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Abstract

Independence—the study of what is relevant to a given problem of reasoning—is an important
AI topic. In this paper, we investigate several notions of conditional independence in propositional
logic: Darwiche and Pearl’s conditional independence, and some more restricted forms of it. Many
characterizations and properties of these independence relations are provided. We show them related
to many other notions of independence pointed out so far in the literature (mainly formula-variable
independence, irrelevance and novelty under various forms, separability, interactivity). We identify
the computational complexity of conditional independence and of all these related independence
relations.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Motivations

Focusing on what is relevant is a natural approach to design efficient knowledge-based
engines. Indeed, as a preliminary step to various intelligent tasks (e.g., planning, decision
making, reasoning), it is reasonable to discard everything but what is relevant. For instance,
I do not need to remember the date of birth of Arthur Rimbaud when my objective is to
cook noodles. The idea of focusing on what is relevant is strongly related to many AI
notions, like local computation and micro-theories [16]. Irrelevance is also a central topic
in probabilistic reasoning [29]. Furthermore, the complementary notion of relevance is
a key notion for defining information filtering policies [13], and cooperative answering
techniques [6]. For instance, when a database user is unable to express her queries in
a formal way, an approach consists in determining her topics of interest, then to return

0004-3702/02/$ – see front matter  2002 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(02) 00 24 4- 8



80 J. Lang et al. / Artificial Intelligence 141 (2002) 79–121

in a structured way all what the database tells about such topics. Obviously, relevance
relations are needed to characterize precisely what “tells about” means. This explains
why (ir)relevance, under various names as independence, irredundancy, influenceability,
novelty, separability, and interactivity is nowadays considered as an important notion in
many AI fields [1,15,24,32].

In the following, relevance is captured by relations in the metalanguage of propositional
logic. Arguments of such relations are propositional formulas encoding knowledge bases
and pieces of knowledge (including queries), and sets of propositional variables or literals
that represent, for instance, subject matters or topics of interest.

To what extent is the goal of improving inference reachable through (ir)relevance?
To address this point, a key issue is computational complexity. Indeed, assume that we
know that the resolution of some reasoning problems can be speeded up once some
relevance information has been elicited. In the situation where it is computationally harder
to point out such information from the input than to reason directly from it, computational
benefits are hard to be expected. If so, alternative uses of relevance for reasoning are
to be investigated. For instance, searching for relevance information can be limited by
considering only those pieces of knowledge that can be generated in a tractable way. In
the case where such information depend only on the knowledge base, another approach
consists in (tentatively) compensating the computational resources spent in deriving the
relevance information through many queries (computing the relevance information can
then be viewed as a form of compilation). Clearly enough, the computational issue is also
central when relevance relations are not used to improve inference but for other purposes,
like defining information filtering policies or designing cooperative answering approaches.
Thus, a cooperative answering approach relying on a highly intractable relevance relation
could hardly be used on large instances.

Unfortunately, little is known about the computational complexity of relevance. This
paper, together with a companion paper [20], contributes to fill this gap. The complexity
of various logic-based relevance relations is identified in a propositional setting. By logic-
based we mean that the notions of relevance we focus on are not extra-logical but built
inside the logic: they are defined using the standard logical notions of (classical) formula,
model, logical deduction, etc.

1.2. Scope and organization of the paper

In the companion paper [20], several forms of relevance bearing between a piece of in-
formation (a propositional formula) and a set of literals or variables have been investigated
(some of these notions are briefly recalled in Section 2). Here, we consider conditional
independence, introduced as a logical counterpart to probabilistic independence in [7,8].
Intuitively, two sets of variablesX and Y are conditionally independent given a set of vari-
ables Z and a formula Σ if and only if, whichever full information about Z we consider,
the addition of information about X in Σ does not enable us telling anything new about
Y . Darwiche [8] intensively shows how the exploitation of conditional independence can
prove computationally valuable for several forms of inference (including deduction, ab-
duction, and diagnosis). Basically, through the exploitation of conditional independence, a
global computation can be replaced by a number of efficient, local computations.
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According to Darwiche [8], there are two main positions in the literature with respect to
irrelevance: (1) a “philosophical” position where we start with some intuitive properties
of independence, and some independence relations satisfying these properties are then
exhibited, and (2) a “pragmatic” position where independence is not an absolute notion
but a task-specific one and its utility is measured at the light of the improvement it offers
when taken into account.

In this paper, we adhere to both positions. We first focus on Darwiche’s conditional
independence. We complete the investigation reported in [8] by showing close connections
with probabilistic independence (the philosophical side), by identifying the computational
complexity of conditional independence and by suggesting additional applications in the
context of reasoning about actions (the practical side). In addition, we introduce a useful
restriction of conditional independence, namely strong conditional independence. For this
restriction, any conjunctive information (not necessarily complete) about Z is acceptable.
From the philosophical side, we present several semantical characterizations of strong
conditional independence and some of its metatheoretic properties. Especially, we show
that strong conditional independence satisfies all graphoid axioms. From the practical
side, we identify the computational complexity of strong conditional independence in
the general case and in some restricted ones. Then, we successively consider several
forms of (ir)relevance already pointed out so far in the literature, and show them
closely connected to conditional independence: formula-variable independence [20],
strict relevance, explanatory relevance, relevance between two subject matters [19],
novelty under various forms (positive and negative, novelty-based independence) [14,26],
separability [23], causal independence [9], and interactivity [4]. As additional results, we
identify the complexity of all these independence relations.

The rest of the paper is organized as follows. Some formal preliminaries are given
in Section 2. Conditional independence relations and some metatheoretic properties are
presented in Section 3. Complexity results are reported in Section 4. Close connections of
both notions of conditional independence with existing irrelevance relations are exhibited
in Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries

2.1. Propositional logic

Let PSbe a finite set of propositional variables. PROPPS is the propositional language
built up from PS, the connectives, and the Boolean constants true and false in the usual
way. For every X ⊆ PS, PROPX denotes the sublanguage of PROPPS generated from the
variables of X only. A literal of PROPX is either a variable of X (positive literal) or the
negation of a variable of X (negative literal). A clause δ (respectively a term γ ) of PROPX
is a (possibly empty) disjunction (respectively conjunction) of literals of PROPX . Often
clauses and terms are considered as the sets of their literals. A CNF (respectively a DNF)
formula of PROPX is a conjunction of clauses (respectively a disjunction of terms) of
PROPX .
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From now on, Σ denotes a propositional formula, i.e., a member of PROPPS. Var(Σ)
is the set of propositional variables appearing in Σ . Elements of PSare denoted x , y , etc.
Subsets of PSare denotedX, Y , etc. In order to simplify notations, we will assimilate every
singleton X = {x} with its unique element x . The size |Σ| of a propositional formulaΣ is
the number of symbols used to write it.

Formulas of PROPPS are interpreted in the usual way. Especially, every finite set of
formulas is identified with the conjunction of its elements. Full instantiations of variables
of X ⊆ PSare called X-worlds and denoted by ωX ; their set is noted ΩX . Every X-world
ωX will be identified with the term containing x as a literal when x is interpreted as true in
ωX , and ¬x when x is false in ωX for every x ∈X. Equivalently,ωX will also be identified
with the (conjunctively-interpreted) set of these literals. Whenever ωX is an X-world and
ωY is a Y -world s.t. X ∩ Y = ∅, (ωX,ωY ) denotes the X ∪ Y -world which coincides with
ωX on X and with ωY on Y . In order to simplify notations, we assume that every ωX
represents an X-world (even when ωX ∈ ΩX is not stated explicitly). PS-worlds are the
usual interpretations over PS; their set is notedΩ . WhenΣ is true in an interpretation ω, ω
is a model of Σ . When Σ has a model, it is said to be consistent or satisfiable; otherwise,
it is said to be inconsistent, contradictory, or unsatisfiable. When every interpretation of
Ω is a model of Σ , Σ is said to be valid, or a tautology. As usual, |= denotes classical
entailment, and ≡ denotes logical equivalence. ωX is a partial model of Σ whenever there
exists a model of Σ that coincides with ωX on X; stated otherwise, ωX is a partial model
of Σ whenever ωX ∧Σ is consistent (here, ωX is viewed as a term).

Given a set of interpretations S ⊆Ω , we denote for(S) a formula that has S as a set of
models. Of course, there are many equivalent formulas having S as models, but for will
be used only when this does not matter. When S = {ω}, i.e., S is composed of a single
interpretation, we write for(ω) instead of for({ω}). Conversely, given a formula Σ , we
denote Mod(Σ) the set of models of Σ .

In this paper we use the concepts of implicates and prime implicates.

Definition 1. The set of implicates of a formulaΣ , denoted by IS(Σ), is defined as:

IS(Σ)= {clause δ |Σ |= δ}.
The set of prime implicates of a formula Σ , denoted by IP(Σ), is defined as:

IP(Σ)= {
δ ∈ IS(Σ) |
 ∃δ′ ∈ IS(Σ) s.t. δ′ |= δ and δ 
|= δ′}.

It is well known that a clause δ is a logical consequence of a formula Σ if and only if
it is entailed by at least one prime implicate π of Σ . This can be checked efficiently since
a clause δ is a logical consequence of a clause π if and only if δ is a tautology or every
literal of π is a literal of δ. Accordingly, the prime implicates form ofΣ can be considered
as a compilation of Σ [30].

Implicants and prime implicants will also be considered in the following.

Definition 2. The set of implicants of a formula Σ , denoted by SI(Σ), is defined as:

SI(Σ)= {term γ | γ |=Σ}.
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The set of prime implicants of a formula Σ , denoted by PI(Σ), is defined as:

PI(Σ)= {
γ ∈ SI(Σ) |
 ∃γ ′ ∈ SI(Σ) s.t. γ |= γ ′ and γ ′ 
|= γ }

.

Often, we will not be interested in all prime implicants (respectively prime implicates)
of Σ but only in the subset IPX(Σ) (respectively PIX(Σ)) containing those built up from
variables of X, only.

Of course, the set of implicants/ates, prime implicants/ates may contain equivalent
terms/clauses. We can restrict our attention to one term/clause for each set of equivalent
terms/clauses. Stated otherwise, in both IP(Σ), PI(Σ), IPX(Σ), PIX(Σ), only one
representative per equivalence class is kept.

2.2. Formula-variable independence and forgetting

Let us first recall the definitions and results about formula-variable independence and
variable forgetting [20] needed in this paper.

Let Σ be a formula from PROPPS and X be a subset of PS. Σ is semantically V-
independent fromX if and only if there exists a formula Φ s.t. Φ ≡ Σ holds and Φ is
syntactically V-independent from X, i.e., Var(Φ) ∩X = ∅. When X is a singleton {x} we
say that Σ is V-independent from x (instead of {x}). It can be easily shown [20] that Σ is
(semantically) V-independent fromX if and only ifΣ is V-independent from each variable
of X. The set of variables on which a formulaΣ depends is denoted by DepVar(Σ).

For instance, Σ = (a ∧ (b ∨¬b)) is V-dependent on a and V-independent from b, and
DepVar(Σ)= {a}.

For every formula Σ and every variable x , Σx←0 (respectively Σx←1) is the formula
obtained by replacing every occurrence of x in Σ by the constant false(respectively true).
The next four statements are equivalent [20]:

(1) Σ is V-independent from x;
(2) Σx←0 ≡Σx←1;
(3) Σ ≡Σx←0;
(4) Σ ≡Σx←1.

Variable independence can be determined in an efficient way when Σ is given in some
specific normal forms, namely its prime implicates form or its prime implicants form. For
such normal forms, V-independence comes down to its syntactical form. Namely, the next
statements are equivalent [20]:

(1) Σ is V-independent from X;
(2) PI(Σ)⊆ PROPPS\X;
(3) IP(Σ)⊆ PROPPS\X.

The problem of determining whether Σ is V-independent from X is coNP-complete [20].
A basic way to render a formula Σ V-independent from a given set X of variables

consists in forgettingX in Σ .
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Let Σ be a formula from PROPPS and let X be a subset of PS. ForgetVar(Σ,X) is the
formula inductively defined as follows:

• ForgetVar(Σ,∅)=Σ ,
• ForgetVar(Σ, {x})=Σx←1 ∨Σx←0,
• ForgetVar(Σ, {x} ∪ Y )= ForgetVar(ForgetVar(Σ,Y ), {x}).

For instance, with Σ = (¬a ∨ b)∧ (a ∨ c), we have ForgetVar(Σ, {a})≡ (b ∨ c).
As a direct consequence of the definition, ForgetVar(Σ, {x1, . . . , xn}) is equivalent to

the quantified Boolean formula (usually with free variables!) noted ∃x1 . . .∃xnΣ .
It can be shown that ForgetVar(Σ,X) is the logically strongest consequence of Σ that

is V-independent fromX (up to logical equivalence). Thus, if a formula ϕ is V-independent
fromX, thenΣ |= ϕ if and only if ForgetVar(Σ,X) |= ϕ. Accordingly,Σ is V-independent
from X if and only if Σ ≡ ForgetVar(Σ,X) holds.

It turns out that forgetting is a fundamental operation for many AI tasks [20,21,25].

2.3. Computational complexity

The complexity results we give in this paper refer to some complexity classes which
deserve some recalls. More about them can be found in Papadimitriou’s textbook [28].
Given a problem A, we denote by A the complementary problem of A. We assume that
the classes P, NP and coNP are known to the reader. The following classes will also be
considered:

• BH2 (also known as DP) is the class of all languages L such that L= L1 ∩L2, where
L1 is in NP and L2 in coNP. The canonical BH2-complete problem is SAT–UNSAT: a
pair of formulas 〈ϕ,ψ〉 is in SAT–UNSAT if and only if ϕ is satisfiable and ψ is not.
The complementary class coBH2 is the class of all languagesL such that L= L1∪L2,
where L1 is in NP and L2 in coNP. The canonical coBH2-complete problem is SAT-
OR-UNSAT: a pair of formulas 〈ϕ,ψ〉 is in SAT–UNSAT if and only if ϕ is satisfiable or
ψ is not.

• �p2 = NPNP is the class of all languages recognizable in polynomial time by a
nondeterministic Turing machine using an NP oracle, where an NP oracle solves any
instance of an NP or a coNP problem in unit time. The canonical�p2 -complete problem
2-QBF is the set of all triples 〈A= {a1, . . . , am},B = {b1, . . . , bn},Φ〉 where A and B
are two disjoint sets of propositional variables and Φ is a formula of PROPA∪B . A
positive instance of it is such that there exists an A-world ωA such that for every B-
world ωB we have (ωA,ωB) |=Φ .

• �p2 = co�p2 = coNPNP. The canonical �p2 -complete problem 2-QBF is the set of all
triples 〈A = {a1, . . . , am},B = {b1, . . . , bn},Φ〉 where A and B are two disjoint sets
of propositional variables and Φ is a formula of PROPA∪B . A positive instance of it is
such that for every A-world ωA there exists a B-world ωB such that (ωA,ωB) |= Φ .
Both �p2 and �p2 are complexity classes located at the so-called second level of the
polynomial hierarchy [31] which plays a prominent role in knowledge representation
and reasoning.
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3. Conditional independence

Conditional independence can be seen as a generalization of formula-variable indepen-
dence. Given three sets of propositional variablesX, Y and Z, and a propositional formula
Σ , we want to express the fact that, givenΣ and some knowledge about Z, the truth value
of the variables in X may affect the truth value of variables in Y (and vice versa).

3.1. Simple conditional independence

Darwiche and Pearl’s conditional independence [8,9] (often referred as “simple
conditional independence” or “conditional independence” in the following) is defined as
follows:

Definition 3 (conditional independence). Let Σ be a propositional formula and X,Y,Z
be disjoint subsets of PS. X and Y are independentgiven Z with respect to Σ (denoted
by X ∼ZΣ Y ) if and only if ∀ωX ∈ ΩX , ∀ωY ∈ ΩY , ∀ωZ ∈ ΩZ, the consistency of both
ωX ∧ ωZ ∧Σ and ωY ∧ ωZ ∧Σ implies the consistency of ωX ∧ωY ∧ωZ ∧Σ .

Example 1. Let Σ = {¬a∨¬b∨ c,¬a ∨ b∨ d, a ∨¬c,¬a∨ c∨ d, b∨¬c∨ d}. We have
the following:

• c∼∅Σ d . Indeed, (c∧ d)∧Σ , (c∧¬d)∧Σ , (¬c∧ d)∧Σ and (¬c∧¬d)∧Σ are all
consistent.

• c 
∼{a}Σ d . Indeed, (a ∧ ¬c ∧ ¬d) ∧ Σ is inconsistent while (a ∧ ¬c) ∧ Σ and
(a ∧ ¬d) ∧ Σ are both consistent. Intuitively speaking, when a is true, learning ¬c
tells that d is true.

• c∼{a,b}Σ d . Indeed, the set of {a, b, c}-worlds that are consistent with Σ is

S1 = {a ∧ b ∧ c, a ∧¬b ∧ c, a ∧¬b ∧¬c, ¬a ∧ b ∧¬c, ¬a ∧¬b ∧¬c};
the set of {a, b, d}-worlds that are consistent with Σ is

S2 = {a ∧ b ∧ d, a ∧ b ∧¬d, a ∧¬b ∧ d,
¬a ∧ b ∧ d, ¬a ∧ b ∧¬d, ¬a ∧¬b ∧ d};

and the set of {a, b, c, d}-worlds that are consistent withΣ (in other terms, the models
of Σ) is

S3 = {a ∧ b ∧ c∧ d, a ∧ b ∧ c ∧¬d, a ∧¬b ∧ c∧ d, a ∧¬b ∧¬c ∧ d,
¬a ∧ b ∧¬c∧ d, ¬a ∧ b ∧¬c ∧¬d, ¬a ∧¬b ∧¬c∧ d,
¬a ∧¬b ∧¬c∧¬d};

it can be checked that for each ω1 ∈ S1 and each ω2 ∈ S2 such that ω1 and ω2 give the
same truth values to a and b, then ω1 ∧ω2 ∈ S3.

As explained by Darwiche and Pearl [9], X ∼ZΣ Y holds if and only if for any possible
full informationabout Z, adding some information about Y does not tell us anything new
aboutX. Intuitively, if in the context ωZ , adding ωX gives some information about Y , then
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some partial models of Σ over Y , i.e., those in contrast with the new information obtained
on Y , should not remain partial models any longer. As a result,X and Y are independent if,
for any “consistent” choice (with Σ) of ωX , ωY , and ωZ , the formula ωX ∧ωY ∧ωZ ∧Σ
is consistent.

Clearly enough, conditional independence given Z with respect to Σ satisfies the
following properties [8]:

Proposition 1.

(1) X ∼ZΣ Y if and only ifY ∼ZΣ X.
(2) If Σ ≡Σ ′, then(X ∼ZΣ Y if and only ifX ∼Z

Σ ′ Y ).
(3) If X′ ⊆X, Y ′ ⊆ Y andX ∼ZΣ Y , thenX′ ∼ZΣ Y ′.
Proof. (1) and (2) are straightforward. As to (3), assume X′ ⊆ X, Y ′ ⊆ Y and X ∼ZΣ Y
and let ωX′ , ωY ′ and ωZ s.t. ωX′ ∧ ωZ and ωY ′ ∧ ωZ are both consistent. Since ωX′ ≡∨
ωX⊇ωX′ ωX , there is an ωX ⊇ ωX′ s.t. ωX ∧ ωZ is consistent, and similarly, there is an

ωY ⊇ ωY ′ s.t. ωY ∧ωZ is consistent. Now, becauseX ∼ZΣ Y , we get that ωX∧ωY ∧ωZ∧Σ
is consistent, which in turn implies the consistency of ωX′ ∧ ωY ′ ∧ωZ ∧Σ . ✷

However, conditional independence is stable neither by contraction nor by expansion
of Z. For instance, taking the same Σ as in Example 1, we have c ∼∅Σ d and however

c 
∼{a}Σ d ; we have c 
∼{a}Σ d and however c ∼{a,b}Σ d . Conditional independence is also not
stable by weakening or strengtheningΣ in the general case. Thus, while we have c∼∅Σ d ,

we also have c 
∼∅Σ∪{c⇔d} d ; while we have c∼{a,b}Σ d , we also have c 
∼{a,b}Σ\{¬a∨¬b∨c} d .
The two limit cases when Z is respectively empty or equal to Var(Σ) \ (X ∪ Y ), are of

particular interest, especially when computational complexity is investigated.

Definition 4 (marginal independence). X and Y are marginally independentwith respect
to Σ if and only if X ∼∅Σ Y .

Definition 5 (ceteris paribus independence).X and Y are ceteris paribus independentwith
respect to Σ (denoted by X ∼ceteris paribus

Σ Y ) if and only if X ∼Var(Σ)\(X∪Y )
Σ Y .

Darwiche showed [8] that conditional independence satisfies all semi-graphoid axioms,
which are considered reasonable postulates for conditional independence relations. We
recall here these axioms, more so because we will need them further on. Let Ind(X,Z,Y )
be an independence relation between X and Y given Z (where X, Y and Z are pairwise
disjoint sets of variables).

Symmetry Ind(X,Z,Y )⇔ Ind(Y,Z,X). (S)
Decomposition Ind(X,Z,Y ∪W)⇒ Ind(X,Z,Y ). (D)
Weak union Ind(X,Z,Y ∪W)⇒ Ind(X,Z ∪W,Y). (WU)
Contraction Ind(X,Y ∪Z,W) and Ind(X,Z,Y )⇒ Ind(X,Z,Y ∪W). (C)

The graphoid axiomsare composed by all the above ones plus the following one.
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Intersection Ind(X,Z ∪W,Y) and Ind(X,Z ∪ Y,W)⇒ Ind(X,Z,Y ∪W). (I)

Simple conditional independence does not satisfy Intersection. Indeed, let

Σ = {y⇔w,z⇒ x ∨ y};
¬y ∧ ¬w ∧ z ∧Σ and ¬x ∧ z ∧Σ are both consistent while ¬x ∧ ¬y ∧ ¬w ∧ z ∧Σ is
inconsistent. Hence x 
∼{z}Σ {y,w}, while x ∼{z,w}Σ y and x ∼{z,y}Σ w both hold.

Hereafter, we complete Darwiche’s characterization of conditional independence by
establishing a clear link between simple conditional independence and probabilistic
independence. This shows that there is more than an analogy between these notions but
a concrete mathematical connection.

Definition 6. Let pr be a probability distribution onΩ , and X,Y,Z ⊆ PS.

• X and Y are independent given Z according to pr, denoted by X ∼Zpr Y , if and only if
∀ωX ∈ΩX , ∀ωY ∈ΩY , ∀ωZ ∈ΩZ , we have

pr(ωX ∧ωY |ωZ)= pr(ωX|ωZ) · pr(ωY |ωZ).
• pr is strictly compatible with a propositional formulaΣ if and only if ∀ω ∈Ω , ω |=Σ

is equivalent to pr(ω) > 0.

Proposition 2. X∼ZΣ Y if and only if there is a probability distribution pr strictly
compatible withΣ such thatX ∼Zpr Y .

Proof. (⇒) For any A⊆ Var(Σ), let ConsA(Σ)= {ωA | (ωA ∧Σ) is consistent}. Assume
that X ∼ZΣ Y . Let us define the probability distribution pr by:

∀ω = (ωX,ωY ,ωZ,ωVar(Σ)\(X∪Y∪Z))),
if ω |=Σ then

pr(ω)= 1
|ConsZ(Σ)|.|ConsX(Σ∧ωZ)|.|ConsY (Σ∧ωZ)|.|Mod(ωX∧ωY∧ωZ∧Σ)| ;

if ω |= ¬Σ then pr(ω)= 0.

First, pr is a probability distribution:
∑

ω∈Ω
pr(ω)

=
∑

ω|=Σ
pr(ω)

=
∑

ωZ∈ConsZ(Σ)

∑

ωX

∑

ωY

∑

ω⊇(ωX,ωY ,ωZ)
pr(ω)

=
∑

ωZ∈ConsZ(Σ)

∑

ωX∈ConsX(ωZ∧Σ)

∑

ωY∈ConsY (ωZ∧Σ)

1

|ConsZ(Σ)|.|ConsX(Σ ∧ ωZ)|.|ConsY (Σ ∧ωZ)|

=
∑

ωZ∈ConsZ(Σ)

1

|ConsZ(Σ)|
= 1.
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It is obvious that pr is strictly compatible with Σ .
Lastly, let us check that X ∼Zpr Y . For all ωX,ωY ,ωZ we have

pr(ωX ∧ ωY ∧ ωZ)= 1

|ConsZ(Σ)|.|ConsX(Σ ∧ωZ)|.|ConsY (Σ ∧ωZ)| ;

pr(ωX ∧ ωZ)= 1

|ConsZ(Σ)|.|ConsX(Σ ∧ωZ)| ;

pr(ωZ)= 1

|ConsZ(Σ)| ;

pr(ωX|ωZ)= 1

|ConsX(Σ ∧ ωZ)| ;

similarly,

pr(ωY |ωZ)= 1

|ConsY (Σ ∧ωZ)| ;

pr(ωX ∧ ωY |ωZ)= 1

|ConsX(Σ ∧ ωZ)|.|ConsY (Σ ∧ ωZ)| = pr(ωX|ωZ).pr(ωY |ωZ).

Hence, X ∼Zpr Y holds.

(⇐) Let pr be a probability distribution strictly compatible with Σ such that X ∼Zpr Y .
For all ωX,ωY ,ωZ , the consistencies of ωX ∧ ωZ ∧ Σ and of ωY ∧ ωZ ∧ Σ imply,
respectively, that pr(ωX ∧ ωZ) > 0 and pr(ωY ∧ ωZ) > 0 by strict compatibility with
Σ , therefore pr(ωX ∧ ωY ∧ ωZ) > 0 by probabilistic independence of X and Y given
Z. Then, using again strict compatibility of pr with Σ , we get the consistency of
ωX ∧ ωY ∧ ωZ ∧Σ . ✷

Darwiche shows [8] how conditional independence can prove a valuable notion to
improve many forms of reasoning (including consistency, entailment, diagnosis and
abduction). It can also be helpful in the context of reasoning about actions, when dealing
about concurrency: indeed, the following definition of compatibility between actions
consisting in saying that two actionsa andb are compatible if and only if for each initial
situation where both actionsa and b are separately applicable(i.e., without producing
an inconsistency), thena and b are jointly applicable[12], can be mapped easily into a
conditional independence problem.

Conditional independence may also be helpful for computing ramifications of an action:
if Dep(a) is the set of variables that are directly influenced by action a (i.e., appearing in
its effects), and if Σ is the set of static laws (or integrity constraints), then any variable y
such that Dep(a)∼∅Σ y is guaranteed to be “ramification-free” (the converse, however, is
not true).

Altogether, this explains why conditional independence is an important notion and
motivates the investigation of its computational complexity.
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3.2. Strong conditional independence

Simple conditional independence does not apply to contexts where the new information
that can be learned about Z is incomplete, i.e., the truth value of some variables of Z is not
available, or, more generally, many partial (and possibly mutually exclusive) Z-worlds are
possible. For instance, if Z represents a set of possibly measurable variables, associated to
a set of sensors (one for each z ∈ Z), it can be the case that some measurements fail, i.e.,
the value of z is not always available.

The following notion, strong conditional independence, strengthens Darwiche and
Pearl’s conditional independence by taking into account the case in which the information
about Z is any conjunctive information, i.e., any term of PROPZ . Namely, X and Y are
strongly independent given Z with respect to Σ if and only if, whichever conjunctive
information(i.e., a set of facts) we may learn about Z, then the addition of information
about Y does not enable one to tell anything new about X.

Definition 7 (strong conditional independence). Let Σ be a propositional formula and
X,Y,Z be disjoint subsets of PS.X and Y are strongly independentgivenZ with respect to
Σ (denoted X ≈ZΣ Y ) if and only if, for every term γZ of PROPZ , ∀ωX ∈ΩX , ∀ωY ∈ΩY ,
the consistency of both ωX ∧ γZ ∧ Σ and ωY ∧ γZ ∧ Σ implies the consistency of
ωX ∧ ωY ∧ γZ ∧Σ .

Strong conditional independence has the same metatheoretic properties as conditional
independence, plus the preservation by contraction of Z (which is a trivial consequence of
the definition).

Marginal strong conditional independence obviously coincides with marginal condi-
tional independence. Ceteris paribusstrong conditional independence is defined by im-
posing Z = Var(Σ) \ (X ∪ Y ) and denoted by X ≈ceteris paribus

Σ Y .
Since the set of all possible choices for γZ corresponds to the set of all partial

assignments of the variables of Z, we get:

Proposition 3. X≈ZΣ Y if and only ifX ∼Z′Σ Y for everyZ′ ⊆Z.

Proof. Comes straightforwardly from the fact that each term γZ can be uniquely identified
with a Z′-world ωZ′ for some Z′ ⊆Z and conversely. ✷

Obviously, X ≈ZΣ Y entails X ∼ZΣ Y . The converse generally does not hold since
conditional independence is not stable by contraction of Z. Indeed, stepping back to the
previous example, we have c∼{a,b}Σ d but c 
≈{a,b}Σ d since c∼{a}Σ d does not hold.

The following results characterize strongly conditionally independent sets of variables.
They both express that X ≈ZΣ Y holds if and only if any set of simple facts (i.e., literals)
we may learn about Z never enables one to deduce a nontrivial disjunctive information
involving both X and Y .
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Proposition 4 (consequence decomposability). X ≈ZΣ Y if and only if, for any termγZ of
PROPZ , and∀ϕX ∈ PROPX, ∀ϕY ∈ PROPY , γZ ∧Σ |= ϕX ∨ϕY impliesγZ ∧Σ |= ϕX or
γZ ∧Σ |= ϕY .

Proof. (⇒) Assume that X ≈ZΣ Y and let γZ be a term of PROPZ , ϕX ∈ PROPX and
ϕY ∈ PROPY .
γZ can be identified with a unique Z′-world ωZ′ for a unique subset Z′ of Z. We now

have to prove that ωZ′ ∧Σ |= ϕX ∨ ϕY implies ωZ′ ∧Σ |= ϕX or ωZ′ ∧Σ |= ϕY .
So, assume that ωZ′ ∧ Σ 
|= ϕX and ωZ′ ∧ Σ 
|= ϕY . Since ωZ′ ∧ Σ ∧ ¬ϕX and

ωZ′ ∧ Σ ∧ ¬ϕY are both consistent, there exist two extensions ω and ω′ of ωZ′ s.t.
ω |= ωZ′ ∧Σ ∧ ¬ϕX and ω′ |= ωZ′ ∧Σ ∧ ¬ϕY . Let ωX be the restriction of ω to X and
ω′Y the restriction of ω′ to Y . Then ωX |= ¬ϕX, ω′Y |= ¬ϕY . Now, ω |= ωZ′ ∧Σ ∧ ¬ϕX
implies that ωX ∧ ωZ′ ∧ Σ is consistent; similarly, ωX ∧ ω′Y ∧ Σ is consistent. These
two facts, together with the assumption that X ≈ZΣ Y , entail that ωX ∧ ω′Y ∧ ωZ′ ∧Σ is
consistent, and thus, since ωX |= ¬ϕX and ω′Y |= ¬ϕY , we get ωX ∧ ¬ϕX ∧ ¬ϕY ∧ Σ
consistent, i.e., ωX ∧Σ 
|= ϕX ∨ ϕY .

(⇐) Assume that, for any term γZ of PROPZ , ∀ϕX ∈ PROPX , ∀ϕY ∈ PROPY :
γZ ∧ Σ |= ϕX ∨ ϕY implies γZ ∧ Σ |= ϕX or γZ ∧ Σ |= ϕY , and let ωX , ωY and ωZ
s.t. ωX ∧ ωZ ∧ Σ is consistent and ωY ∧ ωZ ∧ Σ is consistent. Let γZ = for(ωZ),
ϕX = ¬for(ωX) and ϕY = ¬for(ωY ). The consistency of ωX ∧ ωZ ∧ Σ implies that
γZ ∧Σ 
|= ϕX; similarly, γZ ∧Σ 
|= ϕY . Together with the initial assumption, this implies
that γZ ∧Σ 
|= ϕX ∨ ϕY , hence the consistency of ωX ∧ ωY ∧ ωZ ∧Σ . ✷

The following property expresses strong conditional independence in terms of prime
implicates. Indeed, if a formula Σ is expressed as its set of prime implicates, checking
strong conditional independence with respect to Σ can be done by checking whether there
are clauses that contain both variables from X and from Y .

Proposition 5. X ≈ZΣ Y if and only if noδ ∈ IPX∪Y∪Z(Σ) includes both a variable ofX
and a variable ofY .

Proof. (⇒) Suppose that X≈ZΣ Y and let δ ∈ IPX∪Y∪Z(Σ). Let us note δ ≡ δX ∨ δY ∨ δZ ,
where δX (respectively δY , δZ) is a clause of PROPX (respectively of PROPY , PROPZ).
Using Proposition 4, Σ ∧¬δZ |= δX ∨ δY implies that Σ ∧¬δZ |= δX or Σ ∧¬δZ |= δY ,
which is equivalent to Σ |= δX ∨ δZ or Σ |= δY ∨ δZ . Thus, if δ contains both a variable
from X and a variable from Y , i.e., δX and δY are not empty, then δ is not minimal among
the clauses of PROPX∪Y∪Z entailed by Σ and thus it is not in IPX∪Y∪Z(Σ). Therefore,
either δX or δY is empty.

(⇐) Suppose that X 
≈ZΣ Y . Then, due to Proposition 4, there is a term γZ in PROPZ ,
∃ϕX ∈ PROPX,∃ϕY ∈ PROPY s.t.Σ∧γZ |= ϕX∨ϕY andΣ∧γZ 
|= ϕX,Σ∧γZ 
|= ϕY . Let
δZ be a clause s.t. δZ ≡¬γZ. Since Σ ∧ γZ 
|= ϕX, and because the propositional formula
ϕX is equivalent to the conjunction of its prime implicates, there is a prime implicate δX of
ϕX s.t. Σ ∧ γZ 
|= δX , or equivalently Σ 
|= δZ ∨ δX . Similarly, there is a prime implicate
δY of ϕY s.t.Σ 
|= δZ ∨ δY . Now, since ϕX |= δX and ϕY |= δY , we have ϕX∨ϕY |= δX∨ δY
and therefore Σ ∧ γZ |= δX ∨ δY , or equivalently,Σ |= δX ∨ δY ∨ δZ . Consequently, there
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is a prime implicate δ of Σ s.t. δ is a subclause of δX ∨ δY ∨ δZ . If δ were a subclause of
δX ∨ δZ it would be the case that Σ |= δX ∨ δZ , which is not possible; and similarly for
δY ∨ δZ . Thus δ contains at least a variable of X and a variable of Y . ✷

As a consequence of Proposition 5, strong conditional independence can be reduced to
the problem of checking strong conditional independence in the case in which both X and
Y are composed of a single variable.

Proposition 6. X≈ZΣ Y if and only if∀x ∈X ∀y ∈ Y , x ≈Z∪(X\{x})∪(Y\{y})Σ y.

Proof. (⇒) Assume that X ≈ZΣ Y , and let x ∈X, y ∈ Y . Remarking that

X ∪ Y ∪Z = {x} ∪ {y} ∪ (
Z ∪ (

X \ {x})∪ (
Y \ {y})) (∗)

the characterization given by Proposition 5 can be rewritten this way: X ≈ZΣ Y if and only
if ∀δ ∈ IP{x}∪{y}∪(Z∪(X\{x})∪(Y\{y}))(Σ), δ does not mention both x and y , which, using
again Proposition 5, means that x ≈Z∪(X\{x})∪(Y\{y})Σ y .

(⇐) If X 
≈ZΣ Y then there is a δ in IPX∪Y∪Z(Σ) mentioning both an xi ∈ X and a
yj ∈ Y ; then, using again identity (∗), we get δ ∈ IPZ∪(X\{xi})∪(Y\{yj })(Σ), which, using

Proposition 5, implies xi 
≈Z∪(X\{xi})∪(Y\{yj })Σ yj . ✷
This result is useful for the practical computation of strong conditional independence

relations. Note that there is no similar result for (standard) conditional independence.
Things become even simpler with ceteris paribusstrong independence, since Proposition 6
becomes: X ≈ceteris paribus

Σ Y if and only if ∀x ∈ X ∀y ∈ Y , x ≈ceteris paribus
Σ y (cf. Lem-

ma 15 in [19]).
According to Proposition 5, x 
≈ZΣ y holds if and only if there is a prime implicate

δ in IPZ∪{x,y}(Σ) mentioning both x and y . This is equivalent to saying that there is a
prime implicant γ in PIZ∪{x}(Σ ⇒ y) or in PIZ∪{x}(Σ ⇒ ¬y), consistent withΣ and
mentioning x . The consistency condition is necessary; indeed, let us consider Σ = {c⇒
a, d ⇒ b} and Z = {c, d}; PIZ∪{a}(Σ ⇒ b) = {c ∧ ¬a, d} mentions a but nevertheless
a ≈{c,d}Σ b holds; this is because c∧¬a is not consistent with Σ or, in other words, c∧¬a
is a prime implicant of Σ ⇒ b only because it is a prime implicant of ¬Σ . Thus, the set
of prime implicants of interest is PIZ∪{x}(y) filtered by removing those containing a prime
implicant of ¬Σ , which corresponds exactly to the set of minimal abductive explanations
for y with respect toΣ , where the set of possible individual hypotheses is the set of literals
built up from Z ∪ {x} [11]. Equivalently, this set is the label of y according to the ATMS
literature [30]. This leads to the following characterization:

Proposition 7. Let PIZ∪{x}Σ (ϕ) be the disjunction of all prime implicantsγ in PIZ∪{x}(Σ⇒
ϕ) such thatγ ∧ Σ is consistent. Thenx ≈ZΣ y if and only if both PIZ∪{x}Σ (y) and

PIZ∪{x}Σ (¬y) are V-independent fromx.

We first prove the following lemma:
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Lemma 1. x 
≈ZΣ y if and only if ∃γ ∈ PIZ∪{x}(Σ ⇒ y) ∪ PIZ∪{x}(Σ ⇒ ¬y) s.t. γ
mentionsx andγ ∧Σ is consistent.

Proof. (⇒) Assume that x 
≈ZΣ y; from Proposition 5, we know that there is a prime
implicate δ ∈ IPZ∪{x,y}(Σ) mentioning x and y . Without loss of generality, let δ ≡
x ∨ y ∨ δZ where δZ ∈ PROPZ . Let γ ≡¬x ∧¬δZ .

• if γ ∧Σ were inconsistent, thenΣ∧¬x∧¬δZ would be inconsistent, i.e.,Σ |= δZ∨x;
thus, δZ ∨ x ∨ y would not be a prime implicate of Σ (because it would not be
minimal). Thus, γ ∧Σ is consistent;

• γ mentions x;
• γ ∧Σ |= y (because Σ |= x ∨ y ∨ δZ , i.e., ¬x ∧¬δZ ∧Σ |= y);
• if there were a γ ′ |= γ s.t. γ 
|= γ ′ and γ ′ ∧Σ |= y , then we would have Σ |= y ∨¬γ ′

with y ∨ ¬γ ′ |= δ and δ 
|= y ∨ ¬γ ′ thus δ would not be in IPZ∪{x,y}(Σ). Therefore,
γ ∈ PIZ∪{x}(Σ⇒ y).

(⇐) Assume, without loss of generality, that ∃γ ∈ PIZ∪{x}(Σ ⇒ y) s.t. γ mentions x
and y and γ ∧Σ is consistent; again without loss of generality, assume that γ has the form
x ∧ γZ ; let δ ≡ γZ ∨¬x ∨ y .

• Σ |= δ, because Σ ∧ γ |= y , i.e., Σ ∧ x ∧ γZ |= y , i.e., Σ |= ¬x ∨¬γZ ∨ y;
• if there were a δ′ |= δ s.t. δ 
|= δ′ and Σ |= δ′ then γ would not be minimal, thus
δ ∈ IPZ∪{x,y}(Σ);

• δ mentions x and y . ✷
Proof. Since γ ∧Σ is inconsistent if and only if γ |= ¬Σ and thus if and only if ∃γ ′ ⊆ γ
s.t. γ ′ ∈ PI(¬Σ) we have that x ≈ZΣ y if and only if neither PIZ∪{x}Σ (y) nor PIZ∪{x}Σ (¬y)
mention x or, equivalently, they are V-independent from x . ✷

In other words, x ≈ZΣ y if and only if both x and ¬x are irrelevant hypotheses for
(minimally) explaining y and ¬y , i.e., neither x nor ¬x participates in any minimal
explanation of y and neither x nor ¬x participates in any minimal explanation of ¬y [11].

This gives us an algorithm for computing strong independence relations using a basic
ATMS (or an algorithm for computing abductive explanations). Let

SIVZΣ(y)=
{
x ∈ Var(Σ) \ (

Z ∪ {y}) | x ≈ZΣ y
}
.

A set of variables S is initialized to Var(Σ) \ (Z ∪ {y}), and each time a new consistent
environment of y (i.e., one of the disjuncts of PIZ∪{x}Σ (y)) or of ¬y is computed, then all
variables appearing in it are removed from S. At any step, S contains SIVZΣ(y) and the
algorithm reaches SIVZΣ(y) when it ends up (this shows a possible “anytime” use of this
algorithm).

Another interesting feature of strong conditional independence is that it satisfies all
graphoid axioms (including intersection, unlike simple conditional independence):

Proposition 8. ≈Σ satisfies all graphoid axioms.
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Proof.

(S) Obvious.
(D) Obvious.

(WU) Assume that X ≈ZΣ Y ∪W and let δ ∈ IP(Σ) such that Var(δ)⊆X ∪Y ∪Z ∪W , if
any (note that if no such δ exists, the claim trivially holds, thanks to Proposition 5).
Let us write δ ≡ δX ∨ δY ∨ δZ ∨ δW . X ≈ZΣ Y ∪W entails that either δX ≡ false
or (δY ≡ δW ≡ false) by Proposition 5, which implies δX ≡ false or δY ≡ false.
hence there cannot exist a prime implicate of Σ over X ∪ Y ∪ Z ∪W mentioning
both a variable from X and a variable from Y , which (by Proposition 5) means that
X ≈Z∪WΣ Y .

(C) Assume that X ≈Y∪ZΣ W and X ≈ZΣ Y , and let δ ∈ IP(Σ) such that

Var(δ)⊆X ∪ Y ∪Z ∪W.
Let us write δ ≡ δX ∨ δY ∨ δZ ∨ δW .
X≈Y∪ZΣ W entails that δX ≡ falseor δY ≡ false(1).
X≈ZΣ Y entails that δX ≡ falseor δY ≡ falseor δW 
≡ false(2).
(1) and (2) together imply δX ≡ falseor (δY ≡ δW ≡ false) (3).
Therefore,X ≈ZΣ Y ∪W holds.

(I) Assume that X ≈Z∪WΣ Y and X ≈Z∪YΣ W hold and, again, let δ ∈ IP(Σ) such that
δ ≡ δX ∨ δY ∨ δZ ∨ δW .
X≈Z∪WΣ Y entails that δX ≡ falseor δY ≡ false(1);
X≈Z∪YΣ W entails that δX ≡ falseor δW ≡ false(2);
(1) and (2) imply δX ≡ falseor (δY ≡ δW ≡ false) which means that X ≈ZΣ Y ∪W
holds. ✷

This confirms the particular interest of strong conditional independence, which not only
can be nicely characterized by means of prime implicates (in contrast to simple conditional
independence), but also satisfies all graphoid axioms. Furthermore, in Section 5 we show
that strong conditional independence is closely related to other notions such as relevance
or novelty.

We can define a last notion of conditional independence, stronger than the two previous
ones, that we call perfect conditional independence. While the definition of strong
independence takes into account information over the variables Z that is represented as
terms (conjunction of literals), here we remove this assumption, and consider the case
in which any information may be available, that is, any possible propositional formula.
Namely, X and Y are perfectly independent given Z with respect to Σ if and only if
whichever information, i.e., any formula, we may learn about Z, then the addition of
information about Y does not enable one to tell anything new about X. This intuitively
means that no significant relationship between X and Y can be inferred when learning any
information, including disjunctive information, about Z.

As an illustration, let Z = {n(orth), s(outh), e(ast),w(est)} and Z′ = {ne,nw,se,sw}
where Σ contains s⇔ (se∨ sw), e⇔ (ne∨ se), etc. and mutual exclusivity statements
between ne, nw, seand sw(such as sw⇒¬se, etc.).Z and Z′ define each other, becauseΣ
entails ne⇔ (n∧ e), etc. Let us now add toΣ the two formulas se⇒ rain and sw⇒wind,
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which imply s⇒ (rain ∨ wind). Then rain and wind are strongly independent given Z′
with respect toΣ while they are not given Z. In both cases, perfect independence between
rain and wind does not hold. This is because we may later discover that the variables se
and sw can be redefined in terms of the variables s, e, and w: in this new representation,
there is a clear link between wind and rain.

This example shows that the lack of perfect independence betweenX and Y corresponds
intuitively to a potential dependencegiven the topic corresponding to Z.

However, perfect conditional independence is an extremely strong notion and is more of
theoretical interest than of practical use, therefore we do not devote much space to it. It can
be shown that perfect independence is less sensitive to the granularity of the representation
than the two weaker forms of independence, and that it satisfies all graphoid axioms
except (WU). The interested reader may read a longer version of our article, accessible by
anonymous ftp at ftp://ftp.irit.fr/pub/IRIT/RPDMP/CIPL.ps.gz. This
long version not only contains a detailed study of perfect independence, but also a study
of how conditional independence extends when we relax the assumption that the sets of
variables X, Y and Z are disjoint.

4. Complexity results

We investigate now computational complexity issues. We start by analyzing in depth
the complexity of simple conditional independence. We consider a number of restrictions
on X, Y , Z and Σ which may lower the complexity level, namely: |X| = 1 and/or
|Y | = 1 (checking whether a variable is independent from a variable / a set of variables),
X ∪ Y = Var(Σ) (twofold partition independence), Z = ∅ (marginal independence) and
Z = Var(Σ) \ (X ∪ Y ) (ceteris paribus independence). Note that, for twofold partition
independence, the distinctions on Z are irrelevant; therefore, all three problems of the last
row of Table 1 are identical.

4.1. Simple conditional independence

Proposition 9 (complexity of conditional independence). The results are synthesized in
Table1.

Table 1
Complexity of conditional independence

X∼ZΣ Y any Z Z = ∅ Z = Var(Σ) \ (X ∪ Y)
(marginal independence) (ceteris paribus)

any X, Y �
p
2 -complete �

p
2 -complete coNP-complete

X= {x} �
p
2 -complete �

p
2 -complete coNP-complete

or Y = {y}
X= {x} �

p
2 -complete coBH2-complete coNP-complete

and Y = {y}
X ∪ Y = Var(Σ) coNP-complete coNP-complete coNP-complete

(twofold partition)
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The numerous results contained in Proposition 9 are proved in the following order,
which tries to minimize the number of proofs:

1. CONDITIONAL INDEPENDENCE is in �p2 ;
2. MARGINAL INDEPENDENCE OF A VARIABLE FROM A SET OF VARIABLES is
�
p

2 -hard;
3. CONDITIONAL INDEPENDENCE OF SINGLE VARIABLES is �p2 -hard;
4. CETERIS PARIBUS INDEPENDENCE is in coNP;
5. TWOFOLD PARTITION INDEPENDENCE is coNP-hard;
6. CETERIS PARIBUS INDEPENDENCE OF SINGLE VARIABLES is coNP-hard;
7. MARGINAL VARIABLE INDEPENDENCE is coBH2-complete.

Lemma 2. CONDITIONAL INDEPENDENCE is in�p2 .

Proof. The following nondeterministic algorithm with NP-oracles proves membership of
CONDITIONAL INDEPENDENCE to �p2 :

(1) guess ωX,ωY ,ωZ ;
(2) check that ωX ∧ωZ ∧Σ is consistent;
(3) check that ωY ∧ωZ ∧Σ is consistent;
(4) check that ωX ∧ωY ∧ωZ ∧Σ is inconsistent.

Hence, CONDITIONAL INDEPENDENCE belongs to �p2 . ✷
Lemma 3. MARGINAL INDEPENDENCE OF A VARIABLE FROM A SET OF VARIABLES

(i.e., checking thatX ∼∅Σ y holds) is�p2 -hard.

Proof. We abbreviate this decision problem by MIVSV. The proof is done by exhibiting a
polynomial reduction from 2-QBF to MIVSV.

Let I = 〈{a1, . . . , an}, {b1, . . . , bp},Φ〉 be a triple s.t. the ai ’s and bj ’s are propositional
variables and Φ is a propositional formula from the language generated by the ai’s and
bj ’s. I is a positive instance of 2-QBF if and only if ∀ωA∃ωB s.t. (ωA,ωB) |= Φ , or
equivalently, if and only if ∀ωA (ωA ∧Φ) is satisfiable.

Now, let us define the mapping F by F(I)= 〈X,Y,Σ〉 where

X = {a1, . . . , an, x
′},

Y = {c},
Σ = c⇒ (x ′ ∨Φ)

in which c and x ′ are new variables appearing nowhere else.
F is obviously a polynomial transformation. In order to prove that it reduces 2-QBF to

MIVSV, we first note that ∀ωX ∈ΩX, ωX ∧Σ is satisfiable (because assigning c to false
satisfies Σ whatever the rest of the assignment) and that ∀ωY ∈ΩY , ωY ∧Σ is satisfiable;
indeed, if ωY assigns c to true, then c ∧ Σ is satisfiable because x ′ ∨ Φ is satisfiable
assigning x ′ to true; and if ωY assigns c to false, then ωY ∧Σ is satisfied.
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Let us now show that I is a positive instance of 2-QBF if and only if F(I) is a positive
instance of MIVSV, i.e., X and Y are independent with respect to Σ .

(1) Assume that I is a positive instance of 2-QBF. It remains to be checked that ∀ωX,∀ωY ,
we have ωX∧ωY ∧Σ is satisfiable. If ωY assigns c to false, ωX∧ωY ∧Σ is equivalent
to ωX ∧ ¬c and is satisfiable. If ωY assigns c to true, ωX ∧ ωY ∧Σ is equivalent to
ωX ∧ c∧ (x ′ ∨Φ) and is satisfiable (because I is a positive instance of 2-QBF).

(2) Assume that I is not a positive instance of 2-QBF. Then there is a ωX s.t. (x ′ ∨Φ)∧ωX
is unsatisfiable (ωX is obtained from the assignment over a1, . . . , an adding x ′ =
false) and therefore s.t. ωX ∧ Σ |= ¬c; hence X and Y = {c} are not marginally
independent. ✷

Lemmas 2 and 3 together enable us to prove the �p2 -completeness
of the four problems located at the left-up corner of Table 1.

• •
• •

We let V stands for Var(Σ) in the following lemmata.

Lemma 4. CONDITIONAL INDEPENDENCE OF SINGLE VARIABLES (i.e., checking that
x ∼ZΣ y holds) is�p2 -hard.

Proof. We abbreviate this decision problem by CIV. Let us exhibit a polynomial reduction
from 2-QBF to CIV. LetG be the following reduction: If I = 〈{a1, . . . , an}, {b1, . . . , bp},Φ〉
then G(I)= 〈V,x, y,Z,Σ〉 where

• Z = {a1, . . . , an};
• Σ =Φ ∨ (x⇔ y).

G is obviously a polynomial transformation. Let us now show that I is a positive instance
of 2-QBF if and only if G(I) is a positive instance of CIV.

(1) Assume that I is a positive instance of 2-QBF. Then ∀ωZ,ωZ ∧Φ is satisfiable, hence,
ωZ ∧ x ∧ y ∧Σ , ωZ ∧ x ∧¬y ∧Σ , ωZ ∧¬x ∧ y ∧Σ and ωZ ∧¬x ∧¬y ∧Σ are all
satisfiable (since x and y do not appear in Φ nor in Z). This is sufficient to conclude
that x ∼ZΣ y .

(2) Assume that I is not a positive instance of 2-QBF. Then there exists a ωZ s.t. ωZ ∧Φ
is unsatisfiable. For this ωZ we have thus ωZ ∧Σ |= x⇔ y and hence x 
∼ZΣ y (take,
for example, ωx = x and ωy =¬y). ✷

Together with the previous lemmata, we have now proven all�p2 -com-
pleteness results of Table 1.

• •
• •
•

Lemma 5. CETERIS PARIBUS INDEPENDENCE is in coNP.

Proof. Let us abbreviate this problem by CPI. Let 〈Σ,V,X,Y 〉 be a positive instance of
CPI. We show that the complementary problem CPI belongs to NP using the following
nondeterministic algorithm:
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(1) guess ωX , ωY , ωV \(X∪Y );
(2) check that ωX ∧ωV \(X∪Y ) ∧Σ is satisfiable;
(3) check that ωY ∧ωV \(X∪Y ) ∧Σ is satisfiable;
(4) check that ωX ∧ωY ∧ωV \(X∪Y ) ∧Σ is unsatisfiable.

Hence CPI is in NP and therefore CPI is in coNP. ✷
We turn now into the problem of twofold partition independence, which consists in

checking whether X ∼∅Σ Y holds, where X ∪ Y = V . Note that when X ∪ Y = V (i.e., the
fourth line of Table 1), we know that Z = ∅ so that the distinctions on Z (the columns)
are irrelevant. This comes down to saying that twofold partition independence is both a
subproblem of marginal independence and of ceteris paribusindependence.

Lemma 6. TWOFOLD PARTITION INDEPENDENCE is coNP-hard.

Proof. We consider the following polynomial reductionH : if ϕ is a propositional formula
then H(ϕ)= 〈X,V,Σ〉 where

X = Var(ϕ)∪ {x ′},
Σ = (x ′ ∧ ϕ)∨ v.

H is a polynomial reduction. Now, it is easy to see that X ∼∅Σ {v} if and only if ϕ is
unsatisfiable. Hence H is a polynomial reduction from UNSAT to TWOFOLD PARTITION

INDEPENDENCE. ✷
Now we prove the coNP-hardness in the case Z = V \(X ∪ Y ), when both X and Y are

singletons.

Lemma 7. CETERIBUS PARIBUS INDEPENDENCE OF SINGLE VARIABLES is coNP-hard.

Proof. Let ϕ be a formula. We prove that ϕ is unsatisfiable if and only if X and Y are
ceteris paribusindependent with respect to Σ , where

X = {x},
Y = {y}, s.t. x and y do not appear in ϕ,

Σ = ϕ ∧ (x⇔ y).
Then it can be easily verified that x and y are ceteris paribusindependent with respect to
Σ if and only if ϕ is unsatisfiable:

(1) Assume ϕ satisfiable. Let ωVar(ϕ) be a model of ϕ. Let ωX be the X-world that maps
x into true, and ωY be the Y -world that maps y into false. Then ωX ∧ωVar(ϕ) ∧Σ and
ωY ∧ ωVar(ϕ) ∧Σ are both satisfiable while ωX ∧ ωY ∧ ωVar(ϕ) ∧Σ is not, hence X
and Y are not independent given Var(ϕ), i.e., they are not ceteris paribusindependent
with respect to Σ .
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(2) Assume ϕ unsatisfiable. Then Σ is unsatisfiable as well, and both ωX ∧ ωVar(ϕ) ∧Σ
and ωy ∧ωVar(ϕ) ∧Σ are unsatisfiable whatever ωVar(ϕ) is, hence X and Y are ceteris
paribusindependent with respect to Σ . ✷

Lemmas 5, 6, and 7 prove all coNP-completeness results concerning
conditional independence.

•
•
•

• • •

As a result, only one result of Table 1 is left to be proven, namely
marginal independence of single variables.

• • •
• • •
• •
• • •

Lemma 8. MARGINAL VARIABLE INDEPENDENCE is coBH2-complete.

Proof. Membership comes from the fact that x ∼∅Σ y if and only if (i) x ∧Σ satisfiable
and y ∧ Σ satisfiable imply that x ∧ y ∧ Σ satisfiable; (ii) idem with ¬x instead of x;
(iii) idem with ¬y; (iv) idem with ¬x and ¬y . Now, for instance, (i) does not hold if and
only if x ∧Σ and y ∧Σ are both satisfiable and x ∧ y ∧Σ is not satisfiable, which proves
that (i) considered as an individual problem—and also (ii) to (iv)—is in coBH2.

As to hardness, let us exhibit a polynomial reduction from SAT-OR-UNSAT to
MARGINAL VARIABLE INDEPENDENCE. We define J (〈ϕ,ψ〉)= 〈x, y,Σ〉 where:

• Σ = (x ∨ y ⇒ rename(ψ)) ∧ (x ∧ y ⇒ ϕ), where rename(ψ) is obtained from ψ

by renaming all variables appearing in ψ—thus ϕ and rename(ψ) do not share any
variables. Obviously, ψ is unsatisfiable if and only if rename(ψ) is.

• x and y are new variables which do not appear in ϕ and in rename(ψ).

Now, x 
∼∅Σ y if and only if at least one of the four statements (i) to (iv) above does not
hold. We get easily that (i) does not hold if and only if x ∧ Σ is satisfiable, y ∧ Σ is
satisfiable and x ∧ y ∧Σ is unsatisfiable, i.e., if and only if rename(ψ) is satisfiable and
ϕ ∧ rename(ψ) is unsatisfiable, which together with the fact that ϕ and rename(ψ) do not
share variables, is equivalent to rename(ψ) satisfiable and ϕ unsatisfiable, i.e.,ψ satisfiable
and ϕ unsatisfiable. Then, it is easy to check that (ii), (iii) and (iv) cannot be violated. Thus,
x 
∼∅Σ y if and only if ψ is satisfiable and ϕ is unsatisfiable, or equivalently, x ∼∅Σ y if and
only if 〈ϕ,ψ〉 is a positive instance of SAT-OR-UNSAT. ✷
4.2. Strong conditional independence

We now turn to the corresponding results concerning strongconditional independence.
Note that the case Z = ∅ is useless to study because when Z = ∅, strong and (simple)
conditional independence coincide. A fortiori, the case X ∪ Y = V , which entails Z = ∅,
is useless as well.

Proposition 10. The complexity results of strong independence are reported in Table2.

Proof. It is sufficient to prove the two following lemmata:
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Table 2
Complexity of strong conditional independence

X≈ZΣ Y any Z Z = Var(Σ) \ (X ∪ Y)
any X,Y �

p
2 -complete �

p
2 -complete

X= {x} or Y = {y} �
p
2 -complete �

p
2 -complete

X= {x} and Y = {y} �
p
2 -complete �

p
2 -complete

1. STRONG CONDITIONAL INDEPENDENCE is in �p2 ;
2. CETERIS PARIBUS CONDITIONAL INDEPENDENCE OF SINGLE VARIABLES is �p2 -

hard.

Lemma 9. STRONG CONDITIONAL INDEPENDENCE is in�p2 .

Proof. Membership of the complementary problem to �p2 is shown by the following
nondeterministic algorithm using an NP-oracle:

1. guess Z′ ⊆Z, ωZ′ ∈ΩZ′ , ωX ∈ΩX and ωY ∈ΩY .
2. check that ωX ∧ ωZ′ ∧ Σ is satisfiable, that ωY ∧ ωZ′ ∧ Σ is satisfiable and that
ωX ∧ωY ∧ ωZ′ ∧Σ is unsatisfiable. ✷

Note that �p2 -hardness of this case (that we do not actually have to prove since
the following lemma will imply it) is a corollary of �p2 -hardness of MARGINAL

INDEPENDENCE which is a subproblem of STRONG CONDITIONAL INDEPENDENCE

(recovered when Z = ∅). Moreover, because of Proposition 6, STRONG CONDITIONAL

INDEPENDENCE remains �p2 -complete when X or Y is a singleton and when both are
singletons (these results being subsumed as well by the next lemma).

Lemma 10. CETERIS PARIBUS STRONG CONDITIONAL INDEPENDENCE OF SINGLE

VARIABLES is�p2 -hard.

Proof. We exhibit a polynomial reduction from 2-QBF to CETERIS PARIBUS STRONG

CONDITIONAL INDEPENDENCE OF SINGLE VARIABLES. Let Φ be a propositional for-
mula over the alphabet {a1, . . . , an, b1, . . . , bp}; let K(〈{a1, . . . , an}, {b1, . . . , bp},Φ〉) =
〈Σ,X,Y 〉 where

• Σ = (x ∧ b1 ∧ · · · ∧ bp)∨ (¬x ∧¬b1 ∧ · · · ∧ ¬bp)∨Φ;
• X = {x};
• Y = {y}.

Let A = {a1, . . . an}, B = {b1, . . . , bp} and Z = Var(Σ) \ ({x, y})= A ∪ B . We note ωx ,
ωy instead of ω{x}, ω{y}. We use the notation C(ωx,ωy, γZ) for [Σ ∧ ωx ∧ γZ consistent
and Σ ∧ ωy ∧ γZ consistent implies Σ ∧ ωx ∧ ωy ∧ γZ consistent]. Since Z = A ∪ B ,
for any Z-term γZ we let γZ = γA ∧ γB . We now have to show that x ≈ZΣ y if and only
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if ∀a1 . . .∀an∃b1 . . .∃bpΦ is valid. We start by studying in detail the cases in which the
condition C(ωx,ωy, γZ) holds.

Case1: γB is not empty and contains only positive literals.

(i) Σ ∧ωx ∧ γZ
≡ (x ∧ b1 ∧ · · · ∧ bp ∧ωx ∧ γZ)∨ (Φ ∧ωx ∧ γZ)

is consistent if and only if ωx = x or γZ ∧Φ is consistent.

(ii) Σ ∧ωy ∧ γZ
≡ (x ∧ b1 ∧ · · · ∧ bp ∧ωy ∧ γZ)∨ (Φ ∧ωy ∧ γZ)

is always consistent because the first disjunct, equivalent to x ∧ b1 ∧ · · · ∧ bp ∧ ωy ∧ γA,
is always consistent.

(iii) Σ ∧ωx ∧ωy ∧ γZ
≡ (x ∧ b1 ∧ · · · ∧ bp ∧ωx ∧ωy ∧ γZ)∨ (Φ ∧ ωx ∧ωy ∧ γZ)

is consistent if and only if ωx = x or γZ ∧Φ is consistent.

Thus,Σ ∧ωx ∧ωy ∧ γZ is consistent if and only if Σ ∧ωx ∧ γZ andΣ ∧ωy ∧ γZ both
are, which entails that C(ωX,ωY , γZ) holds for any ωX,ωY .

Case2: γB is not empty and contains only negative literals.
This case is symmetrical to Case 1 and a similar proof enables us to show that

C(ωX,ωY , γZ) holds for any ωX,ωY .
Case3: γB contains both positive and negative literals.
Σ ∧ ωx ∧ ωy ∧ γZ is now equivalent to Φ ∧ ωx ∧ ωy ∧ γZ and is consistent if and

only if Φ ∧ γZ is consistent, independently of ωx,ωy . Similarly, both Σ ∧ ωx ∧ γZ
and Σ ∧ ωy ∧ γZ are consistent if and only if Φ ∧ γZ is consistent, which shows that
C(ωX,ωY , γZ) holds for any ωX,ωY .

Case4: γB = ∅.
Σ ∧ωx ∧ωy ∧ γZ is equivalent to

(
(x ∧ b1 ∧ · · · ∧ bp)∨ (y ∧¬b1 ∧ · · · ∧ ¬bp)∨Φ

)∧ ωx ∧ωy ∧ γA,
i.e., to

(x ∧ b1 ∧ · · · ∧ bp ∧ωx ∧ωy ∧ γA)∨
(y ∧¬b1 ∧ · · · ∧ ¬bp ∧ωx ∧ωy ∧ γA)∨ (Φ ∧ωx ∧ ωy ∧ γA),

and is consistent if and only if one of the disjuncts is consistent, i.e., at least one of these
three conditions holds:

(i) ωx = x ,
(ii) ωy = y ,

(iii) Φ ∧ωx ∧ ωy ∧ γA is consistent.

Condition (iii) is equivalent to the consistency of Φ ∧ γA, because x and y do not appear
in Φ . Now, Σ ∧ ωx ∧ γA is consistent if and only if ωx = x is consistent or y ∧ ¬b1 ∧
· · · ∧ bp ∧ωx ∧ γA is consistent or Φ ∧ γA is consistent, which is always satisfied because
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y∧¬b1∧· · ·∧bp∧ωx ∧γA is always consistent. Hence,Σ∧ωx ∧γA is always consistent;
similarly,Σ ∧ωy ∧ γA is always consistent. This means that C(ωX,ωY , γA ∧ γB) holds if
and only if ωx = x or ωy = y or Φ ∧ γA is consistent.

Finally,

x ≈ZΣ y if and only if ∀ωx∀ωy∀γA∀γB, C(ωx,ωy, γA ∧ γB) holds
if and only if ∀ωx∀ωy∀γA C(ωx,ωy, γA) holds
if and only if ∀γA C(¬x,¬y, γA) holds
if and only if ∀γA, Φ ∧ γA is consistent.

It is not hard to see that this is equivalent to ∀ωA ∈ΩA, Φ ∧ ωA is consistent; indeed, for
the (⇒) direction, an A-world ωA is a special case of an A-term γA; for the (⇐) direction,
the consistency of Φ ∧ ωA implies the consistency of Φ ∧ γA for any γA ⊇ ωA, and any
A-term γA contains at least an A-world ωA.

Therefore, we have

x ≈ZΣ y if and only if ∀ωA ∈ΩA, Φ ∧ωA is consistent
if and only if ∀ωA ∈ΩA ∃ωB ∈ΩB s.t. (ωA,ωB) |=Φ
if and only if Φ ∈ 2-QBF. ✷

Let us now briefly comment on these results. The �p2 -completeness of STRONG

CONDITIONAL INDEPENDENCE coheres with the �p2 -completeness of checking whether
an individual hypothesis is relevant (for minimal explanation) [11]. More interestingly, the
abductive characterization (Proposition 15) of strong conditional independence enables us
to take advantage of some restrictions (especially restricting Σ to a set of Horn clauses)
for which the computational complexity of checking irrelevance for minimal explanation
falls down to the first level of the polynomial hierarchy, carrying with it the complexity
of strong conditional independence. Considering DNF formulas is another restriction that
makes the complexity of STRONG CONDITIONAL INDEPENDENCE falling down to the first
level of the polynomial hierarchy. To be more precise:

Proposition 11. WhenΣ is in DNF, STRONG CONDITIONAL INDEPENDENCE is coNP-
complete.

Proof. From Proposition 6 it follows that it suffices to consider the case where both X and
Y are singletons, i.e., X= {x} and Y = {y}. Let us consider the complementary problem of
checking whether x is not strongly conditionally independent from y given Z with respect
to Σ and let us prove it NP-complete. As an easy consequence of Proposition 7, x is not
strongly conditionally independent from y given Z with respect to Σ if and only if there
exists a prime implicate of Σ built up from Z ∪ {x, y} that contains both x and y .

• Membership. Guess a clause δ and check (1) that it contains both x and y , (2) that it
does not contain any variable outside Z ∪ {x, y}, (3) that it contains a literal from each
any consistent term from the given DNF of Σ , and (4) that any proper subclause of
δ violates (3). Since (2), (3), (4) can be checked in time polynomial in the size of the
input, this algorithm runs in nondeterministic polynomial time.
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• Hardness. Let us consider the following reduction from NON-TAUT, the problem
of checking whether a DNF Σ is not a tautology (it is obviously NP-complete
since Σ is not a tautology if and only if the CNF ¬Σ is satisfiable). Let M(Σ) =
〈new1,new2,¬Σ ∧ (new1 ∨ new2)〉 where new1, new2 are new variables (from PS\
Var(Σ)). M(Σ) can easily be computed in time polynomial in |Σ|. Moreover, Σ is
not a tautology if and only if new1 is not ceteris paribusstrongly independent from
new2 with respect to ¬Σ ∧ (new1 ∨ new2). ✷

We do not investigate in detail the complexity of perfect conditional independence
due to the fact that this notion is only marginal. It can be proven that PERFECT CONDI-
TIONAL INDEPENDENCE is�p2 -complete (the proof is in ftp://ftp.irit.fr/pub/
IRIT/RPDMP/CIPL.ps.gz).

5. Independence, relevance, novelty, separability and non-interactivity

In this section, we show how conditional independence is related to many other forms
of independence pointed out so far in the literature.

5.1. Formula-variable independence

As evoked before, conditional independence can be viewed as a generalization of
formula-variable independence. Formally, we can reduce the problem of checking formula-
variable independence to the problem of checking strong conditional independence.

Proposition 12. Let new be a variable of(PS\ Var(Σ)) \ X. ThenΣ is V-independent
fromX if and only ifX ≈Var(Σ)\X

Σ⇔new new.

Proof. Let Z = Var(Σ) \X. Let us first remark that since

Σ⇔ new≡ (Σ ∧ new)∨ (¬Σ ∧¬new),

the following equivalence holds: γ ∈ PI(Σ⇔ new) if and only if:

(1) new∧ γ1 ∈ PI(Σ⇔ new) and γ1 ∈ PI(Σ); or
(2) ¬new∧ γ2 ∈ PI(Σ⇔ new) and γ2 ∈ PI(¬Σ).

Let us now prove Proposition 12:
(⇒) If X 
≈Var(Σ)\X

Σ⇔new new then, due to Proposition 5, there is a γ ∈ PI(Σ ⇔ new)
mentioning both new and some x ∈ X. Using the above equivalence, either (1) γ ≡
new∧ γ1 with γ1 ∈ PI(Σ) or (2) γ ≡¬new∧ γ2 with γ2 ∈ PI(¬Σ).

In case (1), there is a γ1 ∈ PI(Σ) mentioning x ∈X and thusΣ is V-dependent onX. In
case (2), there is a γ2 ∈ PI(¬Σ)mentioning x ∈X, thus we have again¬Σ is V-dependent
on X, or equivalently,Σ is V-dependent on X.

(⇐) IfΣ is V-dependent on X then there is a γ ′ ∈ PI(Σ) mentioning some x ∈X [20].
Now, let γ = new∧ γ ′. Using the above equivalence, γ ∈ PI(Σ ⇔ new). Furthermore, γ
mentions both an x ∈X and new, so, due to Proposition 5, we have X 
≈Var(Σ)\X

Σ⇔new new. ✷



J. Lang et al. / Artificial Intelligence 141 (2002) 79–121 103

This result means that, in any state of knowledge regarding Var(Σ) \ X, knowing
the truth values of variables in X cannot help us knowing the truth value of new and
hence of Σ . The converse, i.e., expressing strong conditional independence from formula-
variable independence, is possible as well (see Proposition 7). However, the exhibited
transformation is not a polynomial one and thus will not be helpful when investigating
computational complexity issues.

Conditional independence is also related to formula-variable independence through the
notion of variable forgetting [20,21,25]. Especially, as a direct consequence of Theorem 5
in [8], X ∼ZΣ Y holds if and only if ∀ωX ∈ΩX, ∀ωY ∈ΩY , ∀ωZ ∈ΩZ , we have

ForgetVar
(
Σ ∧ for(ωX)∧ for(ωY )∧ for(ωZ),PS\Z)

≡ ForgetVar
(
Σ ∧ for(ωX)∧ for(ωZ),PS\Z)∧

ForgetVar
(
Σ ∧ for(ωY )∧ for(ωZ),PS\Z)

.

As an illustration, let us consider Example 1 again. We have

Σ = {¬a ∨¬b ∨ c,¬a ∨ b ∨ d, a ∨¬c,¬a ∨ c ∨ d, b ∨¬c ∨ d}.
We have seen that c 
∼{a}Σ d . This can be explained by the fact that ω{c} = {¬c}, ω{d} =
{¬d} and ω{a} = {a} are such that

ForgetVar
(
Σ ∧ for(ω{c})∧ for(ω{d})∧ for(ω{a}),PS\ {a})

is inconsistent, while

ForgetVar
(
Σ ∧ for(ω{c})∧ for(ω{a}),PS\ {a})∧

ForgetVar
(
Σ ∧ for(ω{d})∧ for(ω{a}),PS\ {a})

is equivalent to a.

5.2. Relevance

Lakemeyer [18,19] introduces several forms of relevance, which can be used to
characterize what “tells about” means. We show how these forms of relevance are strongly
related to conditional independence. We also complete the results given in [19], by
exhibiting the computational complexity of each form of relevance introduced in [19].

Lakemeyer’s notion of irrelevance of a formula to a subject matter (Definition 9 in [19])
is studied in [20,21] (where it is related to formula-variable independence).

5.2.1. Strict relevance of a formula to a subject matter
Lakemeyer has introduced two forms of strict relevance. The first (chronologically) one

has been given in [18], as follows.

Definition 8 (strict relevance to a subject matter[18]). Let Σ be a formula from PROPPS

and V a subset of PS. Σ is strictly relevant toV if and only if every prime implicate of Σ
contains a variable from V .

Lakemeyer has also introduced another notion of strict relevance [19], more demanding
than the original one. Here we consider an equivalent definition.



104 J. Lang et al. / Artificial Intelligence 141 (2002) 79–121

Definition 9 (strict relevance to a subject matter[19]). Let Σ be a formula from PROPPS

and V a subset of PS. Σ is strictly relevant toV if and only if there exists a prime
implicate of Σ mentioning a variable from V , and every prime implicate of Σ mentions
only variables from V .

Both definitions prevent tautologies and contradictory formulas from being strictly
relevant to any set of variables. The basic difference between these two definitions is that,
in the first one, we want that every prime implicate of Σ contains at leasta variable from
V , while in the second case we impose that every prime implicate of Σ must contain only
variables from V .1 As the following example shows, there are formulas for which the two
definitions of strict relevance do not coincide.

Example 2. LetΣ = (a∨b) and V = {a}. There is only one prime implicate ofΣ , namely
a ∨ b. Since it contains at least a variable of V , it follows that Σ is strictly relevant to V
with respect to [18]. However, since the prime implicate a ∨ b is not composed only of
variables of V (because b /∈ V ), it follows that Σ is not strictly relevant to V with respect
to [19].

Through formula-variable independence, we can derive an alternative characterization
of the notion of strict relevance introduced by Lakemeyer in [19]. Indeed, as a
straightforward consequence of the definition, we have that Σ is strictly relevant to V
if and only if Σ is V-dependent on V and V-independent from Var(Σ) \ V (see [20]).

We have identified the complexity of both definitions of strict relevance, and they turn
out to be different, as the first definition is easier than the second one. Namely, STRICT

RELEVANCE OF A FORMULA TO A SUBJECT MATTER [19] is BH2-complete [20] while
we have the following:

Proposition 13 (complexity of strict relevance as in [18]). STRICT RELEVANCE OF A

FORMULA TO A SUBJECT MATTER as in[18] is�p2 -complete.

Proof.
• Membership. Let us consider the complementary problem. Guess a clause δ, check

that it does not contain any variable from V (this can be achieved in time polynomial in
|δ|+ |V |, hence in time polynomial in |Σ|+ |V | since no prime implicate ofΣ can include
a variable that does not occur in Σ). Then check that it is an implicate of Σ (one call to an
NP-oracle) and check that every subclause of δ obtained by removing from it one of its k
literals is not an implicate of Σ (k calls to an NP-oracle). Since only k+ 1 calls to such an
oracle are required to check that δ is a prime implicate of Σ , the complementary problem
of STRICT RELEVANCE belongs to �p2 . Hence, STRICT RELEVANCE belongs to �p2 .
• Hardness by polynomial reduction from 2-QBF: we have that ∀A∃BΣ(A,B) is valid

if and only if every prime implicate of Σ that contains a variable from A also contains a
variable from B (see [12], Proposition 1), i.e., if and only if every prime implicate of Σ
contains a variable from B (since Var(Σ)=A∪B), i.e., if and only ifΣ is strictly relevant
to B . ✷

1 Strict relevance as in [19] could also be shown to be strongly related to controllability [5,22].
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5.2.2. Explanatory relevance
Lakemeyer [19] also introduces a notion of relevance of a formulaΦ to a subject matter

V with respect to a formula Σ that can be abductively characterized (see Definition 20 in
[19]):

Definition 10 (explanatory relevance). Let Σ and Φ be formulas from PROPPS and V a
subset of PS. Φ is (explanatory) relevant toV with respect to Σ if and only if there exists
a minimal abductive explanation for Φ with respect to Σ that mentions a variable from V .

Example 3. Let Σ = (a⇒ b) and Φ = b. Φ is explanatory relevant to {a} with respect to
Σ since a is an abductive explanation for b with respect to Σ .

The next result shows that explanatory relevance can be rewritten using strong
conditional independence:

Proposition 14. Φ is explanatory relevant toV with respect toΣ if and only if
new
≈ceteris paribus

Σ∧(Φ⇒new) V where new∈ PS\ (V ∪Var(Σ)) is a new variable.

Proof. (⇒) Assume that Φ is explanatory relevant to V with respect to Σ . Then, there
is a γ ∈ PIΣ(Φ) = PI(Σ ⇒ Φ) \ PI(¬Σ) such that Var(γ ) ∩ V 
= ∅. Let δ be a clause
s.t. δ ≡ ¬γ . Since γ ∈ PIΣ(Φ), we have that δ ∈ IP(Σ ∧ ¬Φ) \ IP(Σ); and since
Var(γ ) ∩ V 
= ∅ we have Var(δ) ∩ V 
= ∅. Let Σ ′ = Σ ∧ (Φ ⇒ new). Let us show that
δ ∨ new∈ IP(Σ ′).

(i) Σ ′ ∧¬δ∨newis equivalent toΣ ∧ (Φ⇒ new)∧¬δ∧¬new, i.e., toΣ∧¬δ∧¬new∧
¬Φ , which is inconsistent since Σ ∧¬Φ |= δ. Hence, Σ ′ |= δ ∨ new.

(ii) Suppose that δ ∨ new is not a prime implicate of Σ ′. Then there exists a prime
implicate of Σ ′ strictly contained in δ ∨ new. This implicate has either the form
(a) δ′ with δ′ ⊆ δ or the form (b) δ′′ ∨ new with δ′′ strictly contained in δ. In
case (a), we have Σ ′ |= δ′, implies that Σ |= δ′, which entails Σ |= δ and thus
contradicts δ ∈ IP(Σ ∧ ¬Φ) \ IP(Σ). In case (b), we have Σ ′ |= δ′′ ∨ new, which
entails Σ ′ ∧ ¬new|= (δ′′ ∨ new)∧¬new, i.e., Σ ∧¬new∧¬Φ |= δ′′ ∧ ¬new, which
entails Σ ∧¬Φ |= δ′′, which contradicts δ ∈ IP(Σ ∧¬Φ) \ IP(Σ).

Thus, δ ∨ new is a prime implicate of Σ ′ mentioning both new and a variable from V ,
which means that new
≈ceteris paribus

Σ ′ V .

(⇐) Assume that new 
≈ceteris paribus
Σ ′ V . Then, there is a prime implicate δ′ of Σ ′

containing new and a variable of V (cf. Proposition 5). Let δ be the subclause of δ′
containing every literal of δ′ except new. We have Σ ∧ (Φ ⇒ new) |= δ ∨ new. Thus,
we get Σ ∧ (Φ ∧ new) ∧ ¬new|= δ, i.e., Σ ∧ ¬new∧ ¬Φ |= δ; subsequently, we get
Σ ∧ ¬Φ |= δ, i.e., Σ ∧ ¬δ |= Φ , which means that ¬δ is an explanation for Φ with
respect toΣ mentioning a variable from V ; its minimality comes from the abovementioned
minimality of δ′. ✷

This result is helpful for studying the complexity of this form of relevance.
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Proposition 15 (complexity of explanatory relevance). EXPLANATORY RELEVANCE is
�
p

2 -complete.

Proof. Membership is a direct consequence of the above result together with Proposi-
tion 10. Its �p2 -hardness is a direct consequence of Theorem 4.2.1 from [11] (that estab-
lishes the �p2 -completeness of the problem of checking whether an individual hypothesis
is relevant for minimally explainingΦ with respect to Σ , i.e., belongs to at least one of its
minimal abductive explanations). ✷
5.2.3. Relevance between two subject matters relative to a knowledge base

Lakemeyer [19] also introduces a notion of relevance between two subject matters
relative to a knowledge base.

Definition 11 (relevance between two subject matters). Let Σ be a formula from PROPPS

and X, Y be subsets of PS. X is relevant toY with respect to Σ if and only if there exists
a prime implicate δ of Σ s.t. Var(δ)∩X 
= ∅ and Var(δ)∩ Y 
= ∅.

Example 4. Let Σ = (a⇒ b), X = {a} and Y = {b}. X is relevant to Y with respect to Σ
since the prime implicate ¬a ∨ b of Σ contains both variables a and b.

Clearly enough, such a notion of relevance is symmetric:X is relevant to Y with respect
to Σ if and only if Y is relevant to X with respect to Σ . The corresponding notion of
irrelevance coincides with ceteris paribusstrong conditional independence:

Proposition 16. Let Σ be a formula from PROPPS and X, Y be subsets of PS.X is
irrelevant to Y with respect toΣ if and only if X and Y are ceteris paribus strongly
independent with respect toΣ .

Proof. Easy consequence from Theorem 31 in [19] which states that X is relevant to Y
with respect to Σ if and only if there is a Z such as X 
∼ZΣ Y , plus the definition of ceteris
paribusstrong independence. ✷

Using then Proposition 10, we get the following corollary:

Proposition 17 (complexity of relevance between two subject matters). RELEVANCE

BETWEEN TWO SUBJECT MATTERS RELATIVE TO A KNOWLEDGE BASE is�p2 -complete.

Proof. Trivial from the fact that two subject matters are relevant with respect to a
knowledge base if and only if they are not ceteris paribusstrongly independent, and
checking this form of strong independence is �p2 -complete. ✷
5.3. Novelty

Novelty is a form of relevance between two formulas given some background
knowledge. Introduced in [14], this notion has been analyzed in more details in the
propositional case in [26]. Closely related to Lakemeyer’s relevance (see [19]), it can be
used to define information filtering policies and cooperative answering techniques [13].
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Definition 12 (novelty). Let Σ , Φ and Ψ be formulas from PROPPS. Φ is new toΨ with
respect to Σ if and only if there is a minimal abductive explanation for Ψ with respect
to Σ ∧ Φ that is not a minimal abductive explanation for Ψ with respect to Σ , or there
is a minimal abductive explanation for ¬Ψ with respect to Σ ∧ Φ that is not a minimal
abductive explanation for ¬Ψ with respect to Σ .

Intuitively, Φ is new to Ψ with respect to Σ if and only if expanding Σ with Φ gives
rise to new contexts in which the semantics of Ψ is determined (as true or false).

Example 5. Let Σ = (b⇒ c), Φ = (a⇒ b), and Ψ = c. Φ is new to Ψ with respect to
Σ since γ = a is a minimal explanation for Ψ with respect to Σ ∧Φ , but not a minimal
explanation for Ψ with respect to Σ . Thus, in the context where a is interpreted as true,
expandingΣ with Φ enables deriving the truth value of Ψ , while it remains undetermined
when Φ is not taken into account.

More refined notions of novelty have been pointed out in [26], by considering separately
Ψ and ¬Ψ .

Definition 13 (positive novelty, negative novelty). Let Σ , Φ and Ψ be formulas from
PROPPS.

• Φ is new positive toΨ with respect to Σ if and only if there is a minimal abductive
explanation for Ψ with respect to Σ ∧Φ that is not a minimal abductive explanation
for Ψ with respect to Σ .

• Φ is new negative toΨ with respect to Σ if and only if there is a minimal abductive
explanation for ¬Ψ with respect toΣ ∧Φ that is not a minimal abductive explanation
for ¬Ψ with respect to Σ .

Thus,Φ is new to Ψ with respect toΣ if and only if Φ is new positive to Ψ or Φ is new
negative to ¬Ψ . This simple result, as well as many characterization results for novelties,
can be found in [26]. Especially, it is easy to see that Φ is new negative to Ψ with respect
to Σ if and only if Φ is new positive to ¬Ψ with respect to Σ . Among the results given in
[26] also is a prime implicate characterization of positive novelty and negative novelty:

Proposition 18. LetΣ , Φ andΨ be formulas from PROPPS.

• Φ is new positive toΨ with respect toΣ if and only if there exists a prime implicate
ofΣ ∧Φ ∧ ¬Ψ that is neither a prime implicate ofΣ ∧Φ nor a prime implicate of
Σ ∧¬Ψ .

• Φ is new negative toΨ with respect toΣ if and only if there exists a prime implicate of
Σ ∧Φ∧Ψ that is neither a prime implicate ofΣ ∧Φ nor a prime implicate ofΣ ∧Ψ .

Proof.
• Positive novelty. By definition,Φ is new positive to Ψ with respect toΣ if and only if

there is a minimal abductive explanation for Ψ with respect to Σ ∧Φ that is not a minimal
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abductive explanation for Ψ with respect to Σ . This is equivalent to state that there exists
a clause π for which the following three conditions hold.

π ∈ PI(Σ ∧Φ ∧¬Ψ ),
π /∈ PI(Σ ∧Φ),
π /∈ PI(Σ ∧¬Ψ ) or π ∈ PI(Σ).

What is left to prove is that the first two conditions implies π /∈ PI(Σ). Indeed, the first
one implies that Σ ∧Φ ∧¬Ψ |= π , while the second one is equivalent to:

(1) Σ ∧Φ 
|= π ; or
(2) Σ ∧Φ |= π and there exists a clause π ′ |= π such that Σ ∧Φ |= π ′.

Let us assume that the first condition holds. Then,Σ 
|= π and thus π cannot be a prime
implicate ofΣ . If the second condition holds, then π ′ is also an implicate ofΣ ∧Φ ∧¬Ψ :
as a result, π cannot be a prime implicate of that formula.
• Negative novelty. Immediate from the fact that Φ is new negative to Ψ with respect to

Σ if and only ifΦ is new positive to¬Ψ with respect toΣ , and the fact that the proposition
holds for positive novelty. ✷

From this proposition, it is easy to prove that focusing on prime implicates is
unnecessary (implicates are sufficient):

Corollary 1. LetΣ , Φ andΨ be formulas from PROPPS.

• Φ is new positive toΨ with respect toΣ if and only if there exists an implicate of
Σ ∧Φ ∧¬Ψ that is neither an implicate ofΣ ∧Φ nor an implicate ofΣ ∧¬Ψ .

• Φ is new negative toΨ with respect toΣ if and only if there exists an implicate of
Σ ∧Φ ∧Ψ that is neither an implicate ofΣ ∧Φ nor an implicate ofΣ ∧Ψ .

As an immediate consequence, considering minimal abductive explanations in the
definitions above is useless (considering abductive explanations is sufficient).

We are now making precise the relationship between the various forms of novelty and
strong conditional independence.

Proposition 19. LetΣ , Φ andΨ be propositional formulas, and letvΦ and vΨ be two
new propositional variables(not appearing inΦ, Ψ andΣ), and let

Σ+ =Σ ∧ (vΦ⇒Φ)∧ (vΨ ⇒Ψ );
Σ− =Σ ∧ (vΦ⇒Φ)∧ (Ψ ⇒ vΨ );
Σ ′ =Σ+ ∧Σ− ≡Σ ∧ (vΦ ⇒Φ)∧ (vΨ ⇔ Ψ ).

(1) Φ is new positive toΨ with respect toΣ if and only ifvΦ 
≈ceteris paribus
Σ+ vΨ .

(2) Φ is new negative toΨ with respect toΣ if and only ifvΦ 
≈ceteris paribus
Σ− vΨ .

(3) Φ is new toΨ with respect toΣ if and only ifvΦ 
≈ceteris paribus
Σ ′ vΨ .
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Proof. From Proposition 18 we get easily the following equivalences:

– Φ is new positive to Ψ with respect to Σ if and only if ∃δ ∈ IP(Σ+) containing the
literals ¬vΦ and ¬vΨ .

– Φ is new positive to Ψ with respect to Σ if and only if ∃δ ∈ IP(Σ ′) containing the
literals ¬vΦ and ¬vΨ .

– Φ is new negative to Ψ with respect to Σ if and only if ∃δ ∈ IP(Σ−) containing the
literals ¬vΦ and vΨ .

– Φ is new negative to Ψ with respect to Σ if and only if ∃δ ∈ IP(Σ ′) containing the
literals ¬vΦ and vΨ .

– Φ is new to Ψ with respect to Σ if and only if ∃δ ∈ IP(Σ ′) containing the literal ¬vΦ
and mentioning the variable vΨ .

– ∀δ ∈ IP(Σ ′), δ does not contain vΦ .

The proof is then completed easily using Proposition 5. ✷
The situation where Σ is valid and negative novelty is not satisfied gives rise to a form

of independence called novelty-based independence. Intuitively, Φ and Ψ are (novelty-
based) independent if and only if every context that is possible for Φ (i.e., consistent with
Φ) or with Ψ also is possible for Φ ∧Ψ . In other words, Φ and Ψ do not conflict, in any
possible context. A definition based on prime implicate can be easily established:

Definition 14 (novelty-based independence). Let Φ and Ψ be formulas from PROPPS. Φ
and Ψ are (novelty-based) independentif and only if every prime implicate of Φ ∧ Ψ is
either a prime implicate of Φ or a prime implicate of Ψ .

Several alternative characterizations exist. Thus, Φ and Ψ are novelty-based indepen-
dent if and only if every implicate of Φ ∧Ψ is either an implicate of Φ or an implicate of
Ψ if and only if Φ is not new negative to Ψ with respect to true.

Interestingly, it has been shown in [27] that this form of independence characterizes
exactly the formulas that are preserved under change in Winslett’s Possible Models
Approach to update.

We have derived the following complexity results for novelty:

Proposition 20 (complexity of novelty). NOVELTY, POSITIVE NOVELTY and NEGATIVE

NOVELTY are�p2 -complete andNOVELTY-BASED INDEPENDENCE is�p2 -complete.

In order to minimize our efforts, we first prove that novelty-based independence is �p2 -
complete. An additional lemma is needed.

Lemma 11. Let Φ1, Φ2, Ψ1, and Ψ2 be four satisfiable formulas from PROPPS s.t.
(Var(Φ1) ∪Var(Ψ1)) ∩ (Var(Φ2)∪Var(Ψ2))= ∅. (Φ1 andΨ1 are novelty-based indepen-
dent andΦ2 andΨ2 are novelty-based independent) if and only ifΦ1 ∧Φ2 andΨ1 ∧ Ψ2
are novelty-based independent.
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Proof. (⇒) Assume that there exists a clause γ s.t. Φ1 ∧Φ2 ∧ Ψ1 ∧ Ψ2 |= γ holds and
Φ1 ∧ Φ2 
|= γ holds and Ψ1 ∧ Ψ2 
|= γ holds. Since (Var(Φ1) ∪ Var(Ψ1)) ∩ (Var(Φ2) ∪
Var(Ψ2))= ∅, it is obvious that Φ1 ∧Ψ1 and Φ2 ∧Ψ2 are novelty-based independent. As a
consequence, sinceΦ1 ∧Φ2∧Ψ1∧Ψ2 |= γ holds, we have Φ1 ∧Ψ1 |= γ or Φ2 ∧Ψ2 |= γ .
IfΦ1 and Ψ1 are novelty-based independent andΦ2 and Ψ2 are novelty-based independent,
this implies that Φ1 |= γ holds or Ψ1 |= γ holds or Φ2 |= γ holds or Ψ2 |= γ holds. This
contradicts the fact that Φ1 ∧Φ2 
|= γ holds and Ψ1 ∧Ψ2 
|= γ holds.

(⇐) Assume that Φ1 and Ψ1 are not novelty-based independent (the remaining case
where Φ2 and Ψ2 would not be novelty-based independent is similar). Then, there exists a
prime implicate π of Φ1 ∧Ψ1 that is neither a prime implicate of Φ1 nor a prime implicate
of Ψ1. Clearly enough,Φ1∧Ψ1∧Φ2∧Ψ2 |= π holds. IfΦ1∧Φ2 and Ψ1∧Ψ2 are novelty-
based independent, this is equivalent to saying that Φ1 ∧Φ2 |= π holds or Ψ1 ∧ Ψ2 |= π
holds. Since Var(Φ1)∩Var(Φ2)= ∅ and Var(Ψ1)∩Var(Ψ2)= ∅, this is also equivalent to
saying that Φ1 |= π holds or Ψ1 |= π holds or Φ2 |= π holds or Ψ2 |= π holds. We have
assumed that π neither is a prime implicate of Φ1 nor a prime implicate of Ψ1. Actually,
we can prove that π neither is an implicate of Φ1 nor an implicate of Ψ1. Indeed, if π
were an implicate of Φ1 (respectively Ψ1), a prime implicate π ′ of Φ1 (respectively Ψ1)
would exist s.t. π ′ |= π holds. Since Φ1 ∧ Ψ1 |= Φ1 (respectively Ψ1) holds, there exists
a prime implicate π ′′ of Φ1 ∧ Ψ1 s.t. π ′′ |= π ′ holds. This implies that π ′′ |= π ′ holds
and since π ′′ and π are prime implicates of the same formula, we have π ′′ ≡ π . Hence,
π ′ ≡ π holds as well. This would contradict the fact that π is not a prime implicate of Φ1
(respectively Ψ1). Now, since π neither is an implicate of Φ1 nor an implicate of Ψ1, it
must be the case that Φ2 |= π holds or Ψ2 |= π holds. Since Φ1 
|= π holds, we know
that π is not a tautology. Because π is a prime implicate of Φ1 ∧ Ψ1, it must be the
case that Var(π) ⊆ Var(Φ1 ∧ Ψ1) holds, i.e., Var(π) ⊆ Var(Φ1) ∪ Var(Ψ1) holds. Since
(Var(Φ1) ∪ Var(Ψ1)) ∩ (Var(Φ2) ∪ Var(Ψ2)) = ∅, Φ2 |= π holds or Ψ2 |= π holds if and
only if Φ2 is unsatisfiable or Ψ2 is unsatisfiable, contradiction (this is an easy consequence
of Craig’s interpolation theorem in the propositional case). ✷
Lemma 12. NOVELTY-BASED INDEPENDENCE is�p2 -complete.

Proof. Membership comes from Proposition 19. �p2 -hardness comes from the following
observations:
• Let x , y be two variables from PSand Σ a formula from PROPPS. Then x and y are

ceteris paribusstrongly independent with respect to Σ if and only if for every term γ over
Var(Σ) \ {x, y}, the four following statements are true:

◦ x ∧ y ∧Σ ∧ γ is satisfiable if and only if x ∧Σ ∧ γ is satisfiable and y ∧Σ ∧ γ is
satisfiable.

◦ ¬x ∧ y ∧Σ ∧ γ is satisfiable if and only if ¬x ∧Σ ∧ γ is satisfiable and y ∧Σ ∧ γ
is satisfiable.

◦ x ∧¬y ∧Σ ∧ γ is satisfiable if and only if x ∧Σ ∧ γ is satisfiable and ¬y ∧Σ ∧ γ
is satisfiable.

◦ ¬x∧¬y∧Σ ∧γ is satisfiable if and only if ¬x∧Σ ∧γ is satisfiable and¬y∧Σ ∧γ
is satisfiable.
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This is equivalent to saying that for every clause δ over Var(Σ) \ {x, y}, the four
following statements are true:

◦ x ∧ y ∧Σ |= δ if and only if x ∧Σ |= δ or y ∧Σ |= δ.
◦ ¬x ∧ y ∧Σ |= δ if and only if ¬x ∧Σ |= δ or y ∧Σ |= δ.
◦ x ∧¬y ∧Σ |= δ if and only if x ∧Σ |= δ or ¬y ∧Σ |= δ.
◦ ¬x ∧¬y ∧Σ |= δ if and only if ¬x ∧Σ |= δ or ¬y ∧Σ |= δ.

Clearly enough, if the four statements above are satisfied for every clause, they are also
satisfied for the clauses that do not contain x or y as a variable. Conversely, let us show
that if x and y are ceteris paribusstrongly independent, then the four statements above are
satisfied by every clause δ. Let us now consider a clause δ s.t. Var(δ) ∩ {x, y} 
= ∅ and δ
is not a tautology (tautologies trivially satisfy the four statements above). For simplicity,
assume that the variable x occurs positively in δ. Then, it is clear that the first and the
third statements above are satisfied by such clauses δ. For the remaining cases (second and
fourth statements), let δ′ be the clause obtained by removing every occurrence of x in δ.
We have ¬x ∧ y ∧Σ |= δ if and only if ¬x ∧ y ∧Σ |= δ′. If δ′ contains y as a positive
literal, then ¬x ∧ y ∧Σ |= δ′ and y ∧Σ |= δ′ holds as well. Hence, y ∧Σ |= δ also holds.
This shows that the second statement is satisfied by δ. Otherwise, let δ′′ be the clause
obtained by removing every occurrence of ¬y in δ′. We have ¬x ∧ y ∧Σ |= δ′ if and only
if ¬x ∧ y ∧ Σ |= δ′′. Because δ′′ does not contain any occurrence of x or y , if x and y
are ceteris paribusstrongly independent, then it must be the case that if ¬x ∧ y ∧Σ |= δ′′
holds, then ¬x ∧Σ |= δ′′ holds or y ∧Σ |= δ′′ holds. This implies that ¬x ∧Σ |= δ holds
or y ∧Σ |= δ holds, hence the second statement is satisfied. The remaining cases, i.e., δ
contains a negative occurrence of x , δ contains a positive occurrence of y , δ contains a
negative occurrence of y , can be handled in a similar way, mutatis mutandis(clearly, both
x and y and x and ¬x play symmetric roles with respect to the conjunction of the four
statements). Thus, x and y are ceteris paribusstrongly independent with respect to Σ if
and only if:

◦ Σ ∧ x and Σ ∧ y are novelty-based independent, and
◦ Σ ∧¬x and Σ ∧ y are novelty-based independent, and
◦ Σ ∧ x and Σ ∧¬y are novelty-based independent, and
◦ Σ ∧¬x and Σ ∧¬y are novelty-based independent.

• Several instances of novelty-based independence can be gathered into a single one
in polynomial time through renaming as long as all the formulas that are considered are
satisfiable. This is stated formally by Lemma 11.

As a consequence of Lemma 11, we can state that x and y are ceteris paribusstrongly
independent with respect to Σ iff rename1(Σ ∧ x)∧ rename2(Σ ∧¬x)∧ rename3(Σ ∧ x)
∧ rename4(Σ ∧ ¬x) and rename1(Σ ∧ y) ∧ rename2(Σ ∧ ¬y) ∧ rename3(Σ ∧ y) ∧
rename4(Σ ∧ ¬y) are novelty-based independent, provided that Σ 
|= x holds, Σ 
|= ¬x
holds, Σ 
|= y holds, and Σ 
|= ¬y holds. This equivalence is obtained by applying three
times the lemma above; each renamei (i ∈ 1, . . . ,4) is a renaming, i.e., a substitution from
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variables to variables s.t. renamei (x) = xi , that is extended to formulas in an obvious
compositional way; clearly enough, renaming a formula preserves its satisfiability.
• The next observation is that in the proof of �p2 -hardness of ceteris paribusstrong

conditional independence of single variables given above (Lemma 10), we can assume
that Σ 
|= x holds, Σ 
|= ¬x holds, Σ 
|= y holds, and Σ 
|= ¬y holds without loss of
generality as soon as the matrix Φ of the 2-QBF formula ∀A∃BΦ[A,B] used in the proof
is satisfiable (we have Var(Φ) ∩ {x, y} = ∅). So it remains to prove that this restriction
does not question the �p2 -hardness of checking whether a 2-QBF formula is valid. Let
us consider the mapping M that associates to every 2-QBF formula ∀A∃BΦ[A,B] the
2-QBF formula ∀A ∪ {new}∃B(Φ[A,B] ∨ new), where new/∈ (A ∪ B). Clearly enough,
Φ[A,B] ∨ newalways is satisfiable. It is easy to check that ∀A∃BΦ[A,B] is valid if and
only ifM(∀A∃BΦ[A,B]) is valid as well.

Lemma 13. POSITIVE NOVELTY is�p2 -complete.

Proof. Membership comes from Proposition 19. �p2 -hardness is an immediate conse-
quence of the �p2 -hardness of novelty-based independence. Indeed, Φ and Ψ are novelty-
based independent if and only if Φ is not new positive to ¬Ψ with respect to true. ✷
Corollary 2. NEGATIVE NOVELTY is�p2 -complete.

Lemma 14. NOVELTY is�p2 -complete.

Proof. Membership comes from Proposition 19. As to hardness, let us consider the
application M that maps 〈Φ,Ψ 〉 to 〈Ψ ∨ new,Φ,new〉, where new is a variable from
PS\ (Var(Φ) ∪ Var(Ψ )). M can be easily computed in time polynomial in the input size.
The point is thatΦ and Ψ are not novelty-based independent if and only if Φ is new to new
with respect to Ψ ∨new. Then, the�p2 -hardness of novelty-based independence completes
the proof. For simplicity, let us recall that Φ and Ψ are not novelty-based independent if
and only if Φ is new positive to ¬Ψ with respect to true. Let us first show that if Φ is new
positive to Ψ with respect to true, thenΦ is new positive to newwith respect to ¬Ψ ∨new,
hence new to newwith respect to ¬Ψ ∨ new.

(⇒) Assume that there exists a term γ s.t. (1) Φ ∧ γ |= Ψ , (2) Φ ∧ γ is satisfiable and
(3) γ 
|= Ψ holds.

◦ (1) implies thatΦ ∧γ ≡Φ∧γ ∧Ψ . Hence,Φ∧γ ∧ (¬Ψ ∨new)≡ γ ∧Φ∧Ψ ∧new.
Consequently, γ ∧Φ ∧ (¬Ψ ∨ new) |= newholds.

◦ (2) implies that Φ ∧ γ ∧ (¬Ψ ∧ new) is satisfiable: if there exists a model of Φ ∧ γ
than there exists a model of Φ ∧ γ ∧ new, hence a model of Φ ∧ γ ∧ (¬Ψ ∧ new).

◦ (3) implies that γ ∧ (¬Ψ ∨ new) 
|= new. Indeed, if it were not the case, we should
have γ ∧¬Ψ |= new. Since newdoes not occur in γ ∧¬Ψ , it should be the case that
γ ∧¬Ψ is unsatisfiable, which contradicts (3).

(⇐) It remains to show that whenever Φ is new to new with respect to ¬Ψ ∨ new,
then Φ is new positive to Ψ with respect to true. In order to prove it, let us first show that
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when Φ is new to newwith respect to ¬Ψ ∨ new, we necessarily have Φ new positive
to newwith respect to ¬Ψ ∨ new(in other words, Φ new negative to newwith respect to
¬Ψ ∨ newis impossible). By reductio ad absurdum, let us assume that there exists a term
γ s.t. (1) Φ ∧ γ ∧ (¬Ψ ∨ new) |= ¬newholds, (2) Φ ∧ γ ∧ (¬Ψ ∨ new) is satisfiable,
and (3) γ ∧ (¬Ψ ∨ new) 
|= ¬newholds. (1) is equivalent to saying that Φ ∧ γ ∧ new is
unsatisfiable, i.e., Φ ∧ γ |= ¬newholds. Since (2) requires that Φ ∧ γ is satisfiable and
since newdoes not occur in Φ , it must be the case that γ |= ¬new. This prevents (3) from
being satisfied. This shows that each time Φ is new to new with respect to ¬Ψ ∨ new,
then Φ is new positive to newwith respect to ¬Ψ ∨ new. Then, we have to show that, in
this situation, Φ is new positive to Ψ . Stating that Φ is new positive to newwith respect to
¬Ψ ∨newis equivalent to state that there exists a term γ s.t. (1)Φ∧γ ∧(¬Ψ ∨new) |= new
holds, (2) Φ ∧ γ ∧ (¬Ψ ∨ new) is satisfiable, and (3) γ ∧ (¬Ψ ∨ new) 
|= newholds.

◦ (1) is equivalent to saying that Φ ∧ γ ∧ ¬Ψ ∧ ¬new is unsatisfiable. When (3) is
satisfied, it must be the case that γ 
|= new. Since newdoes not occur neither in Φ nor
in Ψ , (1) is equivalent to saying that Φ ∧ γ ∧ ¬Ψ is unsatisfiable, i.e., Φ ∧ γ |= Ψ
holds.

◦ (2) implies that Φ ∧ γ is satisfiable.
◦ (3) is equivalent to saying that γ ∧ (¬Ψ ∨new)∧¬newis satisfiable. This is equivalent

to saying that γ ∧ ¬Ψ ∧ ¬new is satisfiable. As a consequence, γ ∧ ¬Ψ must be
satisfiable, i.e., γ 
|= Ψ holds.

Thus, γ is a certificate showing Φ new positive to Ψ with respect to true, and this
completes the proof. ✷
5.4. Separability

Levesque [23] introduces a notion of formula separability that proves helpful for the
purpose of characterizing queries that can be soundly answered, using an efficient (but
incomplete in the general case) evaluation-based inference engine. In the propositional
case, separability can be defined as follows:

Definition 15 (Σ-separability). LetΣ ,Φ1, . . . ,Φn be formulas from PROPPS.Φ1, . . . ,Φn
areΣ-separableif and only if for every clause δ, we haveΣ∧Φ1∧· · ·∧Φn |= δ if and only
if Σ ∧Φ1 |= δ or · · · or Σ ∧Φn |= δ. When Σ is valid and Φ1, . . . ,Φn are Σ-separable,
they are said to be separablefor simplicity.

Example 6. Let Σ = (b⇒ c), Φ = (a ⇒ b) and Ψ = (c⇒ d). Φ and Ψ are not Σ-
separable since δ = (¬a ∨ d) is a logical consequence of Σ ∧ Φ ∧ Ψ but is neither
a consequence of Σ ∧ Φ nor a consequence of Σ ∧ Ψ . Contrastingly, Φ and Ψ are
separable.

Determining Σ-separable formulas can prove valuable for query answering in a
computational perspective. To be more precise, while the complexity of query answering
from a set of Σ-separable formulas remains coNP-complete, it is often advantageous from
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the practical side to replace one large instance of the query answering problem by a linear
number of smaller instances. This is what Σ-separability enables to do.

Interestingly, the background information Σ can be incorporated into the formulas
checked for separability, so that Σ-separability can always be mapped to separability.

Proposition 21. LetΣ ,Φ1, . . . ,Φn be formulas from PROPPS.Φ1, . . . ,Φn areΣ-separa-
ble if and only ifΣ ∧Φ1, . . . ,Σ ∧Φn are separable.

Proof. Trivial. ✷
This proposition also shows that Σ-separability and separability have the same

complexity in the sense that each of them can be polynomially many-one reduced to the
other.

As a direct consequence of Corollary 1, in the case where n= 2, separability coincides
with novelty-based independence:

Corollary 3. LetΦ andΨ be two formulas from PROPPS. Φ andΨ are separable if and
only ifΦ andΨ are novelty-based independent.

As a consequence, the complexity of separability and Σ-separability can be easily
established:

Proposition 22 (complexity of (Σ-)separability). Σ-SEPARABILITY and SEPARABILITY

are�p2 -complete.

Proof. It is sufficient to consider the separability situation (i.e., Σ is a tautology) since
Σ-separability can be polynomially many-one reduced to separability, and vice versa.
• Membership. Consider the following algorithm for the complement problem: guess a

clause δ and check that Φ1∧· · ·∧Φn |= δ holds, while, for any i ∈ 1 . . .n, Φi |= δ does not
hold. Clearly enough, the check step of this algorithm can be achieved in time polynomial
in the size of the input using an NP-oracle (only n+ 1 calls to the oracle are required), and
the algorithm returns “yes” if and only if Φ1, . . . ,Φn are not separable.
• Hardness. Trivial from the fact that checking novelty-based independence is �p2 -

complete, and separability coincides with novelty-based independence in the restricted
case where n= 2. ✷
5.5. Causal independence

The notion of causal independence in symbolic causal networks has been proposed by
Darwiche and Pearl in [9].

Definition 16 (causal structure). A causal structureis an ordered pair 〈∆,G〉, where∆ is a
propositional formula and G is a directed acyclic graph on a subset of Var(∆). The parents
of a variable v are called its direct causesand denoted Causes(v), its descendents are called
its effects, and its non-descendents are called its non-effectsand denoted Noneffects(v).
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The variables of Var(∆) that do not appear in G are called the exogenous propositions.
EXO(∆,G), or EXOfor short, denotes the set of exogenous propositions.

Independence for causal structure is closely related to conditional independence:

Definition 17 (causal independence). A causal structure 〈∆,G〉 is causally independentif
and only if

(a) ∆ is satisfiable and
(b) for every EXO-world ωEXO consistent with ∆, and ∀v ∈ G, we have

v ∼Causes(v)
∆∧ωEXO

Noneffects(v).

Accordingly, its computational complexity can be derived from some of the previous
results:

Proposition 23 (complexity of causal independence). CAUSAL INDEPENDENCE is �p2 -
complete.

Proof. First of all, we will make use of the following equivalence, obtained as a direct
rewriting of the definition of conditional independence:

〈∆,G〉 is causally independent if and only if ∆ is satisfiable and
∀v ∈ G, v ∼EXO∪Causes(v)

∆ Noneffects(v).

Now, checking causal independence comes down to a satisfiability test (in NP) and a
conditional independence test (in�p2 ). The intersection of a language in NP and a language
in�p2 is in�p2 , hence the membership of CAUSAL INDEPENDENCE in�p2 . As to hardness,
we exhibit a polynomial reduction from CONDITIONAL INDEPENDENCE OF SINGLE

VARIABLES (which has been shown to be �p2 -complete) to CAUSAL INDEPENDENCE.
Let 〈Σ,x,y,Z〉 such that x, y ∈ Var(Σ) and Z ⊆ Var(Σ), x 
= y , x /∈ Z, y /∈ Z. Let
M(〈Σ,x,y,Z〉)= 〈∆,G〉 where

• ∆=Σ ∧ newwhere newis a new variable;
• G contains an edge from newto x and an edge from newto y , and nothing else.

Now, 〈∆,G〉 is causally independent if and only if x ∼Z∪{new}
∆ y , or equivalently if and

only if x ∼ZΣ y . ✷
5.6. Non-interactivity

We have already shown how conditional independence relates to the classical notion of
probabilistic independence (Proposition 2). Several authors [4,10] have proposed notions
of independence in uncertainty calculi that are “less quantitative” than the probabilistic one.
Especially, possibilistic independence can be expressed using purely ordinal notions such
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as min and max: if π :Ω→[0,1] is a normalized possibility distribution (which imposes
the constraint maxω∈Ω π(ω)= 1), from which a possibility measureΠ : PROPPS→[0,1]
defined by Π(ϕ) = maxω|=ϕ π(ω) is induced (with the convention max∅ = 0), then X
and Y are non-interactivewith respect to π given Z [4] if and only if ∀ωZ ∈ ΩZ ,
Π(ωX ∧ ωY ∧ ωZ) =min(Π(ωX ∧ ωZ),Π(ωY ∧ ωZ)) (where X, Y and Z are pairwise
disjoint). The ordinal nature of this definition makes the connection to conditional
independence possible in both directions: not only conditional independence is obviously
a particular case of possibilistic non-interactivity, but we can also prove the following: let
Cut(π,α)= for({ω ∈Ω | π(ω)� α)}) where α ∈ [0,1]; we have

X and Y are non-interactive with respect to π given Z
if and only if ∀α ∈ [0,1], X ∼ZCut(π,α) Y holds.

Once remarked that the number of distinct α’s used in π is finite (becauseΩ is finite), this
establishes a useful connection, especially when it comes to computational considerations.
In practice, a possibility distribution is not specified explicitly but by means of a stratified
knowledge baseB = (Bα0 , . . . ,Bαn) where the Bi ’s are propositional formulas and α0 =
1 � α1 � · · · � αn > 0 (Bα0 denotes thus the most entrenched formulas and Bαn the
less entrenched ones); B induces the possibility distribution πB defined by πB(ω) =
min{1−αi | ω |= ¬Bi} (with the convention min∅ = 1). Then, using the equivalence above
and the property Cut(π,α)≡∧

β�1−α Bβ , it holds

X and Y are non-interactive with respect to πB given Z
if and only if ∀α ∈ [0,1], X ∼Z∧

β�1−α Bβ
Y holds.

The latter transformation being polynomial, all complexity results established in our paper
carry on to possibilistic non-interactivity when the input is a stratified knowledge base.

6. Concluding remarks

This paper is centered on conditional independence and its stronger form (strong
conditional independence) that we have introduced. Our main contribution is related to
both the “philosophical” position and the “pragmatic” position with respect to irrelevance.

On the one hand, we have investigated structural properties for both forms of
independence. Simple conditional independence was known to satisfy all properties of
semi-graphoids, but not intersection; the latter is also satisfied by strong conditional
independence, while the former ones still hold, which mean that strong conditional
independence satisfy the properties of graphoids. These results are synthesized on Table 3.

Table 3
Conditional independence vs. graphoid axioms

∼ZΣ ≈ZΣ
symmetry yes yes
decomposition yes yes
weak union yes yes
contraction yes yes
intersection no yes



J. Lang et al. / Artificial Intelligence 141 (2002) 79–121 117

We have also characterized (simple) conditional independence in probabilistic terms
(cf. Proposition 2); this confirms that conditional independence is a good logical
counterpart to probabilistic independence, as Darwiche says [8]. From this result,
analogous characterizations for strong independence follow.

On the other hand, we have identified the complexity of the various (in)dependence
relations considered in this paper, and a number of characterizations have been given as
well. In light of the results established, it appears that most(in)dependence relations have
a high complexity. The three forms of conditional independence (and the notions connected
to them) are in complexity classes located at the second level of the polynomial hierarchy.
This is not so surprising since this is where a large part (if not the majority) of important
problems in knowledge representation2 is located.

According to Darwiche [8], conditional independence can be useful for improving
many forms of inference, including satisfiability, entailment, abduction and diagnosis.
In optimal cases, for example, a satisfiability problem can be decomposed into a small
number of satisfiability problems on easier knowledge bases (with less variables). We have
also briefly mentioned how conditional independence can prove valuable in the context of
reasoning about actions. For all these applications, the computational value of conditional
independence lies in the fact that a global computation can be (soundly) decomposed into
a number of local computations (which can be performed efficiently), whenever some
independence relations are satisfied. Similar ideas have been developed in [2,17].

The complexity results given in this paper show that it is not always a good idea to
search in an intensive way for independence relations as a preliminary step to inference.
Especially, it may be paradoxical (and sometimes dangerous) to preliminarily compute a
�
p

2 -hard independence relation to help solving a NP- or coNP-complete problem (given
that the input sizes of both problems are polynomially related). Fortunately, this negative
comment has only a general scope (worst case complexity results have been considered),
and for many instances, taking advantage of (ir)relevance information can prove quite
efficient. Indeed, from the practical side, our complexity results show only that the
exploitation of relevance information to improve inference must be done in a careful way.
A way to escape from intractability consists in assuming a representation of the knowledge
base from which some independence relations can be obtained “for free”, or at least in
an efficient way. This is what Darwiche achieves with the notion of structured database.
While it is not the case that every propositional knowledge base satisfies the locality and
modularity conditions of a structured database (see [8] for details), several independence
relations can be directly read off from a structured database, and some other ones can be
inferred efficiently thanks to the notion of d-separation. As Darwiche states in [8], it is not
the case that all the conditional independence relations with respect to a structured database
can be found this way. In some sense, our complexity results confirm that focusing on some
independence relations, easy to be found, is the good way to do. The same conclusion can
be drawn for relevance relations used to characterize what “tells about” means.

2 Such as abduction, nonmonotonic inference, belief revision, belief update, some forms of planning and
decision making.
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Last but not least, our paper shows how closely many independence relations pointed
out so far in the literature are related to conditional independence. Thus, strong conditional
independence, stronger than Darwiche and Pearl’s conditional independence, can easily
be rewritten using the latter notion (Proposition 3). Formula-variable independence can
be viewed as a special case of strong conditional independence (Proposition 12). Simple
and strong conditional independence coincide on marginal independence. At the other

Fig. 1. Connections between (in)dependence relations.
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extreme, strong ceteris paribusindependence is a particularly interesting notion which is
equivalent to Lakemeyer’s irrelevance between subject matters (Proposition 16). The three
notions of novelty are special cases of strong ceteris paribusdependence (Proposition 19)
and novelty-based independence is a special case of strong ceteris paribusindependence,
which proves to be a special case of Levesque’s separability (both coincide for the case of
two formulas, see Proposition 21). Finally, there is also a close link between conditional
independence and non-interactivity. A synthetic description of the relationships between
various definitions is depicted on Fig. 1.

We think that pointing out such close connections is important because (1) babelism
is always a bad thing, and (2) known results may appear synergetic. Thus, it is
possible to take advantage of results about conditional independence to achieve a better
understanding of the other forms of independence considered in this paper. Specifically,
we have been able to identify their computational complexity knowing the complexity
of conditional independence. Similar synergetic roles can emerge for other concerns,
including algorithms and applications. Thus, though the practical computation of many
of the independence relations considered in this paper has not been investigated in depth,
our results show that it is possible to benefit from Darwiche’s computational framework
for conditional independence, at least as a starting point.

This work also opens several ways for further research. Especially, it would be
interesting to know how the connections between logical conditional independence
and conditional independence in ordinal uncertainty calculi could be transposed to the
notions of utility independence and preferential independence, as defined in multicriteria
decision making and studied from a knowledge representation perspective by Bacchus and
Grove [3].
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