to say that t is reducible if for every type σ the term t(σ) is reducible. But
σ is arbitrary, and could very well be the type ΠX τ itself. In that case, determining
the reducibility of t(σ) will require some knowledge of what it means for terms of
type ΠX τ to be reducible— which is exactly the notion we are trying to define.

Girard’s clever dodge is to define the notion of a “reducibility candidate,” which
is a predicate of terms which satisfies certain closure conditions. The reducibility
predicate of section 4.3 is an example of a reducibility candidate, and, in fact, it
is just these closure conditions that allow one to carry out the necessary induction
on terms. Girard then declared t ∈ ΠX τ to be reducible if for every reducibility
candidate C and every type σ, t(σ) is reducible of type τ(σ), where now reducibility
for t(σ) is defined in terms of C .

Since the definition of reducibility for terms of type ΠX τ involves prefixing
a second-order quantifier to a formula involving the definition of reducibility for
terms of type τ , for arbitrary polymorphic types the definition requires second-order
formulas of arbitrary complexity. The net result is the following

10.4.1. Theorem. For each term t of F , PA2 + (CA) proves that t is strongly
normalizing. In addition, PA2 + (CA) proves the confluence of F .

Thus F can be interpreted in PA2 + (CA) via its model in the normal terms.
This yields the following

10.4.2. Theorem. The provably total recursive functions of PA2 + (CA) are
exactly the ones that are represented by terms of F .

The method of reducibility candidates extends to stronger functional theories,
including a typed extension of F also introduced in Girard’s dissertation, and Co-

rules corresponding to the defining equations of the theory described above; we have chosen to
blur this distinction. A more minimal version of F which omits the base type 0 and the sum type
— essentially the system λ→,∀ of Mitchell [1990], Gallier [1990] — is discussed in Girard, Lafont
and Taylor [1989].

The theory Y of Girard [1971] is essentially a logic-free version of our theory F . More precisely,
if F proves a quantifier-free formula ϕ involving only type 0 equality, then Y proves the logic-free
translation of ϕ when free variables are instantiated by any closed terms.
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quand’s “Calculus of Constructions.” In fact, by identifying natural deductions with
terms of an appropriate functional calculus, Girard [1971] was also able to use these
methods to give a new proof of “Takeuti’s conjecture,” an extension of Gentzen’s
Hauptsatz to higher-order deductive sytems; this was realized independently by
Martin-Löf [1971] and Prawitz [1971]. See Gallier [1990], Coquand [1990], Girard,
Lafont and Taylor [1989] for more details.

10.5. Theories based on predicative polymorphism

A more restrictive, “predicative,” method of extending the theory T polymorphi-
cally is represented by a sequence of theories Pn , based on Martin-Löf’s theories MLn .
The theory P0 is equivalent to T , while the theory Pn+1 adds n + 1 “universes” of
types, U0 through Un , each of which will itself be a type.

Like the theory F , the theories Pn have product and sum types, but rather than
taking products over types, one takes products over terms of a given type. That is,
one has the following type formation rules:

1. 0 is a type.
2. If σ and τ [xσ] are types, then so are Πx∈σ τ and Σx∈σ τ .

Terms of type Πx∈σ τ denote functions f which take elements a of type σ to elements
f(a) of type τ [a/x], and terms of type Σx∈σ τ denote pairs 〈a, b〉, where a is an object
of type σ and b is an object of type τ [a/x]. The → and × constructions can be
seen as special cases of the Π and Σ constructions respectively, in which the type τ
doesn’t depend on the variable xσ .

One has to modify the usual formation rules for terms to accommodate these new
dependent types. For example, the new rule of explicit definition takes the form

If t[xσ] is a term of type τ [xσ], then λx.t is a term of type Πx∈στ .

Similar rules take the place of those of T regarding application, pairing, projection,
and the recursors.

We haven’t yet provided a mechanism for defining types that depend on variables.
What makes the systems Pn polymorphic is that types can be represented by terms,
since elements of type Ui are themselves taken to denote types. For example, P1 has
the following rules:

1. U0 is a type
2. 0 (the type of the natural numbers) is an element of U0

3. If σ and τ [xσ] are elements of U0 , then so are Πx∈στ and Σx∈στ .
4. If t is a term of type U0 , then t is a type.

The last clause places the theory P1 in sharp distinction to T , where there is no
interplay between terms and types. In P1 , one can define a term t of type U0 ,
conclude that t is a type, and then define another term s of type t. For example, the
types (n) of section 10.1 can be defined by a simple instance of primitive recursion
with range U0 , whereupon the term Πn∈0(n) is an element of U0 and hence a type. In
general, each theory Pn has n universes U0, . . . , Un−1 , each of which contains terms
denoting all “smaller” universes.
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10.6. The interpretation of predicative theories of analysis

The theory ÎD1 is a weakening of the theory ID1 defined in section 9.2. Here,
rather than assert that P is a least fixed point of the positive arithmetic operator
given by θ, one simply asserts that P is some fixed point; that is, one replaces 2 and
3 from section 9.2 by the single axiom

∀x (θ(P, x)↔ P (x)).

In general, each theory ÎDn allows n nested inductive definitions, by allowing one to
use any predicate of ÎD i to define a fixed-point in ÎD i+1 . Also we set

ÎD<ω =
⋃
n<ω

ÎDn .

It is known (cf. Feferman [1982a], Friedman, McAloon and Simpson [1982], Avigad
[1996b]) that ÎD<ω has strength Γ0 , and hence proves the same arithmetic formulas
as predicative analysis (cf. the discussion preceding Theorem 8.3.8) as well as an
important second-order theory known as ATR0 .24 The following theorem is due to
Avigad [n.d.].

10.6.1. Theorem. Each theory ÎDn is ND-interpreted in Pn .25

The interpretation is somewhat tortuous, so we only provide a rough outline
here. The first reduction relies on the following lemma, due to P. Aczel (cf. Feferman
[1982a]).

10.6.2. Lemma. ÎD1 is interpretable in Σ 1
1 -AC . More generally, each theory

ÎDn+1 is interpretable in Σ 1
1 -AC (ÎDn).

Here the theory Σ 1
1 -AC (ÎDn) is a second-order version of ÎDn together with a

choice scheme for Σ1
1 formulas in the expanded language. Given any arithmetic (or

even Σ1
1) formula ϕ(x, Y ) in which the predicate Y occurs positively, one can obtain

a Σ1
1 formula ψ defining a fixed-point of the corresponding set operation. (The proof

is similar to that of Gödel’s fixed-point lemma, while the scheme (Σ 1
1 -AC ) is needed

to show that that formula ψ works as advertised.) One then uses these formulas ψ
to interpret the fixed-point constants of ÎDn+1 .

By Theorem 8.3.1, one can interpret Σ 1
1 -AC in the theory T + (µ), in which

formulas in the language of Peano arithmetic translate to formulas that are quantifier-
free. We can instead interpret Σ 1

1 -AC in P1 if we interpret formulas t ∈ Z by
equation (9) of section 10.3, where now the type variables range over the universe U0

instead of all types. Iterating this idea leads to Theorem 10.6.1.
24The first functional interpretation of predicative ramified analysis was given by Maass [1976]

via a specialization of Girard’s interpretation described in section 10.3 above.
25The theories Pn of Avigad [n.d.] are logic-free subsystems of the theories Pn defined here.
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One can show (cf. Coquand [n.d.], Martin-Löf [1973]) that terms of P<ω (=
⋃

Pn )
are normalizing. Since each ÎDω can define a recursion-theoretic model for Pn , we
obtain

10.6.3. Corollary. The provably total recursive functions of each ÎDn are exactly
the ones represented by terms of Pn . The provably total recursive functions of ÎD<ω ,
and hence predicative analysis and ATR0 , are exactly the ones represented by terms
of P<ω .

10.7. Final comments and questions

The functional interpretation of a classical theory provides a nice interplay
between logic and theoretical computer science. Given a set of classical axioms,
the corresponding computational schemata provide a constructive understanding of
their strength, and normalization proofs provide evidence that these abstract axioms
have interesting computational consequences. Conversely, given some computational
schemata, the calibration of their classical axiomatic strength helps round out our
understanding of their capabilities.

Martin-Löf has described extensions of the theories MLn with “elimination rules”
for the universes, yielding the same proof-theoretic strength as the impredicative
theories IDn (cf. Griffor and Rathjen [1994,Theorem 4.14]). Can such elimination
rules be used to give the theories IDn a direct functional interpretation?

The interpretations of Spector and Girard show that bar-recursion and impred-
icative polymorphism each exactly capture the provably total recursive functions of
second-order arithmetic. Are there natural characterizations for interesting frag-
ments and extensions of the latter theory, other than the ones we have already
described in this chapter?
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Draft July 20, 1999
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