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Abstract

Independence—the study of what is relevant to a given problem of reasoning—is an important
Al topic. In this paper, we investigate several notions of conditiona independence in propositional
logic: Darwiche and Pearl’s conditional independence, and some more restricted forms of it. Many
characterizations and properties of these independence relations are provided. We show them related
to many other notions of independence pointed out so far in the literature (mainly formula-variable
independence, irrelevance and novelty under various forms, separability, interactivity). We identify
the computational complexity of conditional independence and of al these related independence
relations.
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1. Introduction
1.1. Motivations

Focusing on what isrelevant is a natural approach to design efficient knowledge-based
engines. Indeed, as a preliminary step to various intelligent tasks (e.g., planning, decision
making, reasoning), it isreasonableto discard everything but what is relevant. For instance,
| do not need to remember the date of birth of Arthur Rimbaud when my objectiveis to
cook noodles. The idea of focusing on what is relevant is strongly related to many Al
notions, like local computation and micro-theories[16]. Irrelevanceis also a central topic
in probabilistic reasoning [29]. Furthermore, the complementary notion of relevance is
a key notion for defining information filtering policies [13], and cooperative answering
techniques [6]. For instance, when a database user is unable to express her queries in
a formal way, an approach consists in determining her topics of interest, then to return
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in a structured way all what the database tells about such topics. Obvioudly, relevance
relations are needed to characterize precisely what “tells about” means. This explains
why (ir)relevance, under various names as independence, irredundancy, influenceability,
novelty, separability, and interactivity is nowadays considered as an important notion in
many Al fields[1,15,24,32].

Inthefollowing, relevanceis captured by relationsin the metalanguage of propositional
logic. Arguments of such relations are propositional formulas encoding knowledge bases
and pieces of knowledge (including queries), and sets of propositional variables or literals
that represent, for instance, subject matters or topics of interest.

To what extent is the goal of improving inference reachable through (ir)relevance?
To address this point, a key issue is computational complexityindeed, assume that we
know that the resolution of some reasoning problems can be speeded up once some
relevance information has been dlicited. In the situation where it is computationally harder
to point out such information from the input than to reason directly from it, computational
benefits are hard to be expected. If so, alternative uses of relevance for reasoning are
to be investigated. For instance, searching for relevance information can be limited by
considering only those pieces of knowledge that can be generated in a tractable way. In
the case where such information depend only on the knowledge base, another approach
consists in (tentatively) compensating the computational resources spent in deriving the
relevance information through many queries (computing the relevance information can
then be viewed as aform of compilation). Clearly enough, the computational issueis aso
central when relevance relations are not used to improve inference but for other purposes,
like defining information filtering policies or designing cooperative answering approaches.
Thus, a cooperative answering approach relying on a highly intractable relevance relation
could hardly be used on large instances.

Unfortunately, little is known about the computational complexity of relevance. This
paper, together with a companion paper [20], contributes to fill this gap. The complexity
of various logic-based relevancerelationsisidentified in a propositional setting. By logic-
based we mean that the notions of relevance we focus on are not extra-logical but built
inside the logic: they are defined using the standard logical notions of (classical) formula,
model, logical deduction, etc.

1.2. Scope and organization of the paper

In the companion paper [20], severa forms of relevance bearing between a piece of in-
formation (apropositional formula) and a set of literals or variables have been investigated
(some of these notions are briefly recalled in Section 2). Here, we consider conditional
independencentroduced as a logical counterpart to probabilistic independencein [7,8].
Intuitively, two sets of variables X and Y are conditionally independent given a set of vari-
ables Z and aformula X if and only if, whichever full information about Z we consider,
the addition of information about X in X' does not enable us telling anything new about
Y. Darwiche [8] intensively shows how the exploitation of conditional independence can
prove computationally valuable for several forms of inference (including deduction, ab-
duction, and diagnosis). Basically, through the exploitation of conditional independence, a
global computation can be replaced by a number of efficient, local computations.
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According to Darwiche [8], there are two main positionsin the literature with respect to
irrelevance: (1) a “philosophical” position where we start with some intuitive properties
of independence, and some independence relations satisfying these properties are then
exhibited, and (2) a “pragmatic’ position where independence is not an absolute notion
but a task-specific one and its utility is measured at the light of the improvement it offers
when taken into account.

In this paper, we adhere to both positions. We first focus on Darwiche’s conditional
independence. We compl ete the investigation reported in [8] by showing close connections
with probabilistic independence (the philosophical side), by identifying the computational
complexity of conditional independence and by suggesting additional applications in the
context of reasoning about actions (the practical side). In addition, we introduce a useful
restriction of conditional independence, namely strong conditional independence. For this
restriction, any conjunctive information (not necessarily complete) about Z is acceptable.
From the philosophical side, we present several semantical characterizations of strong
conditional independence and some of its metatheoretic properties. Especialy, we show
that strong conditional independence satisfies all graphoid axioms. From the practical
side, we identify the computational complexity of strong conditional independence in
the general case and in some restricted ones. Then, we successively consider several
forms of (ir)relevance aready pointed out so far in the literature, and show them
closely connected to conditional independence: formula-variable independence [20],
gtrict relevance, explanatory relevance, relevance between two subject matters [19],
novelty under various forms (positive and negative, novelty-based independence) [14,26],
separability [23], causal independence [9], and interactivity [4]. As additional results, we
identify the complexity of all these independence relations.

The rest of the paper is organized as follows. Some formal preliminaries are given
in Section 2. Conditional independence relations and some metatheoretic properties are
presented in Section 3. Complexity results are reported in Section 4. Close connections of
both notions of conditional independence with existing irrelevance relations are exhibited
in Section 5. Finally, Section 6 concludesthe paper.

2. Preliminaries
2.1. Propositional logic

Let PSbe afinite set of propositional variables. PRORss is the propositional language
built up from PS the connectives, and the Boolean constants true and falsein the usual
way. For every X C PS PROPx denotes the sublanguage of PRORbs generated from the
variables of X only. A literal of PROF is either a variable of X (positive literal) or the
negation of avariable of X (negativeliteral). A clause § (respectively aterm y) of PROP
is a (possibly empty) disunction (respectively conjunction) of literals of PROP. Often
clauses and terms are considered as the sets of their literals. A CNF (respectively a DNF)
formula of PROP is a conjunction of clauses (respectively a digunction of terms) of
PROF.
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From now on, X' denotes a propositional formula, i.e., a member of PRORss. Var(X)
isthe set of propositional variables appearing in X'. Elements of PSare denoted x, y, etc.
Subsets of PSaredenoted X, Y, etc. In order to simplify notations, we will assimilate every
singleton X = {x} with itsunique element x. The size | ¥'| of apropositional formula X' is
the number of symbols used to write it.

Formulas of PRORss are interpreted in the usual way. Especialy, every finite set of
formulasis identified with the conjunction of its elements. Full instantiations of variables
of X € PSarecalled X-worlds and denoted by wy; their set is noted 2. Every X-world
wx Will beidentified with the term containing x asaliteral when x isinterpreted astruein
wyx,and —x when x isfasein wy for every x € X. Equivalently, wx will also beidentified
with the (conjunctively-interpreted) set of these literals. Whenever wy is an X-world and
wy isaY-worldst. X NY =0, (wx, wy) denotesthe X U Y-world which coincides with
wx on X and with wy on Y. In order to simplify notations, we assume that every wy
represents an X-world (even when wy € 2y is not stated explicitly). PSworlds are the
usual interpretationsover PS their set isnoted £2. When X istruein aninterpretation w, @
isamodel of X. When X hasamodel, it is said to be consistent or satisfiable; otherwise,
it is said to be inconsistent, contradictory, or unsatisfiable. When every interpretation of
2 isamodd of X, ¥ is said to be valid, or a tautology. As usual, = denotes classical
entailment, and = denoteslogical equivalence. wy isapartial model of X whenever there
existsamodel of X that coincides with wy on X; stated otherwise, wy is apartia model
of X whenever wx A X isconsistent (here, wx isviewed as aterm).

Given a set of interpretations S C 2, we denote for(S) aformulathat has S as a set of
models. Of course, there are many equivalent formulas having S as models, but for will
be used only when this does not matter. When S = {w}, i.e., S is composed of a single
interpretation, we write for(w) instead of for({w}). Conversely, given a formula X', we
denote Mod(X') the set of models of X.

In this paper we use the concepts of implicates and prime implicates.

Definition 1. The set of implicates of aformula X', denoted by IS(X), is defined as:
IS(X) = {clause§ | ¥ = §}.
The set of primeimplicates of aformula X', denoted by IP(X), is defined as.
IP(X)={8€lS(X) |38 €IS(X) st. 8 =8 and s =5}

It iswell known that a clause § is alogical consequence of aformula X' if and only if
itisentailed by at least one primeimplicate = of X'. This can be checked efficiently since
aclause § isalogica consequence of a clause  if and only if § is a tautology or every
literal of = isaliteral of 5. Accordingly, the primeimplicatesform of X' can be considered
as acompilation of X [30].

Implicants and prime implicants will aso be considered in the following.

Definition 2. The set of implicants of aformula X', denoted by SI(X), is defined as:
SI(Z) ={termy |y E X}
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The set of primeimplicants of aformula X', denoted by PI(X), is defined as.
PI(X)={y eSIX) |y eSX)st.y =y andy’ =y}

Often, we will not be interested in al prime implicants (respectively prime implicates)
of X but only in the subset IPX (X)) (respectively P1¥ (X)) containing those built up from
variablesof X, only.

Of course, the set of implicants/ates, prime implicants/ates may contain equivalent
termg/clauses. We can restrict our attention to one term/clause for each set of equivalent
terms/clauses. Stated otherwise, in both IP(X), PI(X), IPX(X), PIX(X), only one
representative per equivalence classis kept.

2.2. Formula-variable independence and forgetting

Let usfirst recal the definitions and results about formul a-variable independence and
variable forgetting [20] needed in this paper.

Let X be a formula from PRORs and X be a subset of PS X is semantically V-
independent fronX if and only if there exists aformula @ st. @ = X holdsand @ is
syntactically V-independent from X, i.e., Var(®) N X = . When X isasingleton {x} we
say that X' is V-independent from x (instead of {x}). It can be easily shown [20] that X is
(semantically) V-independent from X if and only if X isV-independent from each variable
of X. The set of variables on which aformula X' dependsis denoted by DepVarXY).

For instance, X = (a A (b V —b)) is V-dependent on a and V-independent from b, and
DepVarX) = {a}.

For every formula X' and every variable x, X, .o (respectively X', 1) is the formula
obtained by replacing every occurrence of x in X by the constant false(respectively true).
The next four statements are equivalent [20]:

(1) X isV-independent from x;
(2) Yrco=2r e,

(3) r= E)H—O;

4 X=X,1.

Variable independence can be determined in an efficient way when X' is given in some
specific normal forms, namely its prime implicates form or its prime implicants form. For
such normal forms, V-independence comes down to its syntactical form. Namely, the next
statements are equivalent [20]:

(1) X isV-independent from X;
(2) PI(X) € PRORs x;
(3) IP(X) € PRORg x.

The problem of determining whether X' is V-independent from X is coNP-complete[20].
A basic way to render a formula X' V-independent from a given set X of variables
consistsin forgettingX in X.
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Let X beaformulafrom PRORsand let X be a subset of PS Forgetvar X, X) isthe
formulainductively defined as follows:

e ForgetVar X, ) = ¥,
e ForgetVar X, {x}) = X1V Xy,
e ForgetVar X, {x} UY) = ForgetVarForgetVar X, Y), {x}).

For instance, with X = (—a v b) A (a Vv ¢), we have ForgetVar X, {a}) = (b V ¢).

As adirect consequence of the definition, ForgetVar X, {x1, ..., x,}) is equivalent to
the quantified Boolean formula (usually with free variables!) noted 3x1 ... 3x, X.

It can be shown that ForgetVar X', X) is the logically strongest consequence of X' that
is V-independent from X (uptological equivalence). Thus, if aformulag isV-independent
from X, then ¥ = ¢ if and only if ForgetVar X, X) = ¢. Accordingly, X' isV-independent
from X if and only if ¥ = ForgetVar X', X) holds.

It turns out that forgetting is afundamental operation for many Al tasks[20,21,25].

2.3. Computational complexity

The complexity results we give in this paper refer to some complexity classes which
deserve some recalls. More about them can be found in Papadimitriou’s textbook [28].
Given a problem A, we denote by A the complementary problem of A. We assume that
the classes P, NP and coNP are known to the reader. The following classes will aso be
considered:

e BH> (also known as DP) isthe class of all languages L such that L = L1 N L, where
L1 isin NP and L2 in coNP. The canonical BH2>-complete problem is SAT-UNSAT: a
pair of formulas (¢, ¥) isin SAT-UNSAT if and only if ¢ is satisfiable and  is not.
The complementary class coBH isthe class of all languages L suchthat L = L1 U Ly,
where L1 isin NP and Ly in coNP. The canonical coBH2-complete problem is SAT-
OR-UNSAT: apair of formulas (¢, ¥) isin SAT-UNSAT if and only if ¢ is satisfiable or
¥ isnot.

e =7 = NP" is the class of al languages recognizable in polynomial time by a
nondeterministic Turing machine using an NP oracle, where an NP oracle solves any
instance of an NP or acoNP problemin unit time. The canonical 25 -complete problem
2-QBF istheset of al triples (A = {a1,...,an}, B=1{b1,...,b,}, @) where A and B
are two digoint sets of propositional variables and @ is a formula of PROPy_g. A
positive instance of it is such that there exists an A-world w4 such that for every B-
world wp we have (wa, wp) = .

e I} =cox) = coNP"P. The canonical I15-complete problem 2-QBF is the set of all
triples (A = {a1,...,an}, B={b1,...,b,}, ®) where A and B are two digoint sets
of propositional variablesand @ isaformulaof PROP, 5. A positiveinstance of it is
such that for every A-world w4 there exists a B-world wp such that (wa, wp) E @.
Both X} and IT, are complexity classes located at the so-called second level of the
polynomial hierarchy [31] which plays a prominent role in knowledge representation
and reasoning.
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3. Conditional independence

Conditional independence can be seen as a generalization of formula-variableindepen-
dence. Given three sets of propositional variables X, Y and Z, and a propositional formula
X', we want to express the fact that, given X and some knowledge about Z, the truth value
of the variablesin X may affect the truth value of variablesin Y (and vice versa.

3.1. Simple conditional independence

Darwiche and Pearl’s conditional independence [8,9] (often referred as “simple
conditional independence” or “conditional independence” in the following) is defined as
follows:

Definition 3 (conditional independengel et X be a propositiona formulaand X, Y, Z
be digoint subsets of PS X and Y are independengiven Z with respect to X' (denoted
by X ~§ Y) if and only if Vox € 2x, Yoy € 2y, Yoz € 27, the consistency of both
wx Nwz A X and wy A wz A X impliesthe consistency of wx A wy Awz A X.

Examplel.Let ¥ ={—av—-bVvc,—aVvbVvd,aVv—c,—aVvcVvd,bVv—cvd}. Wehave
the following:

e ¢~ d.Indeed, (c Ad)A X, (c A=d) A Z, (mc Ad) A Z and (=c A—d) A T areall
consistent.

° cf{g}d. Indeed, (a A —c A =d) A X is inconsistent while (a A —=c) A ¥ and
(a A —d) A X are both consistent. Intuitively speaking, when a is true, learning —¢
tellsthat d istrue.

o C ~{§’b} d. Indeed, the set of {a, b, c}-worldsthat are consistent with X' is

Si={anbArc,an—bAc, aN—bA—-c, maANbA—-c, maA—bA-—cl;
the set of {a, b, d}-worldsthat are consistent with X' is
So ={anbnrd, aNbA—d, an—-bAd,
—aAbAd, maNbA—d, —an—-bAd};
and the set of {a, b, ¢, d}-worldsthat are consistent with X (in other terms, the models
of X)is
Ss={arnbArcnd, anbrcAn—d, an—bAcAd, aN—bA—-cAd,
—aAbA=cAd, maANbAN—=cA—d, maAN—bA-cAd,
—a A —=b A —c A—d};
it can be checked that for each w1 € S1 and each ws € S» such that w1 and wy givethe
sametruth valuesto a and b, then w1 A w2 € S3.

As explained by Darwiche and Pearl [9], X ~% Y holds if and only if for any possible
full informationabout Z, adding some information about Y does not tell us anything new
about X . Intuitively, if in the context wz, adding wy gives someinformation about Y, then



86 J. Lang et al. / Artificial Intelligence 141 (2002) 79-121

some partial modelsof X over Y, i.e., those in contrast with the new information obtained
on Y, should not remain partial modelsany longer. Asaresult, X and Y areindependent if,
for any “consistent” choice (with X) of wy, wy, and wz, theformulawx A wy A wz A X
is consistent.

Clearly enough, conditional independence given Z with respect to X satisfies the
following properties[8]:

Proposition 1.

X ~4Yifandonlyify ~% X.

1) Z v ifand only ify ~%

(2) If ¥ = %', then(X ~% Y ifand only if X ~%, Y).
(3 If X' X,y CYandX~% Y, thenX'~% v'.

Proof. (1) and (2) are straightforward. Asto (3), assume X’ C X, Y’ C Y and X ~§ Y
and let wy’, wy: and wz St. wy' A wz and wy: A wz are both consistent. Since wy’ =
Vo 20, @x, thereisan wx O wxr st. wx A wz is consistent, and similarly, there is an
wy D wy St. wy Awz isconsistent. Now, because X ~% Y, weget that wx Awy Awz A X
is consistent, which in turn implies the consistency of wxy' A wyr Awz A X. O

However, conditional independence is stable neither by contraction nor by expansion
of Z. For instance, taking the same X' as in Example 1, we have ¢ J)’D d and however

c 74{)?} d; we have ¢ 76{2“} d and however ¢ ~{§’h} d. Conditional independenceis also not
stable by weakening or strengthening X' in the general case. Thus, while we have ¢ ij d,

we also have ¢ %, ... 4 Whilewe have c~"d, we also have c #i&7 _, d.
Thetwo limit cases when Z is respectively empty or equal to Var(X') \ (X UY), are of

particular interest, especially when computational complexity isinvestigated.

Definition 4 (marginal independengeX and Y are marginally independenwith respect
to ¥ if and only if X ~%. Y.

Definition 5 (ceteris paribus independerjc&’ and Y areceteris paribus independewith
respect to X7 (denoted by X ~SS'"° PaPUSyy if and only if X ~ Y2 FNEWD)

Darwiche showed [8] that conditional independence satisfies all semi-graphoid axioms
which are considered reasonable postulates for conditional independence relations. We
recall here these axioms, more so because we will need them further on. Let Ind(X, Z,Y)
be an independence relation between X and Y given Z (where X, Y and Z are pairwise
digoint sets of variables).

Symmetry Ind(X,Z,Y) < Ind(Y, Z, X). (S
Decomposition Ind(X, Z,Y UW) = Ind(X, Z,Y). (D)
Weak union Ind(X,Z,YUW)=Ind(X,ZUW,Y). (WU)
Contraction Ind(X,Yuz,W)andInd(X, Z,Y)= Ind(X, Z,Y UW). (©

The graphoid axiomsre composed by al the above ones plus the following one.



J. Lang et al. / Artificial Intelligence 141 (2002) 79-121 87

Intersection Ind(X,ZUW,Y)andInd(X,ZUY,W)=Ind(X,Z,YUW). ()]

Simple conditional independence does not satisfy Intersection. Indeed, let
Y=o wz=>xVy}

—“yA-wAzA X and —x Az A X are both consistent while =x A =y A—w Az A X iS
inconsistent. Hence x %% {y, w}, whilex ~&"! y and x ~{Z*) 1 both hold.

Hereafter, we complete Darwiche's characterization of conditional independence by
establishing a clear link between simple conditional independence and probabilistic
independence. This shows that there is more than an analogy between these notions but

a concrete mathematical connection.
Definition 6. Let pr be a probability distributionon 2, and X, Y, Z C PS

e X and Y are independent given Z according to pr, denoted by X ~g, Y, if and only if
Yox € 2x, Yoy € 2y, Yoz € 27, we have

priwx Awylwz) =pr(ox|wz) - pr(wy|wz).
e prisstrictly compatiblewith apropositional formula X' if andonly if Vo € 2, w = ¥
isequivaent to pr(w) > 0.

Proposition 2. X ~% Y if and only if there is a probability distribution pr strictly
compatible with% such thatx ~Z Y.

Proof. (=) Forany A C Var(X), let Congi(X) = {w4 | (wa A X) iSconsistent}. Assume
that X ~§ Y. Let us define the probability distribution pr by:

Yo = (wx, 0y, 0z, Ovar($)\(XUYUZ)))
if =X then

pr(w) = [Con L )
Cong, (X2)].|Cong (X Awz)].|Cong (X Awyz)|.IMod(wx Awy Awz AX)]
if w =X then pl’(a)) =0.

First, pr isa probability distribution:
> pr(e)

weR
> pr(o)

wEX

2. X 2 P

wzeCong (X)) ¥X @y w2(wy,wy,wz)

> > > :
wzeCongz (X)) wyeConsy (wzAY) wyeCong (wzAX) ICong; (Z)].1Con% (¥ A wz)I.ICoNg (X A wz)

1

wzeCong (%) IConsz (2]

=1
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Itisobviousthat pr is strictly compatible with X,
Lastly, let us check that X ~/ Y. For al wy, oy, 0z we have

1
Prx Ay A7) = S (5)].1ConS (% A wz)].|Cong (& Awz)|
1
PrHOx A 02) = I Cons (2] ICons (= Awp)l
pr(wz) -
D7) =T = o
“77 |Cong (2)]
Noxlwz) = : .
priwxlwz) = |ICons (X A wz)|’
similarly,
foylog) = — -
prioylwz) = |Cong (X Awz)|’
1
pr(ox A wylwz) = = pr(wx|oz).pr(oylwz).

|Cong (X A wyz)|.|Cong (X A wz)|

Hence, X ~Z Y holds.

(«) Let pr be a probability distribution strictly compatible with X such that X ~§, Y.
For al wyx,wy,wz, the consistencies of wx A wz A X and of wy A wz A X imply,
respectively, that pr(wx A wz) > 0 and pr(wy A wz) > 0 by strict compatibility with
X, therefore pr(wx A wy A wz) > 0 by probabilistic independence of X and Y given
Z. Then, using again strict compatibility of pr with X', we get the consistency of
wx Aoy Aoz AX. O

Darwiche shows [8] how conditional independence can prove a valuable notion to
improve many forms of reasoning (including consistency, entailment, diagnosis and
abduction). It can aso be helpful in the context of reasoning about actions, when dealing
about concurrency: indeed, the following definition of compatibility between actions
consisting in saying that two actionse andb are compatible if and only if for each initial
situation where both actiong and b are separately applicablé.e., without producing
an inconsistengy thena and b are jointly applicable[12], can be mapped easily into a
conditional independence problem.

Conditional independence may also be helpful for computing ramifications of an action:
if Dep(a) isthe set of variables that are directly influenced by action a (i.e., appearing in
its effects), and if X' isthe set of static laws (or integrity constraints), then any variable y
such that Dep(a) ~§g y is guaranteed to be “ramification-free” (the converse, however, is
not true).

Altogether, this explains why conditional independence is an important notion and
motivates the investigation of its computational complexity.
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3.2. Strong conditional independence

Simple conditional independence does not apply to contexts where the new information
that can belearned about Z isincomplete, i.e., the truth value of some variablesof Z is not
available, or, more generally, many partial (and possibly mutually exclusive) Z-worldsare
possible. For instance, if Z representsa set of possibly measurable variables, associated to
a set of sensors (one for each z € Z), it can be the case that some measurementsfail, i.e.,
the value of z is not always available.

The following notion, strong conditional independencetrengthens Darwiche and
Pearl’s conditional independence by taking into account the case in which the information
about Z is any conjunctive informatigri.e., any term of PROPF;. Namely, X and Y are
strongly independent given Z with respect to X' if and only if, whichever conjunctive
information (i.e., a set of facjswe may learn about Z, then the addition of information
about Y does not enable oneto tell anything new about X .

Definition 7 (strong conditional independence_et > be a propositional formula and
X, Y, Z bedigoint subsetsof PS X and Y arestrongly independemjiven Z with respect to
X (denoted X %é Y) if and only if, for every term yz of PROR,, Vox € 2x, Yoy € 2y,
the consistency of both wx A yz A X and wy A yz A X implies the consistency of
wx Aoy ANyz AN X.

Strong conditional independence has the same metatheoretic properties as conditional
independence, plus the preservation by contraction of Z (whichisatrivial consequence of
the definition).

Marginal strong conditional independence obviously coincides with marginal condi-
tional independence. Ceteris paribusstrong conditional independence is defined by im-
posing Z = Var(X) \ (X U Y) and denoted by X ~55'e"s parbusy

Since the set of al possible choices for y; corresponds to the set of al partial
assignments of the variablesof Z, we get:

Proposition 3. X ~% Y if and only ifX ~% Y for everyZ' C Z.

Proof. Comes straightforwardly from thefact that each term yz can be uniquely identified
with a Z’-world wz for some Z’ C Z and conversely. O

Obviously, X ~% Y entails X ~% Y. The converse generally does not hold since
conditional independence is not stable by contraction of Z. Indeed, stepping back to the
previous example, we have ¢ ~{§’h} d but c ae{g’h} d since c ~{§} d does not hold.

The following results characterize strongly conditionally independent sets of variables.
They both express that X %é Y holdsif and only if any set of simple facts (i.e., literals)
we may learn about Z never enables one to deduce a nontrivial disjunctive information
involving both X and Y.
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Proposition 4 (consequence decomposability). X ’«eé Y if and only if, for any termy; of
PROR;, andVex € PROP, Yoy € PROR, yz A X = ¢x V @y impliesyz A X = gx or
Yz AL Egy.

Proof. (=) Assume that X ~% Y and let y; be aterm of PROP;, ¢x € PROF and
Yy € PROR/.

yz can be identified with a unique Z’-world w for a unique subset Z’ of Z. We now
haveto provethat wy A X = ox vV oy impliesswz A X Eex Orwz A X = py.

So, assume that wz A X B ox and wzr A X = @y. Since wy A X A —@x and
wz A X A -y are both consistent, there exist two extensions w and o’ of wz st.
wkEwy ANXA-px and o’ = wz A X A -y, Let wx bethe restriction of @ to X and
w), the restriction of ' to Y. Then wy = —¢x, oy = —¢y. NOW, 0 = wz A X A —px
implies that wy A wz A X is consistent; similarly, wx A @), A X is consistent. These
two facts, together with the assumption that X %é Y, entail that wx A wy Awz A X is
consistent, and thus, since wy = —¢x and v} = —gy, We get wx A —gx A =gy A X
consistent, i.e., wx A X = ox V oy.

(<) Assume that, for any term yz of PROPR;, Vox € PROF, Vopy € PROR:
yz AN X Eex Vey impliesyz A X Egpx or yz A X =gy, and let wyx, oy and wz
st. wxy A wz A X is consistent and wy A wz A X is consistent. Let yz = for(wyz),
px = —for(wy) and ¢y = —for(wy). The consistency of wx A wz A X implies that
yz A X e ex; Similarly, yz A X B @y. Together with the initial assumption, thisimplies
that yz A X & @x V @y, hencethe consistency of wx A wy Awz A X. O

The following property expresses strong conditional independence in terms of prime
implicates. Indeed, if a formula X' is expressed as its set of prime implicates, checking
strong conditional independence with respect to X' can be done by checking whether there
are clauses that contain both variablesfrom X and from Y.

Proposition 5. X ~% Y if and only if no§ € IPXYYYZ (%) includes both a variable ok
and a variable ofy.

Proof. (=) Supposethat X ~% Y andlet§ € IPXVYYZ(X). Letusnotes = 8x v 8y V iz,
where §x (respectively 8y, §z) is a clause of PROP (respectively of PROR,, PROF,).
Using Proposition 4, X A =87 =38x Vv 8y impliesthat X A =8z E=8x or ¥ A =8z E 8y,
which isequivalentto X =6x v éz or ¥ =68y v 8. Thus, if § contains both a variable
from X and avariablefromY,i.e., §x and §y are not empty, then § is not minimal among
the clauses of PROPy_yuz entailed by X and thusit is not in IPXYYYZ (). Therefore,
either §x or 8y isempty.

(<) Suppose that X aeé Y. Then, due to Proposition 4, thereisaterm y; in PROF;,
dox € PROF, Jpy € PROR st. X Ayz = ox Voy and X Ayz e ox, X Ayz = oy. Let
8z beaclausest. §z = —yz. Since X A yz £ ¢x, and because the propositional formula
@x isequivalent to the conjunction of its prime implicates, thereisaprimeimplicate 5y of
ox St. X A yz £ 8x, or equivalently X b= 67 v 8x. Similarly, there is a prime implicate
8y of py st. X &8z vy. Now, sincepx = 38x and gy =38y, wehave px V oy =38x V 3y
and therefore X' A yz |=38x V 8y, or equivalently, X' = §x Vv 8y Vv §z. Consequently, there
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isaprimeimplicate § of X' s.it. § isasubclause of 6x Vv 8y Vv 8z. If § were a subclause of
8x V &z it would be the case that ¥ = 6x Vv 8z, which is not possible; and similarly for
8y vV 8z. Thusé containsat least avariableof X and avariableof Y. 0O

As a consequence of Proposition 5, strong conditional independence can be reduced to
the problem of checking strong conditional independencein the case in which both X and
Y are composed of asingle variable.

Proposition 6. X ~Z Y if and only if¥x € X Vy € Y, x a5 K MDUILD o

Proof. (=) Assumethat X ~% Y, andlet x € X, y € Y. Remarking that
XUYUZ={x}U{ytu(Zu(X\{x})u(Y\{»})) (*)

the characterization given by Proposition 5 can be rewritten thisway: X %é Y if and only
if V8 e IPHIVIVEZUADUOND) (), § does not mention both x and y, which, using
again Proposition 5, means that x ~ g““‘\{”)w\{”)

(<) If X 2% Y then thereis a § in IPXYYYZ (%) mentioning both an x; € X and a

y; € Y; then, using again identity (x), we get § € IPZYX\XDUID (3, which, using

L. . . ZU(X\{ Y\{y;
Proposition 5, implies.x; 5% VIR

This result is useful for the practical computation of strong conditional independence
relations. Note that there is no similar result for (standard) conditional independence.
Things become even simpler with ceteris paribustrong independence, since Proposition 6
becomes: X A5t PAOUSy it ang only if Vx € X Vy e ¥, x A5 PATPUSy (6f | e,
mal15in[19]).

According to Proposition 5, x %% y holds if and only if there is a prime implicate
§ in IPZYy}(3) mentioning both x and y. This is equivalent to saying that there is a
prime implicant y in P12V (2 = y) or in PIZY™} (X = —y), consistent withs and
mentioning x. The consistency condition is necessary; indeed, let us consider X = {¢ =
a,d = b} and Z = {c,d}; PI?Y4 (2 = b) = {¢c A —a,d} mentions a but nevertheless
a %{;,d} b holds, thisis because ¢ A —a isnot consistent with X' or, in other words, ¢ A —a
isaprimeimplicant of ¥ = b only because it is a prime implicant of —X'. Thus, the set
of prime implicants of interest is P12V} (y) filtered by removing those containing aprime
implicant of =X, which corresponds exactly to the set of minimal abductive explanations
for y with respect to X', where the set of possibleindividual hypothesesisthe set of literals
built up from Z U {x} [11]. Equivalently, this set is the label of y according to the ATMS
literature [30]. This leadsto the following characterization:

Proposition 7. Let P15 () be the disjunction of all prime implicangsin P17V} (£ =
¢) such thaty A ¥ is consistent. Themr ~% y if and only if both PE"")(y) and
P@U{x}(_,y) are V-independent from.

Wefirst prove the following lemma:
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Lemma 1. x #% y if and only if 3y € PIZYW(¥ = y) U PIZYW(X = —y) sty
mentionst andy A X' is consistent.

Proof. (=) Assume that x %% y; from Proposition 5, we know that there is a prime
implicate § € IPZY*}(x) mentioning x and y. Without loss of generdity, let § =
xVyVdzwheresz € PROP;.Lety =—x A—é7.

e if y A X wereinconsistent, then ¥ A—x A—§z wouldbeinconsistent,i.e., ¥ =8z Vx;
thus, §z v x v y would not be a prime implicate of X (because it would not be
minimal). Thus, y A X isconsistent;

e y mentionsx;

e yAXEy(because X =ExVyVviz,ie,xA—-8zA X EY),

o iftherewereay’ =y st.y ey’ andy’ A X =y, thenwewouldhave ¥ =y v =y’
with y v =y’ =8 and § (& y v =y’ thus § would not be in IPZY.Y} (X)), Therefore,
y € PIZUUY (3 = ).

(<) Assume, without loss of generality, that 3y e PI1Y¥}(X = y) st. y mentions x
and y and y A X isconsistent; again without loss of generality, assumethat y hastheform
xAyz lets=yzVv—xVvy.

e YES, because X Ay Ey, e, X AxAyzEY I, X E-XxVoyzVy;

o if thereweread’ =6 st. § =8’ and X = &' then y would not be minimal, thus
§ € IPZUY) (3,

e S mentionsxandy. O

Proof. Sincey A X isinconsistent if and only if y = —X and thusif and only if 3y’ C y
st. ¥’ € PI(=X) we have that x ~% y if and only if neither PIéU{X}(y) nor PIéU{X}(—-y)
mention x or, equivalently, they are V-independent fromx. 0O

In other words, x ~% y if and only if both x and —x are irrelevant hypotheses for
(minimally) explaining y and —y, i.e.,, neither x nor —x participates in any minimal
explanation of y and neither x nor —x participatesin any minimal explanation of —y [11].

This gives us an algorithm for computing strong independence relations using a basic
ATMS (or an algorithm for computing abductive explanations). L et

SIVZ (y) = {x e Var(2) \ (ZU {y}) | x ~% y}.

A set of variables S isinitiaized to Var(X) \ (Z U {y}), and each time a new consistent
environment of y (i.e., one of the diguncts of PIéU{X}(y)) or of —y is computed, then all
variables appearing in it are removed from S. At any step, S contains Slvé(y) and the
agorithm reaches SIV% (y) when it ends up (this shows a possible “anytime” use of this
algorithm).

Another interesting feature of strong conditional independence is that it satisfies all
graphoid axioms (including intersection, unlike simple conditional independence):

Proposition 8. ~ 5 satisfies all graphoid axioms.
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Proof.

(S) Obvious.
(D) Obvious.
(WU) Assumethat X ~% Y UW andlet § € IP(X) suchthat Var(§) C X UY U ZU W, if

any (note that if no such § exists, the claim trivially holds, thanksto Proposition 5).
Let uswrite § = 8x v 8y V 3z Vv dw. X ~4 Y U W entails that either §x = false
or (8y = éw = false by Proposition 5, which implies §x = falseor §y = false
hence there cannot exist a prime implicate of X over X UY U Z U W mentioning
both avariablefrom X and avariable from Y, which (by Proposition 5) means that
x~ZWy.

©) Assimethat X A2 Woand X ~% Y, and let § € IP(X) such that

Var§) SCXUYUZUW.

Letuswrited =6x V3y Viz Viw.
X ~89Z W entailsthat sy = falseor 8y = false(1).
X %é Y entailsthat §x = falseor éy = falseor éy £ false(2).
(1) and (2) together imply §x = falseor (§y = sy = false (3).
Therefore, X ~% Y U W holds.
(1) Assumethat X ~%°W v and X ~%°Y W hold and, again, let § € IP(X) such that
§=0x Viy Véz Viw.
X ~4W' Y entailsthat §x = falseor 8y = false(1);
X ~59Y W entailsthat §x = falseor §y = false(2);
(1) and (2) imply §x = falseor (§y = §w = fals€ which means that X %é Yuw
holds. O

This confirmsthe particular interest of strong conditional independence, which not only
can be nicely characterized by means of primeimplicates (in contrast to simple conditional
independence), but also satisfies all graphoid axioms. Furthermore, in Section 5 we show
that strong conditional independence is closely related to other notions such as relevance
or novelty.

We can define alast notion of conditional independence, stronger than the two previous
ones, that we call perfect conditional independenc®hile the definition of strong
independence takes into account information over the variables Z that is represented as
terms (conjunction of literals), here we remove this assumption, and consider the case
in which any information may be available, that is, any possible propositional formula.
Namely, X and Y are perfectly independent given Z with respect to X if and only if
whichever informationi.e., any formula, we may learn about Z, then the addition of
information about Y does not enable one to tell anything new about X. This intuitively
means that no significant relationship between X and Y can be inferred when learning any
information, including digunctive information, about Z.

As an illustration, let Z = {n(orth), s(outh), e(ast), w(esh} and Z’ = {ne nw, se sw}
where X' contains s < (sev swW), e < (nev s, etc. and mutual exclusivity statements
between ne, nw, seand sw(such assw=> —sg etc.). Z and Z’ define each other, because X
entailsne< (n Ae), etc. Let usnow add to X' the two formulas se= rain and sw=> wind,
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which imply s = (rain v wind). Then rain and wind are strongly independent given Z’
with respect to X' whilethey are not given Z. In both cases, perfect independence between
rain and wind does not hold. This is because we may later discover that the variables se
and sw can be redefined in terms of the variables s, e, and w: in this new representation,
thereisaclear link between wind and rain.

Thisexample showsthat thelack of perfectindependencebetween X and Y corresponds
intuitively to a potential dependenagven the topic corresponding to Z.

However, perfect conditional independenceis an extremely strong notion and is more of
theoretical interest than of practical use, thereforewe do not devote much spacetoit. It can
be shown that perfect independenceis|less sensitive to the granularity of the representation
than the two weaker forms of independence, and that it satisfies al graphoid axioms
except (WU). The interested reader may read alonger version of our article, accessible by
anonymous ftp at ftp://ftp.irit.fr/pub/ IR T/ RPDMP/ Cl PL. ps. gz. This
long version not only contains a detailed study of perfect independence, but also a study
of how conditional independence extends when we relax the assumption that the sets of
variables X, Y and Z aredigoint.

4. Complexity results

We investigate now computational complexity issues. We start by analyzing in depth
the complexity of simple conditional independence. We consider a number of restrictions
on X, Y, Z and ¥ which may lower the complexity level, namely: |X| = 1 and/or
|Y| = 1 (checking whether a variable is independent from a variable / a set of variables),
X UY = Var(X) (twofold partition independengeZ = ¢ (marginal independengend
Z =Var(X) \ (X UY) (ceteris paribus independencéote that, for twofold partition
independence, the distinctions on Z are irrelevant; therefore, al three problems of the last
row of Table 1 areidentical.

4.1. Simple conditional independence

Proposition 9 (complexity of conditional independence). The results are synthesized in
Tablel.

Table 1
Complexity of conditional independence
x~%y any Z Z=0 Z=Var(X)\ (XUY)
(marginal independence) (ceteris paribus)
ay X,Y 15 -complete 15 -complete coNP-complete
X = {x} 15 -complete 15 -complete coNP-complete
orY ={y}
X ={x} 1‘[‘2’ -complete coBH»-complete coNP-complete
and Y = {y}
XUY =Var(2) coNP-complete coNP-complete coNP-complete

(twofold partition)
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The numerous results contained in Proposition 9 are proved in the following order,
which tries to minimize the number of proofs:

1. CONDITIONAL INDEPENDENCE iSin Hg;

MARGINAL INDEPENDENCE OF A VARIABLE FROM A SET OF VARIABLES is
M5-hard;

CONDITIONAL INDEPENDENCE OF SINGLE VARIABLESIS l‘lg—hard;

CETERIS PARIBUS INDEPENDENCE iSin coNP;

TWOFOLD PARTITION INDEPENDENCE iS coNP-hard;

CETERIS PARIBUS INDEPENDENCE OF SINGLE VARIABLES is coNP-hard;
MARGINAL VARIABLE INDEPENDENCE iS coBH2-complete.

N

No o~ w

Lemma 2. CONDITIONAL INDEPENDENCE IS in 1‘[5.

Proof. The following nondeterministic algorithm with NP-oracles proves membership of
CONDITIONAL INDEPENDENCE t0 X5

(1) guesswy, wy,wz;

(2) checkthat wx A wz A X isconsistent;

(8) check that wy A wz A X isconsistent;

(4) check that wx A wy A wz A X isinconsistent.

Hence, CONDITIONAL INDEPENDENCE belongsto Hg. O

Lemma 3. MARGINAL INDEPENDENCE OF A VARIABLE FROM A SET OF VARIABLES
(i.e., checking thatx Jg y holdg is Hg—hard.

Proof. We abbreviate this decision problem by mivsv. The proof is done by exhibiting a
polynomial reduction from 2-QBF to MIVSV.

LetI =({ay,...,an}, {b1,..., by}, @) beatriplest. thea;’sand b;’s are propositional
variables and @ is a propositional formula from the language generated by the ¢;’s and
b;’s. I is a poditive instance of 2-QBF if and only if Yos3dwp st. (wa, wp) = @, or
equivalently, if and only if Vw4 (wa A @) issatisfiable.

Now, let us define the mapping F by F(I) = (X, Y, X) where

X = {a]_’""an?x/}?
Y = {c},
Y =c=@xVvo)

inwhich ¢ and x” are new variables appearing nowhere el se.

F is obviously a polynomial transformation. In order to prove that it reduces 2-QBF to
MIvsv, we first note that Vox € 2x, wx A X is satisfiable (because assigning ¢ to false
satisfies X whatever the rest of the assignment) and that Voy € 2y, wy A X issatisfiable;
indeed, if wy assigns c to true, then ¢ A X is satisfiable because x’ v @ is satisfiable
assigning x’ to true; and if wy assigns ¢ to false, then wy A X is satisfied.
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Let us now show that I is a positive instance of 2-QBF if and only if F(I) is apositive
instance of MIvVSv,i.e, X and Y are independent with respect to X.

(1) Assumethat 7 isapositiveinstance of 2-QBF. It remainsto be checked that Yox , Yoy,
wehavewx Awy A X issatisfiable. If wy assignsc tofase, wx A wy A X isequivaent
to wx A —c and is satisfiable. If wy assigns ¢ to true, wxy A wy A X is equivalent to
wx Ac A (x'v @) andissatisfiable (because I is a positive instance of 2-QBF).

(2) Assumethat I isnot apositiveinstance of 2-QBF. Thenthereisawy st. (x' v @) Awy
is unsatisfiable (wy is obtained from the assignment over as, ..., a, adding x’ =
false) and therefore st. wx A ¥ = —c; hence X and Y = {c} are not marginaly
independent. O

Lemmas 2 and 3 together enable us to prove the Hg -compl eteness T
of the four problemslocated at the left-up corner of Table 1.

Welet V standsfor Var(X') in the following lemmata.

Lemma 4. CONDITIONAL INDEPENDENCE OF SINGLE VARIABLES (i.e., checking that
x ~% y hold9 is I15-hard.

Proof. We abbreviate this decision problem by civ. Let us exhibit a polynomial reduction
from2-QBFto CIV. Let G bethefollowingreduction: If I = ({aq, ..., an}, {b1, ..., bp}, D)
thenG(I)=(V,x,y, Z, X) where

o Z=\{a1,...,ay};
e =0V (x<&y).

G isobviously a polynomial transformation. Let us now show that 1 isa positive instance
of 2-QBF if and only if G(I) isapositive instance of CIv.

(1) Assumethat I isapositiveinstance of 2-QBF. ThenVwz, wz A @ issatisfiable, hence,
WZAXAYAX, 0z AXA-YAX, wz A xAYyAY andwz A—x A—yA X aredl
satisfiable (since x and y do not appear in @ nor in Z). Thisis sufficient to conclude
that x ~% y.

(2) Assumethat I isnot apositive instance of 2-QBF. Thenthereexistsawy st. wz A @
is unsatisfiable. For this wz we havethuswz A ¥ = x < y and hence x 7% y (take,
for example, v, =x and w, = —y). O

Together with the previouslemmata, we have now proven all 1‘[5 -com-
pleteness results of Table 1.

Lemma 5. CETERIS PARIBUS INDEPENDENCE iS in coNP.

Proof. Let us abbreviate this problem by cpi. Let (¥, V, X, Y) be a positive instance of
cPl. We show that the complementary problem CPI belongs to NP using the following
nondeterministic algorithm:
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(1) guesswy, wy, wy\(xuy);

(2) check that wx A wy\(xuy) A T issatisfiable;

(3) check that wy A wy(xuy) A X issalisfiable;

(4) check that wxy A wy A wy\(xXuy) N\ X isunsatisfiable.

Hence CPI isin NP and therefore cpl isincoNP. 0O

We turn now into the problem of twofold partition independence, which consists in
checking whether X ~%. ¥ holds, where X UY = V. Notethat when X UY =V (i.e, the
fourth line of Table 1), we know that Z = ¢ so that the distinctions on Z (the columns)
are irrelevant. This comes down to saying that twofold partition independence is both a
subproblem of marginal independence and of ceteris paribusndependence.

Lemma 6. TWOFOLD PARTITION INDEPENDENCE is coNP-hard.

Proof. We consider the following polynomial reduction H : if ¢ isapropositional formula
then H(¢) = (X, V, X) where

X = Var(p) U {x'},

Y =x'A@)Vo.
H is a polynomial reduction. Now, it is easy to see that X Jg {v} if and only if ¢ is

unsatisfiable. Hence H is a polynomial reduction from UNSAT to TWOFOLD PARTITION
INDEPENDENCE. O

Now we prove the coNP-hardnessinthe case Z = V\(X U Y), when both X and Y are
singletons.

Lemma 7. CETERIBUS PARIBUS INDEPENDENCE OF SINGLE VARIABLES is coNP-hard.

Proof. Let ¢ be aformula We prove that ¢ is unsatisfiable if and only if X and Y are
ceteris paribusndependent with respect to X', where

X = {x},

Y = {y}, st.xandy donotappearingp,

Y =pA(xEy).
Then it can be easily verified that x and y are ceteris paribusndependent with respect to
XY if and only if ¢ isunsatisfiable:

(1) Assume ¢ satisfiable. Let wvar(,) beamodel of ¢. Let wx bethe X-world that maps
x into true, and wy bethe Y-world that maps y into false. Then wx A wvary A X and
wy A wvarp) A X are both satisfiable while wy A wy A wvar) A X' isnot, hence X
and Y are not independent given Var(y), i.e., they are not ceteris paribusndependent
with respect to X.
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(2) Assume ¢ unsatisfiable. Then X' is unsatisfiable as well, and both wx A wvare) A X
and wy A wvarp) A X are unsatisfiable whatever wvar(y) is, hence X and Y are ceteris
paribusindependent with respectto . O

Lemmas5, 6, and 7 prove all coNP-completeness results concerning
conditional independence.

As aresult, only one result of Table 1 is left to be proven, namely
marginal independence of single variables.

Lemma 8. MARGINAL VARIABLE INDEPENDENCE iS coBHz-compIete.

Proof. Membership comes from the fact that x J)’D y if and only if (i) x A X satisfiable
and y A X sdtisfiable imply that x A y A X satisfiable; (ii) idem with —x instead of x;
(iii) idem with —y; (iv) idem with —x and —y. Now, for instance, (i) does not hold if and
only if x A ¥ and y A X areboth satisfiableand x A y A X' is not satisfiable, which proves
that (i) considered as an individual problem—and also (ii) to (iv)—isin coBHy.

As to hardness, let us exhibit a polynomia reduction from SAT-OR-UNSAT to
MARGINAL VARIABLE INDEPENDENCE. We define J ({¢, ¥)) = (x, y, ) where:

e X =(xVvy=renamé&y)) A (x A y = @), where renaméys) is obtained from
by renaming all variables appearing in yy—thus ¢ and renamé) do not share any
variables. Obviously, vy is unsatisfiable if and only if renaméy) is.

e x and y are new variableswhich do not appear in ¢ and in renamey).

Now, x 76% y if and only if at least one of the four statements (i) to (iv) above does not
hold. We get easily that (i) does not hold if and only if x A X is satisfiable, y A X is
satisfiableand x A y A X isunsdtisfiable, i.e., if and only if renamé&y) is satisfiable and
@ Arenaméy) is unsatisfiable, which together with the fact that ¢ and renamey,) do not
sharevariables, iseguivalent to renamevy) satisfiableand ¢ unsatisfiable, i.e., ¥ satisfiable
and ¢ unsatisfiable. Then, it iseasy to check that (ii), (iii) and (iv) cannot be violated. Thus,
x % yif andonly if v is satisfiable and ¢ is unsatisfiable, or equivalently, x ~%. y if and
only if (¢, ¥) isapositive instance of SAT-OR-UNSAT. O

4.2. Strong conditional independence
We now turn to the corresponding results concerning strongconditional independence.
Note that the case Z = ¢ is useless to study because when Z = ¢, strong and (simple)

conditional independence coincide. A fortiori, the case X U Y = V, which entails Z = ¢,
isuselessaswell.

Proposition 10. The complexity results of strong independence are reported in 2able

Proof. Itis sufficient to prove the two following lemmata:
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Table 2
Complexity of strong conditional independence
x~%y any Z Z=Var(X)\(XUY)
any X,Y 15 -complete 15 -complete
X={x}orY={y} IM5-complete 15 -complete
X={x}andy ={y} I5-complete 15 -complete

1. STRONG CONDITIONAL INDEPENDENCE isin IT5;
2. CETERIS PARIBUS CONDITIONAL INDEPENDENCE OF SINGLE VARIABLES is 13-
hard.

Lemma 9. STRONG CONDITIONAL INDEPENDENCE iS in Hg.

Proof. Membership of the complementary problem to Eé’ is shown by the following
nondeterministic algorithm using an NP-oracle:

1. gueesZ/ CZ wy €Ry,wx € 2y andwy € 2y.
2. check that wxy A wz A X is satisfiable, that wy A wzr A X is satisfiable and that
wx ANwy Awz A X isunsatisfiable. O

Note that Hg-hardn&ss of this case (that we do not actually have to prove since
the following lemma will imply it) is a corollary of I‘[g-hardn&s of MARGINAL
INDEPENDENCE which is a subproblem of STRONG CONDITIONAL INDEPENDENCE
(recovered when Z = (). Moreover, because of Proposition 6, STRONG CONDITIONAL
INDEPENDENCE remains I15-complete when X or Y is a singleton and when both are
singletons (these results being subsumed as well by the next lemma).

Lemma 10. CETERIS PARIBUS STRONG CONDITIONAL INDEPENDENCE OF SINGLE
VARIABLES is T15-hard.

Proof. We exhibit a polynomial reduction from 2-QBF to CETERIS PARIBUS STRONG
CONDITIONAL INDEPENDENCE OF SINGLE VARIABLES. Let @ be a propositional for-
mula over the alphabet {ay, ..., a,, b1,...,bp}; let K({{ax, ..., an}, {b1, ..., by}, @) =
(¥, X,Y) where

XADLA - Abp)V (=X AN=byrA---AN—=bp)V D;

(
{x};
{y}.

)
X
Y

Let A={a1,...an}, B={b1,...,b,} and Z =Var(X) \ ({x, y}) = AU B. We note w,,
wy instead of w(,), wiy). We use the notation C(wy, wy, yz) for [X A wx A yz consistent
and X' A wy A yz congistent implies X' A wy A wy A yz consistent]. Since Z = A U B,
for any Z-term yz welet yz = y4 A yp. We now have to show that x %% y if and only
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if Vai...VYa,3by...3b,® isvalid. We start by studying in detail the cases in which the
condition C(wy, wy, yz) holds.
Casel. yp isnot empty and contains only positive literals.

0] Y ANwx Nyz
=(XAbIA-Abpy Aoy AYzZ)V (P Awx AYz)
isconsistent if and only if w, = x or yz A @ isconsistent.

(i) Y ANwyANyz

=XAbIA-Aby Awy AYzZ) V(@ Awy AYz)
is always consistent because the first disjunct, equivalentto x Aby A --- A b, Awy A ya,
is always consistent.

(iii) I Nwx Aoy Nyz
=(XAbIA - Abp Aoy Awy Ayz) V(P Awx Aoy AYz)
isconsistent if and only if w, = x or yz A @ isconsistent.

Thus, ¥ Awx Awy A yz isconsistent if and only if X' A wyx Ayz and ¥ A wy A yz both
are, which entailsthat C (wyx, wy, yz) holdsfor any wy, wy.

Case2: yp isnot empty and contains only negative literals.

This case is symmetrical to Case 1 and a similar proof enables us to show that
C(wx,wy,yz) holdsfor any oy, wy.

Case3: yp contains both positive and negative literals.

X Awx Awy Ayz iSnow equivalent to @ A wx A wy A yz and is consistent if and
only if @ A yz is consistent, independently of w,,w,. Similarly, both X A w, A yz
and ¥ A wy A yz are consistent if and only if @ A yz is consistent, which shows that
C(wx,wy,yz) holdsfor any oy, wy.

Cased: yp =0.

2 Awx Aoy Ayz iSequivalent to

(CADIA-AbY)V(YA=DIA -~ A=by) VD) Awx Awy Aya,
i.e, to

(XADLA -~ Abp ANwx Awy Aya)V

(YA=bLA - A=bpy Awy Aoy Aya) V(P Awx Awy Aya),

and is consistent if and only if one of the digunctsis consistent, i.e., at least one of these
three conditions holds:

(i) oy =x,
(i) wy =y,
(iif) @ A wx Awy Ay isconsistent.

Condition (iii) is equivalent to the consistency of @ A y4, because x and y do not appear
in @. Now, X A wy A y4 isconsistent if and only if w, = x isconsistent or y A —by A
-~ Abp ANy Ay isconsistent or @ Ay, isconsistent, which is always satisfied because
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YA=b1IA---Aby Awx Aya isalwaysconsistent. Hence, X' A w, A y4 isawaysconsistent;
similarly, ¥ A w, A y4 isalways consistent. Thismeansthat C(wx, wy, ya A yg) holdsif
andonly if oy =x orw, =y or @ Ay, isconsistent.

Finally,

X ’«Vé y ifandonlyif VYo,Yo,YyaVyp, C(wx,®y,ya A yg) holds
if andonly if Vo,Yw,Vys C(wx, wy, y4) holds
if andonly if Vys C(—x, —y, ya) holds
if andonly if Vya, @ A y4 isconsistent.

It is not hard to see that thisis equivalentto Vw4 € 24, @ A w4 IS consistent; indeed, for
the (=) direction, an A-world w4 isaspecial case of an A-term y4; for the (<) direction,
the consistency of @ A w4 implies the consistency of @ A y4 forany y4 2 w4, and any
A-term y4 contains at least an A-world w4.

Therefore, we have

x~%y ifandonlyif VYo e 24, ® Awy isconsistent
if andonly if Vw, € 24 Jwp € 2p St. (wa, wp) =@
if andonly if @ € 2-QBF. O

Let us now briefly comment on these results. The 1‘[5 -completeness of STRONG
CONDITIONAL INDEPENDENCE coheres with the Eé’—completeness of checking whether
an individual hypothesisisrelevant (for minimal explanation) [11]. More interestingly, the
abductive characterization (Proposition 15) of strong conditional independence enables us
to take advantage of some restrictions (especially restricting X' to a set of Horn clauses)
for which the computational complexity of checking irrelevance for minimal explanation
falls down to the first level of the polynomial hierarchy, carrying with it the complexity
of strong conditional independence. Considering DNF formulas is another restriction that
makesthe complexity of STRONG CONDITIONAL INDEPENDENCE falling downto thefirst
level of the polynomial hierarchy. To be more precise:

Proposition 11. WhenX is in DNF, STRONG CONDITIONAL INDEPENDENCE iS coNP-
complete.

Proof. From Proposition 6 it followsthat it sufficesto consider the case where both X and
Y aresingletons,i.e.,, X = {x} and Y = {y}. Let us consider the complementary problem of
checking whether x is not strongly conditionally independent from y given Z with respect
to X and let us prove it NP-complete. As an easy consequence of Proposition 7, x is not
strongly conditionally independent from y given Z with respect to X if and only if there
existsaprimeimplicate of X' built up from Z U {x, y} that contains both x and y.

o MembershipGuess a clause § and check (1) that it contains both x and y, (2) that it
does not contain any variable outside Z U {x, y}, (3) that it containsaliteral from each
any consistent term from the given DNF of X', and (4) that any proper subclause of
3 violates (3). Since (2), (3), (4) can be checked in time polynomial in the size of the
input, this algorithm runsin nondeterministic polynomial time.
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e Hardness Let us consider the following reduction from NON-TAUT, the problem
of checking whether a DNF X is not a tautology (it is obviously NP-complete
since X' is not a tautology if and only if the CNF —X is satisfiable). Let M(X) =
(newg, newp, =X A (newt vV new)) where news, new are new variables (from PS\
Var(X)). M(X) can easily be computed in time polynomial in | X|. Moreover, X' is
not a tautology if and only if new; is not ceteris paribusstrongly independent from
new with respectto =X A (new v new). 0O

We do not investigate in detail the complexity of perfect conditiona independence
due to the fact that this notion is only marginal. It can be proven that PERFECT CONDI-
TIONAL INDEPENDENCE is I15-complete (the proof isinf t p: / / ftp.irit. fr/ pub/
| Rl T/ RPDMP/ CI PL. ps. gz).

5. Independence, relevance, novelty, separability and non-inter activity

In this section, we show how conditional independence is related to many other forms
of independence pointed out so far in the literature.

5.1. Formula-variable independence

As evoked before, conditional independence can be viewed as a generalization of
formula-variableindependence. Formally, we can reduce the problem of checking formula-
variable independenceto the problem of checking strong conditional independence.

Proposition 12. Let new be a variable ofPS\ Var(X)) \ X. ThenX is V-independent

from X if and only if X ~yr ) \X new.

Proof. Let Z =Var(X) \ X. Let usfirst remark that since
Y & new= (X Anew Vv (—X A—hew,

the following equivalence holds: y € PI(X < new if and only if:

(1) newa y1 € PI(XY < new and y1 € PI(X); or
(2) —newna y, € PI(X < new and y, € PI(—X).

Let us now prove Proposition 12:

=)IfX %éagﬁgy new then, due to Proposition 5, there is a y € PI(XY < new
mentioning both new and some x € X. Using the above equivalence, either (1) y =
newa y1 with y1 € PI(X) or (2) y = —newa y» with y» € PI(—X).

Incase(1), thereisay; € PI(X) mentioning x € X and thus X' isV-dependenton X. In
case (2), thereisay, € PI(—X) mentioning x € X, thuswe haveagain — X is V-dependent
on X, or equivalently, X is V-dependent on X.

(<) If X isV-dependent on X thenthereisay’ € PI(X) mentioning some x € X [20].
Now, let y = newna y’. Using the above equivalence, y € PI(X < new. Furthermore, y

mentions both an x € X and new, so, due to Proposition 5, we have X %éagfébvx new O
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This result means that, in any state of knowledge regarding Var(X) \ X, knowing
the truth values of variables in X cannot help us knowing the truth value of new and
hence of X'. The converse, i.e., expressing strong conditional independence from formula-
variable independence, is possible as well (see Proposition 7). However, the exhibited
transformation is not a polynomial one and thus will not be helpful when investigating
computational complexity issues.

Conditional independenceis also related to formula-variable independence through the
notion of variable forgetting [20,21,25]. Especially, as a direct consequence of Theorem 5
in[8], X ~§ Y holdsif and only if Vox € 2x, Yoy € 2y, Yoz € 27, we have

ForgetVar X A for(wx) A for(wy) Afor(wz), PS\ Z)
= ForgetVar( X A for(wx) A for(wz), PS\ Z) A
ForgetVar X A for(wy) A for(wz), PS\ Z).
Asanillustration, let us consider Example 1 again. We have
Y={-av-bvc,—mavbvd,av—-c,—~aVvcVvd,bVv—-cVvd}.

We have seen that ¢ 74{5} d. This can be explained by the fact that wi} = {—c}, way =
{—d} and wqy = {a} are such that

ForgetVar( X A for(wyc)) A for(wgy) A for(wia)), PS\ {a})
isinconsistent, while

ForgetVar(Z A fOI’(a){C}) A fOI’(a){a}), PS\ {a}) A
ForgetVar( X A for(w)) A for(wia)), PS\ {a})
isequivalentto a.

5.2. Relevance

Lakemeyer [18,19] introduces several forms of relevance, which can be used to
characterize what “tells about” means. We show how these forms of relevance are strongly
related to conditional independence. We also complete the results given in [19], by
exhibiting the computational complexity of each form of relevance introduced in [19].

Lakemeyer’snotion of irrelevance of aformulato asubject matter (Definition 9in [19])
isstudied in [20,21] (whereit isrelated to formula-variable independence).

5.2.1. Strict relevance of a formula to a subject matter
L akemeyer hasintroduced two forms of strict relevanceThefirst (chronologically) one
has been given in [18], as follows.

Definition 8 (strict relevance to a subject mattgl8]). Let X be aformulafrom PRORs
and V asubset of PS X isstrictly relevant toV if and only if every prime implicate of X
containsavariablefrom V.

Lakemeyer has also introduced another notion of strict relevance[19], more demanding
than the original one. Here we consider an equivaent definition.
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Definition 9 (strict relevance to a subject mattglr9]). Let X be aformulafrom PRORs
and V a subset of PS X is strictly relevant toV if and only if there exists a prime
implicate of X mentioning a variable from V, and every prime implicate of X mentions
only variablesfrom V.

Both definitions prevent tautologies and contradictory formulas from being strictly
relevant to any set of variables. The basic difference between these two definitionsis that,
in the first one, we want that every prime implicate of X' contains at leasta variable from
V, whilein the second case we impose that every primeimplicate of X' must contain only
variables from V.1 Asthe following example shows, there are formulas for which the two
definitions of strict relevance do not coincide.

Example2.Let ¥ = (a v b) and V = {a}. Thereisonly one primeimplicate of X, namely
a Vv b. Sinceit contains at least avariable of V, it follows that X' is strictly relevant to V
with respect to [18]. However, since the prime implicate a Vv b is hot composed only of
variables of V (because b ¢ V), it followsthat X is not strictly relevant to V with respect
to[19].

Through formula-variable independence, we can derive an alternative characterization
of the notion of strict relevanceintroduced by Lakemeyer in [19]. Indeed, as a
straightforward consequence of the definition, we have that X is strictly relevant to V
if and only if X' isV-dependent on V and V-independent from Var(X) \ V (see[20]).

We have identified the complexity of both definitions of strict relevance, and they turn
out to be different, as the first definition is easier than the second one. Namely, STRICT
RELEVANCE OF A FORMULA TO A SUBJECT MATTER [19] is BH2-complete [20] while
we have the following:

Proposition 13 (complexity of strict relevance as in [18]). STRICT RELEVANCE OF A
FORMULA TO A SUBJECT MATTER as in[18] is Hg’-complete.

Proof.

e Membership. Let us consider the complementary problem. Guess a clause §, check
that it does not contain any variable from V (this can be achieved in time polynomial in
|8] + V|, henceintime polynomial in | X'| + |V | since no primeimplicate of X' caninclude
avariablethat does not occur in X). Then check that it isan implicate of X (onecall to an
NP-oracle) and check that every subclause of § obtained by removing from it one of its &
literalsisnot an implicate of X' (k callsto an NP-oracle). Since only k + 1 callsto such an
oracle are required to check that § is a prime implicate of X', the complementary problem
of STRICT RELEVANCE belongsto Eé’. Hence, STRICT RELEVANCE belongsto 1‘[5.

o Hardness by polynomial reduction from 2-QBF: we havethat VAIB X (A, B) isvalid
if and only if every prime implicate of X' that contains a variable from A also contains a
variable from B (see [12], Proposition 1), i.e., if and only if every prime implicate of X
containsavariablefrom B (since Var(X) = AU B), i.e., if andonly if X isstrictly relevant
toB. O

1 Strict relevance asin [19] could also be shown to be strongly related to controllability [5,22].
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5.2.2. Explanatory relevance

Lakemeyer [19] also introduces a notion of relevance of aformula @ to a subject matter
V with respect to aformula X that can be abductively characterized (see Definition 20 in
[19]):

Definition 10 (explanatory relevangelLet X and & be formulas from PRORsand V a
subset of PS @ is (explanatory relevant toV with respect to X if and only if there exists
aminimal abductive explanation for @ with respect to X' that mentionsavariablefrom V.

Example 3. Let ¥ = (¢ = b) and @ = b. @ isexplanatory relevant to {a} with respect to
X sincea is an abductive explanation for b with respect to X

The next result shows that explanatory relevance can be rewritten using strong
conditional independence:

Proposition 14. @ is explanatory relevant toV with respect toX if and only if

newae?;e(gs:‘:ﬁg\%usv where neve PS\ (V U Var(X)) is a new variable.

Proof. (=) Assume that @ is explanatory relevant to V with respect to X'. Then, there
isay e Plg(®) =PI(¥ = &) \ PI(—X) such that Var(y) NV #£ (. Let § be a clause
st. § = —y. Since y € Ply(®), we have that § € IP(X A =®) \ IP(X); and since
Var(y) NV £ wehaveVar(§) NV £ 0. Let X' = X A (P = new. Let us show that
8 v newe IP(X).

(i) X’ A—=dVvnewisequivalentto X A (@ = new A—§ A—newi.e,to X A—§ A —newA
-, whichisinconsistent since ¥ A —=® =§. Hence, X’ =5 v new

(ii) Suppose that § v newis not a prime implicate of X’. Then there exists a prime
implicate of X’ strictly contained in § v new This implicate has either the form
(@) 8" with 8 < 8 or the form (b) §” v new with §” strictly contained in §. In
case (a), we have X’ = &', implies that X = &', which entails ¥ &= § and thus
contradicts § € IP(X A =®) \ IP(X). In case (b), we have X’ = 8" v new which
entails X’ A —newl= (87 v new) A —new i.e.,, X A =newA =@ = §" A —=new which
entails X A =@ = 68", which contradicts § € IP(X A —=®) \ IP(X).

Thus, § v newis a prime implicate of X’ mentioning both newand a variable from V,

which meansthat news<Cee"s paribusy,

X’ ) )
(<) Assume that newsSs " paribusy,  Then, there is a prime implicate 8" of %’

containing new and a variable of V (cf. Proposition 5). Let § be the subclause of §’
containing every litera of §’ except new We have X A (@ = new = § v new Thus,
we get X A (D A new A —newk§, i.e, X A —hewA —® = §; subsequently, we get
AP S, e, X A6 E @, which means that —§ is an explanation for @ with
respect to X' mentioning avariablefrom V; its minimality comesfrom the abovementioned
minimality of §’. O

Thisresult is helpful for studying the complexity of thisform of relevance.
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Proposition 15 (complexity of explanatory relevance). EXPLANATORY RELEVANCE is
x2-complete.

Proof. Membership is a direct consequence of the above result together with Proposi-
tion 10. Its Eé’ -hardnessis a direct consequence of Theorem 4.2.1 from [11] (that estab-
lishes the 25 -completeness of the problem of checking whether an individual hypothesis
isrelevant for minimally explaining @ with respect to X, i.e., belongsto at least one of its
minimal abductive explanations). O

5.2.3. Relevance between two subject matters relative to a knowledge base
Lakemeyer [19] also introduces a notion of relevance between two subject matters
relative to a knowledge base.

Definition 11 (relevance between two subject matiekst > be aformulafrom PROR:s
and X, Y be subsets of PS X isrelevant toY with respect to X' if and only if there exists
aprimeimplicate § of X' sit. Var(§) N X # @ and Var(8) N Y #@.

Example4. Let ¥ = (a = b), X ={a} and Y = {b}. X isrelevant to Y with respectto X
since the prime implicate —a v b of X' contains both variablesa and b.

Clearly enough, such anotion of relevanceis symmetric: X isrelevantto Y with respect
to X if and only if Y is relevant to X with respect to X'. The corresponding notion of
irrelevance coincides with ceteris paribusstrong conditional independence:

Proposition 16. Let ¥ be a formula from PROFS and X, Y be subsets of PSX is
irrelevant to Y with respect toX if and only if X and Y are ceteris paribus strongly
independent with respect iB.

Proof. Easy consequence from Theorem 31 in [19] which states that X isrelevantto Y
with respect to X if and only if thereisa Z such as X % Y, plusthe definition of ceteris
paribusstrong independence. O

Using then Proposition 10, we get the following corollary:

Proposition 17 (complexity of relevance between two subject matters). RELEVANCE
BETWEEN TWO SUBJECT MATTERS RELATIVE TO A KNOWLEDGE BASE is ©5-complete.

Proof. Trivia from the fact that two subject matters are relevant with respect to a
knowledge base if and only if they are not ceteris paribusstrongly independent, and
checking this form of strong independenceis I15-complete. O

5.3. Novelty

Novelty is a form of relevance between two formulas given some background
knowledge. Introduced in [14], this notion has been analyzed in more details in the
propositional case in [26]. Closely related to Lakemeyer’s relevance (see [19]), it can be
used to define information filtering policies and cooperative answering techniques [13].
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Definition 12 (novelty. Let X', @ and ¥ be formulas from PRORbs. @ isnew to¥ with
respect to X' if and only if there is a minimal abductive explanation for ¥ with respect
to X A @ that is not a minimal abductive explanation for ¥ with respect to X, or there
is aminimal abductive explanation for =& with respect to X A @ that is not a minimal
abductive explanation for =¥ with respect to X.

Intuitively, @ is new to ¥ with respect to X' if and only if expanding X with & gives
rise to new contextsin which the semantics of ¥ is determined (as true or false).

Example5. Let ¥ = (b=c¢), ® =(a = b),and ¥ =c. @ isnew to ¥ with respect to
X since y = a isaminimal explanation for ¥ with respect to X' A @, but not a minimal
explanation for & with respect to X'. Thus, in the context where a is interpreted as true,
expanding X with @ enables deriving the truth value of ¥, while it remains undetermined
when @ is not taken into account.

Morerefined notions of novelty have been pointed out in [26], by considering separately
¥ and =Y.

Definition 13 (positive novelty, negative novélty et X, ¢ and ¥ be formulas from
PRORss.

e @ isnew positive toF with respect to X' if and only if there is a minimal abductive
explanation for ¥ with respect to X' A @ that is not aminimal abductive explanation
for ¥ with respectto X.

e @ isnew negative tar with respect to X if and only if there is a minimal abductive
explanation for =¥ with respect to X A @ that isnot aminimal abductive explanation
for =¥ with respect to X.

Thus, @ isnew to ¥ with respectto X' if and only if @ isnew positiveto ¥ or @ isnew
negative to —¥ . This simple result, as well as many characterization results for novelties,
can befound in [26]. Especidly, it is easy to see that @ is new negativeto ¥ with respect
to X if and only if @ isnew positive to =¥ with respect to X'. Among the results givenin
[26] aso is aprime implicate characterization of positive novelty and negative novelty:

Proposition 18. Let X', @ and¥ be formulas from PRO#.

e & is new positive tar with respect toX' if and only if there exists a prime implicate
of ¥ A @ A =W that is neither a prime implicate @ A @ nor a prime implicate of
YA,

e @ is new negative t@ with respect ta¥ if and only if there exists a prime implicate of
X A® AV thatis neither a prime implicate & A @ nor a prime implicate o A Y.

Proof.
o Positive noveltyBy definition, @ isnew positiveto & with respect to X if and only if
thereisaminimal abductive explanation for ¥ with respect to X A @ that isnot aminimal
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abductive explanation for ¥ with respect to X'. Thisis equivalent to state that there exists
aclause v for which the following three conditions hold.

T ePI(XZADA-Y),
T & PI(X A D),
T ¢PI(X A=) or mePIl(X).

What is|eft to proveis that thefirst two conditionsimplies = ¢ PI(X). Indeed, the first
oneimpliesthat X A @ A =¥ |= 7, while the second one is equivalent to:

1) XADEm;or
(2) X A® =7m andthereexistsaclauser’ =7 suchthat X A @ =7'.

L et us assumethat thefirst condition holds. Then, X' |~ 7 and thus = cannot be aprime
implicate of X If the second condition holds, then 7" isalso animplicateof X A @ A —W:
asaresult, & cannot be a primeimplicate of that formula

o Negative noveltymmediate from the fact that @ is new negativeto ¥ with respect to
XY if and only if @ isnew positiveto =¥ with respect to X', and the fact that the proposition
holds for positive novelty. O

From this proposition, it is easy to prove that focusing on prime implicates is
unnecessary (implicates are sufficient):

Corollary 1. Let X, @ and¥ be formulas from PRO#.

e & is new positive toF with respect toX if and only if there exists an implicate of
X A @ AW that is neither an implicate oF A @ nor an implicate ofX A =Y.

e & is new negative t&r with respect toX' if and only if there exists an implicate of
X A @ AV thatis neither an implicate af A @ nor an implicate of A .

As an immediate consequence, considering minimal abductive explanations in the
definitions above is useless (considering abductive explanationsis sufficient).

We are now making precise the relationship between the various forms of novelty and
strong conditional independence.

Proposition 19. Let X, @ and ¥ be propositional formulas, and let, and vy be two
new propositional variablegot appearing in®, ¥ and X), and let

IT=3A(vp = P)A (vyg = ¥);
YT =3AWwe=P) AW =vy);
Y =XtTATT =3 A e = P)A (vg & W),

ceteris paribus
Uy

(1) @ is new positive ta¥ with respect taX if and only ifvg %57
ceteris paribus
D) Vy .

(2) @ is new negative t@ with respect ta¥ if and only ifve %5~

(3) @ is new to¥ with respect tar if and only ifve aeg‘:e,teris paribus,,
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Proof. From Proposition 18 we get easily the following equivalences:

— @ is new positive to ¥ with respect to X if and only if 35 € IP(X ™) containing the
literals —ve and —vy .

— @ isnew positive to ¥ with respect to X' if and only if 35 € IP(X’) containing the
literals —ve and —vy .

— @ isnew negative to ¥ with respect to X if and only if 35 € IP(X ™) containing the
literals —ve and vy .

— @ isnew negative to ¥ with respect to X if and only if 3§ € IP(X’) containing the
literals —ve and vy .

— @ isnew to ¥ with respect to X if and only if 3§ € IP(X") containing the literal —vge
and mentioning the variable vy .

— V8 elP(X’), § doesnot contain ve.

The proof isthen completed easily using Proposition 5. O

The situation where X is valid and negative novelty is not satisfied givesrise to aform
of independence called novelty-based independendatuitively, @ and ¥ are (novelty-
based) independent if and only if every context that is possible for @ (i.e., consistent with
@) or with ¥ alsoispossiblefor @ A ¥. In other words, @ and ¥ do not conflict, in any
possible context. A definition based on prime implicate can be easily established:

Definition 14 (novelty-based independencket @ and ¥ be formulas from PRORs. @
and ¥ are (novelty-basegdindependenif and only if every prime implicate of @ A ¥ is
either aprime implicate of @ or aprimeimplicate of ¥.

Several aternative characterizations exist. Thus, @ and ¥ are novelty-based indepen-
dent if and only if every implicate of @ A ¥ iseither an implicate of @ or an implicate of
¥ if and only if @ isnot new negativeto ¥ with respect to true.

Interestingly, it has been shown in [27] that this form of independence characterizes
exactly the formulas that are preserved under change in Windett's Possible Models
Approach to update.

We have derived the following complexity results for novelty:

Proposition 20 (complexity of novelty). NOVELTY, POSITIVE NOVELTY and NEGATIVE
NOVELTY are Eg-complete anaiOVELTY-BASED INDEPENDENCE is Hg-complete.

In order to minimize our efforts, we first prove that novelty-based independenceis 1‘[5 -
complete. An additional lemmais needed.

Lemma 11. Let @1, &5, ¥1, and ¥, be four satisfiable formulas from PR@®s.t.
(Var(d1) U Var(¥r)) N (Var(d2) U Var(¥,)) = @. (91 and¥; are novelty-based indepen-
dent and®, and ¥, are novelty-based independgiftand only if @1 A &2 and ¥y A W5
are novelty-based independent.
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Proof. (=) Assume that there exists a clause y st. @1 A @2 A W1 A W5 =y holds and
@1 A P2 =y holds and W1 A W2 B~ p holds. Since (Var(®1) U Var(¥y)) N (Var(®2) U
Var(¥7)) = @, it isobviousthat @1 A W1 and @2 A W7 are novelty-based independent. Asa
consequence, since @1 A @2 AW AW =y holds, wehave @1 AW =y O Do AL =y
If @1 and ¥ are novelty-based independent and @, and ¥, are novelty-based independent,
thisimpliesthat @1 =y holds or ¥1 = y holdsor @, = y holdsor ¥, = y holds. This
contradictsthe fact that @1 A @2 [~ y holdsand W1 A W3 [~ ¢ holds.

(«=) Assume that @1 and ¥, are not novelty-based independent (the remaining case
where @, and ¥, would not be novelty-based independent is similar). Then, there exists a
primeimplicate & of &1 A Y1 that is neither a prime implicate of @1 nor a primeimplicate
of ;. Clearly enough, @1 A W1 A @2 AW = holds. If @1 A @2 and W A W5 are novelty-
based independent, this is equivalent to saying that @1 A @2 =7 holdsor W3 AYs =7
holds. Since Var(®1) N Var(®z) = @ and Var(¥1) N Var(¥,) = @, thisis also equivalent to
saying that @1 =7 holds or ¥1 = 7 holds or @, =7 holds or ¥, = 7 holds. We have
assumed that 7 neither is a prime implicate of @1 nor a prime implicate of ¥;. Actually,
we can prove that = neither is an implicate of @1 nor an implicate of ¥;. Indeed, if =
were an implicate of @1 (respectively ¥1), a prime implicate =’ of &1 (respectively ¥;)
would exist st. 7’/ = 7 holds. Since @31 A ¥ |= @1 (respectively ¥;) holds, there exists
a prime implicate 7" of @1 A ¥ st. 7”7 = 7’ holds. This implies that 7" &= =’ holds
and since #”” and 7 are prime implicates of the same formula, we have 7" = . Hence,
7' = holds as well. Thiswould contradict the fact that 7 is not a prime implicate of &1
(respectively ¥1). Now, since r neither is an implicate of @1 nor an implicate of Y1, it
must be the case that @, = 7 holds or ¥, = 7 holds. Since @1 = 7 holds, we know
that 7 is not a tautology. Because x is a prime implicate of @1 A Y1, it must be the
case that Var(w) C Var(®1 A ¥1) holds, i.e., Var(r) C Var(®1) U Var(¥1) holds. Since
(Var(®1) U Var(¥q)) N (Var(®2) U Var(¥r)) =@, &2 =7 holds or ¥, = 7 holdsif and
only if @, isunsatisfiable or ¥; is unsatisfiable, contradiction (thisis an easy consequence
of Craig'sinterpolation theorem in the propositional case). O

Lemma 12. NOVELTY-BASED INDEPENDENCE iS Hé’-complete.

Proof. Membership comes from Proposition 19. l'lg -hardness comes from the following
observations:

e Let x, y betwo variablesfrom PSand X aformulafrom PRORs. Then x and y are
ceteris paribusstrongly independent with respect to X if and only if for every term y over
Var(X) \ {x, y}, thefour following statements are true:

o x AyA X Ay issdisfiableif and only if x A X A y issatisfiableand y A X Ay is
satisfiable.

o " x Ay A X Ay issatisfiableif and only if —x A X' A y issatisfiableand y A X Ay
is setisfiable.

o x Amy A X Ay issdtisfiableif and only if x A X A y issatisfiableand =y A X Ay
issatisfiable.

o ~x Ay A X Ay issatisfiableif andonly if —x A X Ay issatisfiableand =y A X Ay
is setisfiable.
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This is equivalent to saying that for every clause § over Var(X) \ {x, y}, the four
following statements are true:

xAyAXESifandonlyifx AX ESoryA X ES.
—xAyAXES§ifandonlyif -x AX ESoryAX ES.
xAyAXESifandonlyifx A X =8§or -y A X ES.
—xA-yA X ES§ifandonlyif -x A X =§or -y A X ES.

O O O o

Clearly enough, if the four statements above are satisfied for every clause, they are a'so
satisfied for the clauses that do not contain x or y as a variable. Conversely, let us show
that if x and y are ceteris paribusstrongly independent, then the four statements above are
satisfied by every clause §. Let us now consider a clause § s.t. Var(s) N {x, y} # @ and §
is not a tautology (tautologies trivially satisfy the four statements above). For simplicity,
assume that the variable x occurs positively in §. Then, it is clear that the first and the
third statements above are satisfied by such clauses §. For the remaining cases (second and
fourth statements), let 8’ be the clause obtained by removing every occurrence of x in .
Wehave —x Ay A X =68 if andonly if =x A y A X =46’ If §' contains y as a positive
literal, then—x Ay A X |=68"and y A X = 8" holdsaswell. Hence, y A X' =6 also holds.
This shows that the second statement is satisfied by §. Otherwise, let §” be the clause
obtained by removing every occurrenceof —y in 8. We have —x A y A X =8’ if and only
if —x A yA X =48". Because §” does not contain any occurrence of x or y, if x and y
are ceteris paribusstrongly independent, then it must bethe casethat if —x A y A X =68"
holds, then —x A ¥ |=8" holdsor y A X = 8" holds. Thisimpliesthat —x A X =6 holds
or y A X = § holds, hence the second statement is satisfied. The remaining cases, i.e., §
contains a negative occurrence of x, § contains a positive occurrence of y, § contains a
negative occurrence of y, can be handled in a similar way, mutatis mutandigclearly, both
x and y and x and —x play symmetric roles with respect to the conjunction of the four
statements). Thus, x and y are ceteris paribusstrongly independent with respect to X if
and only if:

X Ax and X A y are novelty-based independent, and
X A—x and X A y are novelty-based independent, and
X Ax and X A —y are novelty-based independent, and
2 A —x and X A —y are novelty-based independent.

O O O o

e Several instances of novelty-based independence can be gathered into a single one
in polynomial time through renaming as long as all the formulas that are considered are
satisfiable. Thisis stated formally by Lemma 11.

As aconsequence of Lemma 11, we can state that x and y are ceteris paribusstrongly
independent with respect to X iff rename (X A x) Arename(X A —x) Arenamg(X A x)
A renamg(X A —x) and rename(X A y) A rename(X A —y) A renamg(X A y) A
rename (X A —y) are novelty-based independent, provided that X (£ x holds, X' j= —x
holds, > (£ y holds, and X' [~ —y holds. This equivalence is obtained by applying three
timesthe lemmaabove; eachrename (i € 1, ..., 4) isarenaming, i.e., a substitution from
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variables to variables st. rename(x) = x;, that is extended to formulas in an obvious
compositional way; clearly enough, renaming aformula preservesits satisfiability.

e The next observation is that in the proof of Hg -hardness of ceteris paribusstrong
conditional independence of single variables given above (Lemma 10), we can assume
that ¥ [~ x holds, X [~ —x holds, X [~ y holds, and X [~ —y holds without loss of
generality as soon as the matrix @ of the 2-QBF formulaVA3IB®[A, B] used in the proof
is satisfiable (we have Var(®) N {x, y} = ¥). So it remains to prove that this restriction
does not question the I5-hardness of checking whether a 2-QBF formula is valid. Let
us consider the mapping M that associates to every 2-QBF formula VAIB®[A, B] the
2-QBF formulaVA U {(new3B(®[A, B] v new), where new¢ (A U B). Clearly enough,
®[A, B] v newawaysis satisfiable. It is easy to check that VAIB®[A, B] isvalidif and
only if M(VAIB®[A, B)) isvalid aswell.

Lemma 13. POSITIVE NOVELTY is Eé’-complete.

Proof. Membership comes from Proposition 19. Eé’ -hardness is an immediate conse-
guence of the 1‘[57 -hardness of novelty-based independence. Indeed, @ and ¥ are novelty-
based independent if and only if @ is not new positiveto —¥ with respect to true. O

Corollary 2. NEGATIVE NOVELTY is Eé’-complete.
Lemma 14. NOVELTY is Eé’—complete.

Proof. Membership comes from Proposition 19. As to hardness, let us consider the
application M that maps (@, ¥) to (¥ Vv new @, new, where newis a variable from
PS\ (Var(®) U Var(¥)). M can be easily computed in time polynomial in the input size.
Thepointisthat @ and ¥ are not novelty-based independent if and only if @ isnew to new
with respect to ¥ v new Then, the l'lg -hardness of novelty-based independence completes
the proof. For simplicity, let us recall that @ and ¥ are not novelty-based independent if
and only if @ isnew positiveto =& with respect to true. Let usfirst show that if @ isnew
positiveto ¥ with respect to true, then @ is new positiveto newwith respect to =¥ v new
hence new to newwith respect to =¥ v new

(=) Assumethat thereexistsatermy st. (1) @ Ay =W, (2) @ Ay issatisfiable and
(3) y = ¥ holds.

o ()impliesthat d Ay =P Ay AW.Hence, DAy A(=¥ vVnew =y AP AY Anew
Consequently, y A @ A (=¥ v new = newholds.

o (2) impliesthat @ A y A (=¥ A new is satisfiable: if there exists a model of @ A y
than there exists amodel of @ A y A new henceamodel of @ Ay A (=& A new.

o (3) impliesthat y A (=¥ Vv new k= new Indeed, if it were not the case, we should
have y A =¥ = new Since newdoes not occur in y A =¥, it should be the case that
y A =¥ isunsatisfiable, which contradicts (3).

(<) It remains to show that whenever @ is new to newwith respect to =¥ Vv new
then @ is new positive to ¥ with respect to true. In order to proveit, let us first show that
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when @ is new to newwith respect to =¥ v new, we necessarily have @ new positive
to newwith respect to =¥ v new(in other words, @ new negative to newwith respect to
- v newisimpossible). By reductio ad absurdumniet us assume that there exists aterm
y st. (1) @ Ay A (=¥ vnew = —newholds, (2) @ A y A (—¥ Vv new is satisfiable,
and (3) y A (=¥ Vv new = —newholds. (1) is equivalent to saying that @ A y A newis
unsatisfiable, i.e.,, @ A y = —newholds. Since (2) requires that @ A y is satisfiable and
since newdoes not occur in @, it must be the case that y = —new This prevents (3) from
being satisfied. This shows that each time @ is new to newwith respect to —¥ Vv hew
then @ is new positive to newwith respect to =¥ v new Then, we have to show that, in
this situation, @ isnew positiveto ¥ . Stating that @ is new positive to newwith respect to
—¥ vnewisequivaent to state that thereexistsatermy s.t. (1) @ Ay A (=¥ vVnew = new
holds, (2) @ Ay A (=¥ Vv new issatisfiable, and (3) ¥ A (=¥ Vv new = newholds.

o (1) is equivalent to saying that @ A y A =¥ A —newis unsatisfiable. When (3) is
satisfied, it must be the case that y = new Since newdoes not occur neither in @ nor
in ¥, (1) is equivalent to saying that @ A y A —¥ isunsatisfiable, i.e, @ Ay =W
holds.

o (2) impliesthat @ A y issatisfiable.

o (3)isequivalentto sayingthat y A (—¥ v new) A —newis satisfiable. Thisis equivalent
to saying that y A =¥ A —newis satisfiable. As a consequence, y A =¥ must be
satisfiable, i.e., y = ¥ holds.

Thus, y is a certificate showing ¢ new positive to ¥ with respect to true, and this
completesthe proof. O

5.4. Separability

Levesque [23] introduces a notion of formula separability that proves helpful for the
purpose of characterizing queries that can be soundly answered, using an efficient (but
incomplete in the general case) evaluation-based inference engine. In the propositional
case, separability can be defined as follows:

Definition 15 (X'-separability. Let X, &1, ..., @, beformulasfrom PRORs, @1, ..., &,
are X'-separablef and only if for every clause §, wehave X A®@1 A ---AD,, =4 if andonly
if AP =d80r---0r X AD, =6. When X isvalidand @4, ..., @, are X-separable
they are said to be separableor simplicity.

Example 6. Let X = (b=c¢), P =(a=b) and ¥ = (c = d). & and ¥ are not X-
separable since § = (—a Vv d) is a logica consequence of X A @ A ¥ hut is neither
a consequence of X A @ nor a consequence of X' A ¥. Contrastingly, @ and ¥ are
separable.

Determining X'-separable formulas can prove vauable for query answering in a
computational perspective. To be more precise, while the complexity of query answering
from aset of X-separable formulas remains coNP-complete, it is often advantageousfrom
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the practical side to replace one large instance of the query answering problem by a linear
number of smaller instances. Thisiswhat X' -separability enablesto do.

Interestingly, the background information X can be incorporated into the formulas
checked for separability, so that X' -separability can always be mapped to separability.

Proposition 21. Let X', @4, ..., &, be formulas from PRQR, &4, ..., &, are X -separa-
bleifand only if X A @1, ..., X A @, are separable.

Proof. Trivia. 0O

This proposition also shows that X'-separability and separability have the same
complexity in the sense that each of them can be polynomially many-one reduced to the
other.

Asadirect consequence of Corollary 1, in the case where n = 2, separability coincides
with novelty-based independence:

Corollary 3. Let® and¥ be two formulas from PRGR. ¢ and¥ are separable if and
only if @ and¥ are novelty-based independent.

As a conseguence, the complexity of separability and X'-separability can be easily
established:

Proposition 22 (complexity of (X-)separability). X-SEPARABILITY and SEPARABILITY
are I15-complete.

Proof. It is sufficient to consider the separability situation (i.e.,, X is a tautology) since
X' -separability can be polynomially many-one reduced to separability, and vice versa

o MembershipConsider the following algorithm for the complement problem: guess a
clause § and check that @1 A --- A @, =6 holds, while, foranyi € 1...n, ®; =8 doesnot
hold. Clearly enough, the check step of this algorithm can be achieved in time polynomial
in the size of the input using an NP-oracle (only n + 1 calsto the oracle are required), and
the algorithm returns“yes’ if and only if @4, ..., @, are not separable.

e Hardness Trivia from the fact that checking novelty-based independence is l'Ié7 -
complete, and separability coincides with novelty-based independence in the restricted
casewheren=2. 0O

5.5. Causal independence

The notion of causal independence in symbolic causal networks has been proposed by
Darwiche and Pearl in[9].

Definition 16 (causal structure A causal structurésan ordered pair (A, G), where A isa
propositional formulaand G isadirected acyclic graph on a subset of Var(A). The parents
of avariable v arecalled itsdirect causeand denoted Causegv), its descendentsare called
its effects and its non-descendents are called its non-effectsand denoted Noneffect&).
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The variables of Var(A) that do not appear in G are called the exogenous propositions
EXQ(A, G), or EXOfor short, denotes the set of exogenous propositions.

Independencefor causal structureis closely related to conditional independence:

Definition 17 (causal independenieéA causal structure (A, G) is causally independerit
and only if

(8) Aissdtisfiableand
(b) for every EXO-world wgxo consistent with A, and Vv € G, we have

NCausesu)
AN®EXO

Noneffect&).

Accordingly, its computational complexity can be derived from some of the previous
results:

Proposition 23 (complexity of causa independence). CAUSAL INDEPENDENCE is 1‘[5—
complete.

Proof. First of al, we will make use of the following equivalence, obtained as a direct
rewriting of the definition of conditional independence:

(A, G) iscausaly independent if and only if A is satisfiable and
Vo € G, v ~5 e Noneffects).

Now, checking causal independence comes down to a satisfiability test (in NP) and a
conditional independencetest (in l'lg ). Theintersection of alanguagein NP and alanguage
inT15 isin 15, hence the membership of CAUSAL INDEPENDENCE in I15. Asto hardness,
we exhibit a polynomia reduction from CONDITIONAL INDEPENDENCE OF SINGLE
VARIABLES (which has been shown to be Hg-complete) to CAUSAL INDEPENDENCE.
Let (¥,x,y,Z) suchthat x,y e Var(X) and Z C Var(X), x #y, x ¢ Z, y ¢ Z. Let
M2, x,y,Z))= (A, G) where

e A =X Anewwhere newisanew variable,

e G contains an edge from newto x and an edge from newto y, and nothing else.
Now, (A, G) is causally independent if and only if x ~%“"®"

only if x ~§ y. O

y, or equivalently if and

5.6. Non-interactivity

We have aready shown how conditional independence relates to the classical notion of
probabilistic independence (Proposition 2). Several authors [4,10] have proposed notions
of independencein uncertainty calculi that are“less quantitative’ than the probabilistic one.
Especidly, possibilistic independence can be expressed using purely ordinal notions such
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as min and max: if 7 : 2 — [0, 1] isa normalized possibility distribution (which imposes
the constraint max,,c o 7 (w) = 1), from which a possibility measure IT : PRORs— [0, 1]
defined by IT(¢) = maXy, 7 (w) is induced (with the convention max ¥ = 0), then X
and Y are non-interactivewith respect to = given Z [4] if and only if Yoz € 27,
I (wx AN wy A wz) =mMin(IT(wx A wz), IT(wy A wz)) (Where X, Y and Z are pairwise
digoint). The ordinal nature of this definition makes the connection to conditional
independence possible in both directionsnot only conditional independenceis obviously
aparticular case of possibilistic non-interactivity, but we can also prove the following: let
Cut(r, @) =for({w € 2 | n(w) > «@)}) wherea € [0, 1]; we have

X and Y are non-interactive with respect to = given Z
if and only if Va € [0, 1], X ~& .o ¥ OIdS.

Once remarked that the number of distinct «’s used in 7 isfinite (because §2 isfinite), this
establishes auseful connection, especially when it comes to computational considerations.
In practice, a possibility distribution is not specified explicitly but by means of a stratified
knowledge bas® = (By,. ..., By,) Where the B;’s are propositional formulas and cg =
1> a1 2 2 a, > 0 (By, denotes thus the most entrenched formulas and B, the
less entrenched ones); B induces the possibility distribution 7 defined by 7p(w) =
min{l—«; | ® = —B;} (withthe convention min@ = 1). Then, using the equivalence above
and the property Cut(r, o) = /\@1_“ Bg, it holds

X and Y are non-interactive with respect to g given Z

; . .z
if and only if Va € [0, 1], X Apoi Bs Y holds.

The latter transformation being polynomial, all complexity results established in our paper
carry on to possibilistic non-interactivity when the input is a stratified knowledge base

6. Concluding remarks

This paper is centered on conditional independence and its stronger form (strong
conditional independence) that we have introduced. Our main contribution is related to
both the “ philosophical” position and the “pragmatic” position with respect to irrelevance.

On the one hand, we have investigated structural properties for both forms of
independence. Simple conditional independence was known to satisfy all properties of
semi-graphoids, but not intersection; the latter is also satisfied by strong conditional
independence, while the former ones till hold, which mean that strong conditional
independence satisfy the properties of graphoids. Theseresults are synthesized on Table 3.

Table 3

Conditional independence vs. graphoid axioms

Z ~Z

b b

symmetry yes yes

decomposition yes yes

weak union yes yes

contraction yes yes

intersection no yes
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We have also characterized (ssmple) conditional independence in probabilistic terms
(cf. Proposition 2); this confirms that conditional independence is a good logica
counterpart to probabilistic independence, as Darwiche says [8]. From this result,
analogous characterizations for strong independence follow.

On the other hand, we have identified the complexity of the various (in)dependence
relations considered in this paper, and a number of characterizations have been given as
well. In light of the results established, it appearsthat most(in)dependence relations have
a high complexityThethreeforms of conditional independence (and the notions connected
to them) are in complexity classes located at the second level of the polynomial hierarchy.
Thisis not so surprising since this is where a large part (if not the majority) of important
problemsin knowledge representation? is located.

According to Darwiche [8], conditional independence can be useful for improving
many forms of inference, including satisfiability, entailment, abduction and diagnosis.
In optimal cases, for example, a satisfiability problem can be decomposed into a small
number of satisfiability problemson easier knowledge bases (with less variables). We have
also briefly mentioned how conditional independence can prove valuable in the context of
reasoning about actions. For al these applications, the computational value of conditional
independencelies in the fact that a global computation can be (soundly) decomposed into
a number of local computations (which can be performed efficiently), whenever some
independence relations are satisfied. Similar ideas have been developedin [2,17].

The complexity results given in this paper show that it is not aways a good idea to
search in an intensive way for independence relations as a preliminary step to inference.
Especially, it may be paradoxical (and sometimes dangerous) to preliminarily compute a
1‘[5 -hard independence relation to help solving a NP- or coNP-complete problem (given
that the input sizes of both problems are polynomially related). Fortunately, this negative
comment has only a general scope (worst case complexity results have been considered),
and for many instances, taking advantage of (ir)relevance information can prove quite
efficient. Indeed, from the practical side, our complexity results show only that the
exploitation of relevance information to improve inference must be done in a careful way.
A way to escape from intractability consistsin assuming arepresentation of the knowledge
base from which some independence relations can be obtained “for free”, or at least in
an efficient way. This is what Darwiche achieves with the notion of structured database.
While it is not the case that every propositional knowledge base satisfies the locality and
modularity conditions of a structured database (see [8] for details), several independence
relations can be directly read off from a structured database, and some other ones can be
inferred efficiently thanksto the notion of d-separation. As Darwiche statesin [8], it isnot
the case that all the conditional independencerelationswith respect to astructured database
can be found thisway. In some sense, our complexity results confirm that focusing on some
independence relations, easy to be found, is the good way to do. The same conclusion can
be drawn for relevance relations used to characterize what “tells about” means.

2 such as abduction, nonmonotonic inference, belief revision, belief update, some forms of planning and
decision making.
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Last but not least, our paper shows how closely many independence relations pointed
out so far in the literature are related to conditional independence. Thus, strong conditional
independence, stronger than Darwiche and Pearl’s conditional independence, can easily
be rewritten using the latter notion (Proposition 3). Formula-variable independence can
be viewed as a special case of strong conditional independence (Proposition 12). Simple
and strong conditional independence coincide on marginal independence. At the other

— is a particular case of

----> can be easily rewritten using

2 is stronger than
@ equivalent notions

formula-variable

independence
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Fig. 1. Connections between (in)dependence relations.
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extreme, strong ceteris paribusndependence is a particularly interesting notion which is
equivalent to L akemeyer’sirrelevance between subject matters (Proposition 16). The three
notions of novelty are special cases of strong ceteris paribugiependence (Proposition 19)
and novelty-based independenceis a specia case of strong ceteris paribusndependence,
which provesto be a special case of Levesque's separability (both coincide for the case of
two formulas, see Proposition 21). Finally, there is aso a close link between conditional
independence and non-interactivity. A synthetic description of the relationships between
various definitionsis depicted on Fig. 1.

We think that pointing out such close connections is important because (1) babelism
is always a bad thing, and (2) known results may appear synergetic. Thus, it is
possible to take advantage of results about conditional independence to achieve a better
understanding of the other forms of independence considered in this paper. Specificaly,
we have been able to identify their computational complexity knowing the complexity
of conditional independence. Similar synergetic roles can emerge for other concerns,
including algorithms and applications. Thus, though the practical computation of many
of the independence relations considered in this paper has not been investigated in depth,
our results show that it is possible to benefit from Darwiche's computational framework
for conditional independence, at least as a starting point.

This work also opens several ways for further research. Especialy, it would be
interesting to know how the connections between logical conditional independence
and conditional independence in ordinal uncertainty calculi could be transposed to the
notions of utility independence and preferential independence, as defined in multicriteria
decision making and studied from a knowledge representation perspective by Bacchus and
Grove[3].
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