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Andrew Gordon Wilson

Abstract

Truly intelligent systems are capable of pattern discovery and extrap-

olation without human intervention. Bayesian nonparametric models,

which can uniquely represent expressive prior information and detailed

inductive biases, provide a distinct opportunity to develop intelligent

systems, with applications in essentially any learning and prediction

task.

Gaussian processes are rich distributions over functions, which provide

a Bayesian nonparametric approach to smoothing and interpolation.

A covariance kernel determines the support and inductive biases of

a Gaussian process. In this thesis, we introduce new covariance ker-

nels to enable fast automatic pattern discovery and extrapolation with

Gaussian processes.

In the introductory chapter, we discuss the high level principles behind

all of the models in this thesis: 1) we can typically improve the pre-

dictive performance of a model by accounting for additional structure

in data; 2) to automatically discover rich structure in data, a model

must have large support and the appropriate inductive biases; 3) we

most need expressive models for large datasets, which typically provide



more information for learning structure, and 4) we can often exploit

the existing inductive biases (assumptions) or structure of a model for

scalable inference, without the need for simplifying assumptions.

In the context of this introduction, we then discuss, in chapter 2, Gaus-

sian processes as kernel machines, and my views on the future of Gaus-

sian process research.

In chapter 3 we introduce the Gaussian process regression network

(GPRN) framework, a multi-output Gaussian process method which

scales to many output variables, and accounts for input-dependent

correlations between the outputs. Underlying the GPRN is a highly

expressive kernel, formed using an adaptive mixture of latent basis

functions in a neural network like architecture. The GPRN is capa-

ble of discovering expressive structure in data. We use the GPRN to

model the time-varying expression levels of 1000 genes, the spatially

varying concentrations of several distinct heavy metals, and multivari-

ate volatility (input dependent noise covariances) between returns on

equity indices and currency exchanges which is particularly valuable for

portfolio allocation. We generalise the GPRN to an adaptive network

framework, which does not depend on Gaussian processes or Bayesian

nonparametrics; and we outline applications for the adaptive network

in nuclear magnetic resonance (NMR) spectroscopy, ensemble learning,

and change-point modelling.

In chapter 4 we introduce simple closed form kernels for automatic pat-

tern discovery and extrapolation. These spectral mixture (SM) kernels

are derived by modelling the spectral density of kernel (its Fourier

transform) using a scale-location Gaussian mixture. SM kernels form

a basis for all stationary covariances, and can be used as a drop-in re-

placement for standard kernels, as they retain simple and exact learning

and inference procedures. We use the SM kernel to discover patterns

and perform long range extrapolation on atmospheric CO2 trends and

airline passenger data, as well as on synthetic examples. We also show



that the SM kernel can be used to automatically reconstruct several

standard covariances. The SM kernel and the GPRN are highly com-

plementary; we show that using the SM kernel with the adaptive basis

functions in a GPRN induces an expressive prior over non-stationary

kernels.

In chapter 5 we introduce GPatt, a method for fast multidimensional

pattern extrapolation, particularly suited to image and movie data.

Without human intervention – no hand crafting of kernel features, and

no sophisticated initialisation procedures – we show that GPatt can

solve large scale pattern extrapolation, inpainting, and kernel discov-

ery problems, including a problem with 383,400 training points. GPatt

exploits the structure of a spectral mixture product (SMP) kernel, for

fast yet exact inference procedures. We find that GPatt significantly

outperforms popular alternative scalable Gaussian process methods in

speed and accuracy. Moreover, we discover profound differences be-

tween each of these methods, suggesting expressive kernels, nonpara-

metric representations, and scalable exact inference are useful in com-

bination for modelling large scale multidimensional patterns.

The models in this dissertation have proven to be scalable and with

greatly enhanced predictive performance over the alternatives: the ex-

tra structure being modelled is an important part of a wide variety of

real data – including problems in econometrics, gene expression, geo-

statistics, nuclear magnetic resonance spectroscopy, ensemble learning,

multi-output regression, change point modelling, time series, multivari-

ate volatility, image inpainting, texture extrapolation, video extrapo-

lation, acoustic modelling, and kernel discovery.
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Chapter 1

Introduction

Machine learning is fundamentally about developing intelligent systems, which in

turn is about developing statistical models for automatic pattern discovery and

extrapolation. In order for a statistical model to learn and make decisions without

human intervention, the model must be able to discover patterns, and extrapolate

those patterns to new situations. It is therefore not surprising that early machine

learning models, such as the perceptron (Rosenblatt, 1962), were inspired by a

model of a neuron (McCulloch and Pitts, 1943); a model must have good inductive

biases (assumptions) to extract useful information from data, and human inductive

biases – encoded in neural architectures – have been finely tuned over millions of

years of evolution. Later, Rumelhart et al. (1986) inspired hope that it would be

possible to develop intelligent agents with models like neural networks.

In short, the ability for a model to learn from data is determined by:

1. The support of the model: what solutions we think are a priori possible.

2. The inductive biases of the model: what solutions we think are a priori likely.

For example, if we are performing character recognition, the support of the model

represents which characters we think are a priori possible, and the inductive biases

are which characters we think are a priori likely.

The Bayesian framework represents uncertainty and expresses prior information

using probability distributions. Therefore Bayesian models are naturally suited

1



to learning representations in data and generalising these representations to new

situations1. Indeed it has been suggested that the human ability for inductive

reasoning – concept generalization with remarkably few examples – could derive

from combining rich prior information with Bayesian inference (Steyvers et al.,

2006; Tenenbaum et al., 2011; Yuille and Kersten, 2006).

Bayesian nonparametric models are Bayesian models where the number of mean-

ingful parameters grows with the data; in other words, the expressive power of a

Bayesian nonparametric model scales with the amount of available information.

Until now, Bayesian nonparametic models, and Gaussian processes in particular,

have largely been used for smoothing and interpolation on small datasets. How-

ever, these models can accommodate highly expressive priors, with large support,

and detailed inductive biases, and thus have great potential for developing in-

telligent systems. Moreover, such expressive models are most valuable on large

datasets, since more data typically provides more information to learn expressive

structure.

Gaussian processes are rich distributions over functions, which provide a Bayesian

nonparametric approach to smoothing and interpolation. The support and in-

ductive biases of a Gaussian process are specified by an interpretable covariance

kernel. In this thesis, we introduce new covariance kernels to enable fast automatic

pattern discovery and extrapolation with Gaussian processes. These kernels can

be placed in the context of a historical progression of statistical models in machine

learning.

At the present time, we have quickly entered an era of big data: “The future of the

human enterprise may well depend on Big Data”, exclaimed West (2013), writing

for Scientific American. Indeed recent machine learning efforts have focused on

developing scalable models for large datasets, with notable results from deep neural

architectures (Krizhevsky et al., 2012).

Neural networks first became popular in the 1980s because they allowed for adap-

tive basis functions, as opposed to the fixed basis functions in well known linear

1In this thesis, we refer to features, representations, and patterns interchangeably.
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models. With adaptive basis functions, neural networks could automatically dis-

cover interesting structure in data, while retaining scalable learning procedures

(Rumelhart et al., 1986). But this newfound expressive power came at the cost of

interpretability and the lack of a principled framework for deciding upon network

architecture, activation functions, learning rates, etc., all of which greatly affect

performance (Rasmussen and Williams, 2006).

Following neural networks came the kernel era of the 1990s, where infinitely many

fixed basis functions were used with finite computational resources via the kernel

trick – implicitly representing inner products of basis functions using a kernel.

Kernel methods are flexible, and often more interpretable and manageable than

neural network models. For example, Gaussian processes can be used as rich

prior distributions over functions with properties – smoothness, periodicity, etc.

– controlled by an interpretable covariance kernel. Indeed Gaussian processes

have had success on challenging non-linear regression and classification problems

(Rasmussen, 1996).

Within the machine learning community, Gaussian process research developed

out of neural networks research. Neal (1996) argued that since we can typically

improve the performance of a model by accounting for additional structure in data,

we ought to pursue the limits of large models. Using character recognition as an

example, Neal (1996) writes “it will always be possible to improve performance

at least a bit by taking account of further rare writing styles, by modeling the

shapes of the less common forms of ink blots, or by employing a deeper analysis of

English prose style in order to make better guesses for smudged letters”. The first

examples – taking account of further rare writing styles and irregular ink blots –

suggest we ought to make the support of a model as large as is reasonably possible.

The next example, regarding a deeper analysis of English prose, suggests that we

ought to refine our inductive biases – e.g., the distribution of prior support – as

much as possible, so that we can improve, for instance, our prior beliefs about how

likely certain characters might be. And large models – infinite models, ideally –

can be used to provide large support and expressive inductive biases.

Accordingly, Neal (1996) showed that Bayesian neural networks become Bayesian

3



nonparametric Gaussian processes with a neural network kernel, as the number of

hidden units approach infinity. Thus Gaussian processes as nonparametric kernel

machines are part of a natural progression, with the flexibility to fit any dataset, au-

tomatically calibrated complexity (Rasmussen and Ghahramani, 2001; Rasmussen

and Williams, 2006), easy and interpretable model specification with covariance

kernels, and a principled probabilistic framework for learning kernel hyperparam-

eters.

However, kernel machines like Gaussian processes are typically unable to scale to

large modern datasets. Methods to improve scalability usually involve simplifying

assumptions, such as finite basis function expansions (Lázaro-Gredilla et al., 2010;

Le et al., 2013; Rahimi and Recht, 2007; Williams and Seeger, 2001), or sparse

approximations using pseudo (aka inducing) inputs (Hensman et al., 2013; Naish-

Guzman and Holden, 2007; Quiñonero-Candela and Rasmussen, 2005; Seeger et al.,

2003; Snelson and Ghahramani, 2006). The assumptions of these methods are often

suitable for scaling popular kernel functions, but we will see that these assumptions

are not as suitable for highly expressive kernels, particularly when a large number

of training instances provide an opportunity to extract sophisticated structure

from the data.

Indeed popular covariance kernels used with Gaussian processes are not often

expressive enough to capture rich structure in data and perform extrapolation,

prompting MacKay (1998) to ask whether we had “thrown out the baby with the

bathwater”. In general, choice of kernel profoundly affects the performance of a

Gaussian process – as much as choice of architecture affects the performance of

a neural network. Gaussian processes are sometimes used as flexible statistical

tools, where a human manually discovers structure in data and then hard codes

that structure into a kernel. Typically, however, Gaussian processes are used with

the Gaussian (squared exponential) or Matérn kernels by default. In either case,

Gaussian processes are used as smoothing interpolators, only able to discover lim-

ited covariance structure. Likewise, multiple kernel learning (Gönen and Alpaydın,

2011) typically involves hand crafting combinations of Gaussian kernels for special-

ized applications, such as modelling low dimensional structure in high dimensional

data, and is not intended for automatic pattern discovery and extrapolation.
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In short, Gaussian processes (GPs) as distributions over functions have a rich

history in statistics, dating back to O’Hagan (1978), and described in detail in

Rasmussen and Williams (2006), Stein (1999), MacKay (1998), and Cressie (1993);

however, GPs have almost exclusively been used with simple kernels, such as the

Gaussian kernel, limited to smoothing and interpolation.

In this thesis we propose new covariance kernels for fast automatic pattern discov-

ery and extrapolation with Gaussian processes (GPs). Every model in this thesis

is not simply for interpolation or smoothing, but is intended to discover patterns

(aka features) in data, for the purpose of scientific discovery.

In chapter 2, we introduce Gaussian processes as kernel machines. Anything that

may presently be unclear will hopefully be clarified in this chapter. The experi-

enced Gaussian process researcher, however, may wish to treat this chapter as a

reference, at least up until section 2.6, where I describe my views on the future

of Gaussian process research. In short, I believe that more expressive kernels will

become mainstream, and when this happens, the powerful framework provided by

Gaussian processes for learning the properties of a kernel will increasingly distin-

guish GPs from other kernel machines. I also believe that the most successful way

to scale these expresive kernels will be through exploiting existing model struc-

ture, rather than through the now popular inducing input or finite basis function

assumptions.

In chapter 3, we introduce a new regression framework, Gaussian Process Re-

gression Networks (GPRNs), which unifies many of the themes identified in the

previous chapter 2 as important future areas of Gaussian process research: multi-

output regression, heteroscedasticity, non-Gaussian predictive distributions, kernel

learning and pattern discovery, and exploiting structure for fast scalable inference.

Underlying all the properties of the GPRN is a highly expressive covariance kernel,

which is formed by combining the nonparametric flexibility of Gaussian processes

with certain structural properties of neural networks. Moreover, we exploit the

structure of the GPRN so that it can scale linearly with the number of output

variables (responses), as opposed to the more common cubic scaling in typical GP

based multi-output models.
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The GPRN is applied primarily as a multi-output regression model, with the dis-

tinctive ability to model input dependent signal and noise correlations between

multiple outputs. In particular, we apply the GPRN to modelling the expression

levels of 1000 genes (1000 output variables), which all depend on time (the input),

and which are all thought to be regulated by one or a small number of transcription

factors. The GPRN is different than a standard GP based multi-output models in

that it assumes these correlations are time-varying. We also apply the GPRN to

predicting the concentrations of different heavy metals at desired spatial locations

in the Jura Swiss mountain region. The GPRN is able to learn how the corre-

lations between these heavy metals vary as a function of geographical location,

uncovering various geological features, which could correspond, for example, to

rivers that affect how different heavy metals are distributed in the region. Finally,

we apply the GPRN to multivariate volatility modelling in econometrics, where

there are multiple output variables with time varying noise correlations (the data

are heteroscedastic)1.

In the Gaussian process regression network, multiple responses share latent ba-

sis functions, which is why the responses (e.g. multiple genes or multiple heavy

metals) are correlated. The correlations change with inputs (predictors), because

the connections from responses to basis functions are themselves functions of the

predictors, rather than constants. In other words, connections in undirected graph-

ical models, typically used to represent neural networks, become functions. This

idea of an adaptive network has analogues in biological learning, does not de-

pend on Bayesian nonparametrics, and has widespread implications in machine

learning and statistics. For instance, using an adaptive network one can easily

modify a given regression or classification method to account for input dependent

correlations between multiple responses, often for greatly improved predictive per-

formance. At the end of chapter 3, we discuss this generalisation of GPRNs to

adaptive networks, and outline novel applications in nuclear magnetic resonance

spectroscopy, ensemble learning, and change-point modelling.

1In appendix A1 we introduce time series models and the concept of volatility, or input
dependent noise. This appendix is valuable background material for chapter 3.
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The GPRN and adaptive network framework is highly complementary with the

simple closed form kernels we introduce in the following chapter 4. At a basic

level, these kernels in chapter 4 can be used to automatically discover features

such as periodicity, smoothness, etc., without having to a priori hard code these

features into a model. These kernels are derived by modelling a spectral density

– the Fourier transform of a kernel – with a scale-location Gaussian mixture,

and form a basis for all stationary kernels. We show that these spectral mixture

(SM) kernels can be used as a drop-in replacement for standard kernels, with

major benefits in expressiveness and performance, while retaining simple analytic

inference and learning procedures. We use the SM kernel to perform automatic

pattern discovery and extrapolation on airline passenger data, CO2 readings, and

synthetic examples. We also show that the SM kernel can reconstruct ground

truth standard covariances automatically. We then develop expressive processes

over kernels by using Gaussian processes with spectral mixture kernels as adaptive

basis functions in the GPRN framework. These processes are highly expressive –

with support for essentially any possible kernel – but naturally allow us to express

our inductive biases, for example, by being able to concentrate prior support on

stationary kernels, if desired.

In chapter 5, we extend and unify spectral mixture kernels with fast exact inference

techniques, for large scale multidimensional pattern extrapolation. In particular,

we introduce a spectral mixture product (SMP) kernel, which is intended for mul-

tidimensional inputs. We then exploit the Kronecker structure of this kernel for

fast and exact inference in a method called GPatt. GPatt inference is most suited

to inputs which have some grid structure1 – images, video, spatial statistics, etc.

– and thus is not typically as natural for very high dimensional input data. How-

ever, grid structure is not required, and many of the experiments we perform are

on significantly non-grid data. Without human intervention – no hand crafting

of kernel features, and no sophisticated initialisation procedures – We show that

GPatt can solve practically important large scale pattern extrapolation, inpaint-

ing, video extrapolation, and kernel discovery problems, including a problem with

1By grid, we mean the inputs X = X1 × · · · × XP ⊂ RP . Note that this is not a regularly
spaced grid.
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1.1 Parametric Modelling

383, 400 training points. We find that GPatt significantly outperforms popular al-

ternative scalable Gaussian process methods in speed and accuracy. Moreover, we

discover profound differences between each of these methods, suggesting expres-

sive kernels, fully nonparametric representations, and exact inference are useful in

combination for modelling large scale multidimensional patterns. GPatt provides a

fresh and highly general approach to multidimensional pattern discovery, enabling

largely new applications, such as video extrapolation, which is considered an open

problem (Guillemot and Le Meur, 2014).

Finally, in chapter 6, we summarize the high level conclusions and discuss future

directions for the work in this thesis. I believe we will soon enter a new era of

machine learning, where models are highly expressive, but also interpretable and

manageable, and are scalable through simple inference and learning procedures

which exploit existing model structure. I hope to contribute to this direction with

the models in this thesis.

We conclude the present introductory chapter with a basic introduction to some

ideas in regression – touching on parametric modelling, model complexity, and

model selection, as well as Bayesian nonparametric modelling. This introduction

is intended to establish fundamental modelling principles which guided in the

development of all of the models in this thesis.

1.1 Parametric Modelling

Suppose we are interested in performing regression. In other words, we have access

to a training set of observations (or more generally, outputs) y = (y(x1), . . . , y(xn))>,

evaluated at a set of known inputs X = (x1, . . . , xn)>, and we wish to predict y(x∗)

at a test input x∗. The outputs, for example, could be noisy CO2 readings, taken

at a set of input times X. We could, for instance, have access to yearly CO2

readings from 1930 to 2013 and we may wish to predict yearly CO2 concentrations

from 2014 to 2020. The inputs x could also be multidimensional, e.g., x ∈ RM .

A conceptually simple approach to the regression problem is to guess the form

of a function that could have generated the data, and then learn the parameters
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1.1 Parametric Modelling

of this function so as to minimize the error of predictions made on the training

set. If the training set appears simple, for example if it has a linear trend, we

could use a simple linear function f(x,w) = w>x, parametrized by a vector of

‘weights’ w. Or if the data set seems more complex, we could use a linear model

with a vector of non-linear basis functions (sometimes called features) φ(x) =

(φ1(x), φ2(x), . . . , φk(x))>, where f(x,w) = w>φ(x). It is convention to call this

a linear regression model, because it is linear in parameter space. This model is

not necessarily linear in the input space x. Any polynomial, for example, would

be a linear regression model with basis functions 1, x, x2, . . . . If we want yet more

flexibility, we could use a neural network function with many hidden units, which

is a non-linear function in both parameter and input space.

It is common to take as error the squared difference between what the model

predicts the output should be, and what the output actually is:

E(w) =
N∑
i=1

(f(xi,w)− yi)2 . (1.1)

In Eq. (1.1), N denotes the number of data points in the training set. Taking

the gradient of E with respect to w, we can sometimes find a minimum either

analytically, or using a method like gradient descent. When choosing an error

measure, we have to carefully consider what it means for the model to perform

well on the test set.

Another approach is to assume that the training output is noisy, so that y(x) =

f(x,w) + ε(x), where ε is a random variable representing noise, and then set

the parameters w by maximizing the likelihood p(y|X,w). Commonly one takes

ε ∼ N(0, σ2), in which case

p(y|x,w) = N(y(x); f(x,w), σ2) , (1.2)

p(y|X,w) =
N∏
i=1

N(y(xi); f(xi,w), σ2) . (1.3)

The setting of the parameters w that maximizes the likelihood in Eq. (1.3) is the

same setting of parameters that minimizes the squared error function Eq. (1.1).

However, this would not necessarily be the case with a different noise model. The
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1.1 Parametric Modelling

noise model can therefore be used to interpret a chosen error measure. Moreover,

in this second maximum likelihood framework we can also maximize with respect

to σ2 to get a sense of the noise level.

Both of these techniques are prone to overfitting, which means that f(x,w) has

low error on reconstructing the training set, but high error on the test data, often

because it is modelling random artifacts in the training data, rather than just

the underlying signal. The more expressive the regression function f , the more

capable it is of fitting sophisticated trends, but also the more likely it is to overfit.

One way to manage overfitting is to introduce a complexity penalty term in the

expression for the likelihood. For example, we may write a penalized log likelihood

as

log p(y|X,w) ∝

model fit︷ ︸︸ ︷
− 1

2σ2

n∑
i=1

(f(xi,w)− y2
i )

complexity penalty︷ ︸︸ ︷
−λw>w . (1.4)

The first term is indeed a scaled version of the squared error metric in Equation

(1.1). Had we used, for example, a Laplace distribution rather than a Gaussian

distribution to model the noise, we would have recovered an absolute value error

metric. The complexity penalty discourages weights from becoming too large.

Introducing a complexity penalty into the likelihood is called regularization. It

is difficult to know how we should penalize complexity (what term should we

introduce?). It is also uncertain how much we should penalize complexity; for

example, what should we do with the parameter λ, since setting λ = 0 will trivially

maximize likelihood? Indeed complexity itself is not even well defined or intuitive

(and is discussed more in sections 1.2 and 2.3.2). Cross-validation can be used to

set λ, in a procedure where parameters are trained with various settings of λ, and

then the setting of the parameters with the lowest error on a held out validation set

is used to learn λ. It can be difficult, however, to know how to choose the validation

set(s) and how many settings of λ to try, particularly in situations where λ might

be a vector.

A different way to protect from overfitting is to set a prior distribution on the

weights, p(w), such as p(w) = N(0,Σw), and then use Bayes’ rule to infer a
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1.1 Parametric Modelling

posterior distribution over the weights p(w|y, X):

posterior =
likelihood× prior

marginal likelihood
, p(w|y, X) =

p(y|X,w)p(w)

p(y|X)
. (1.5)

The marginal likelihood is a normalizing constant which does not have an explicit

dependence on the weights.

We are usually just interested in making predictions about y evaluated at a par-

ticular input x, not in the values of w. The predictive distribution is given by

p(y|x,y, X) =

∫
p(y|x,w)p(w|y, X)dw . (1.6)

Eq. (1.6) is an example of Bayesian model averaging, as we are performing a

weighted average of each prediction made for each setting of the parameters w,

with the probability density of those parameters given the training data. The

regression function is a random function, because the weight parameters are ran-

dom variables. This method prevents overfitting (we are not simply using one

model, but weighting models by their posterior probabilities), and gives a whole

predictive distribution, rather than just a deterministic point estimate. This extra

information is useful; for instance, it immediately tells us how confident we should

be in any prediction we make. Moreover, the model average in Eq. (1.6) intuitively

seems like the right thing to do: we don’t have complete confidence that any one

model generated the data. Ideally we would like p(y|x,w) to include as many

models as possible for different settings of w, so we can weight the predictions

of all feasible models by their posterior probabilities. This principle corresponds

to wanting to have as much support as possible in our prior. Incidentally, the

prior can be viewed as a combination of the functional form of p(y|x,w) and the

explicit prior distribution on the weights w. Conventionally, one might assume

the only prior is on w; however, the functional form of a model reflects our prior

assumptions at least as much as our uncertainty over the parameters of that model

(the distribution on w). In this sense, classical statisticians also use priors, and

not just Bayesians. In other words, the prior on w induces a prior over functions

parametrized by w, and we are interested in the whole functions, not just the

parameters of these functions.
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1.2 Model Complexity and Model Selection

In general, it is difficult to guess the parametric form of a function that could have

generated our data. Surely any function we guess will be incorrect! Real world

data is rarely generated by simple functions, and no data is likely to have been

generated by, for example, a complicated neural network function. For example,

could anyone be confident that f(x,w) = w1x1tanh(w2x
9/2
2 +w3 log(x2

3)+w4)+w5x
4
1

truly describes some real data, even if it performs well on a training and test set?1

And how are we to interpret the parameters of such models? And how are we to

know what priors to place on the parameters? Moreover, the integral of Eq. (1.6) is

only analytically tractable for highly limited parametric forms of f(x,w), typically

forcing one to resort to approximations (e.g., MCMC, variational Bayes, Laplace,

EP, etc., discussed in Bishop (2006) and developed in chapter 3).

We will be more correct in guessing vague properties of the underlying function. We

may have good intuitions about whether or not the function is smooth, periodic,

or increasing. And it turns out that we just need these intuitions. Rather than

perform inference in weight space, where we have little intuition, we can perform

inference directly in function space, where we directly consider distributions over

rich classes of functions. This function space view of regression is naturally suited

to Gaussian processes, which we will discuss in detail in chapter 2.

1.2 Model Complexity and Model Selection

Figure 1.1 is often used to define model complexity (MacKay, 1992b; Rasmussen

and Ghahramani, 2001). The vertical axis represents the likelihood of a given

dataset y (indexed by X), having integrated away any parameters w from a model

M. For example, suppose we define a model M1 as the functional form f1(x,w),

and a prior on parameters p(w). Then the marginal likelihood of M1 is

p(y|M1, X) =

∫
p(y|f1(x,w))p(w)dw . (1.7)

We can interpret the marginal likelihood in Eq. (1.7) as the probability that we

would generate a given dataset y if we were to randomly sample the parameters

1Here I have abused notation slightly so that x1, x2, x3 are three components of a single
vector input x.
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              y
All Possible Datasets

p(
y|

M
)

 

 

Complex Model

Simple Model

Appropriate Model

Figure 1.1: Model selection and complexity via marginal likelihood. We can interpret
the marginal likelihood in Eq. (1.7) as the likelihood that we would generate a given
dataset y if we were to randomly sample the parameters w and then condition on those
parameters (e.g., p(y|y1(x,w))). The marginal likelihood (evidence) is on the vertical
axis, and possible data sets are on the horizontal. Models of three different complexities
are shown. The simple model can only explain a small number of data sets, but it
explains them well: they have a high likelihood. On the other hand, the complicated
model can explain a large number of data sets, but somewhat poorly. A similar plot first
appeared in MacKay (1992b).

w and then condition on those parameters (e.g., p(y|f1(x,w))). The marginal

likelihood is a proper probability distribution over y; so models which give high

marginal likelihood to a small number of datasets must give low probability to most

other datasets, in order to normalize. Such models are labelled as simple models

in Figure 1.1. Complex models are those models which spread their support over

many datasets, but do not give very high probability to any given dataset.

While Figure 1.1 is an often used heuristic for defining complexity based on model

evidence (marginal likelihood), and is useful for explaining the automatic com-

plexity penalty in Gaussian process regression (section 2.3.2), it is not completely

satisfactory. For example, if we can consider the marginal likelihood (evidence)
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1.2 Model Complexity and Model Selection

for any model, then we can consider a model with point masses on the maximum

likelihood solution of a large non-linear parametric model. Such a model will have

high evidence on the dataset in question, and low evidence elsewhere, so would

be considered simple. But such a model is at the greatest risk of overfitting the

data. Alternatively, a parameter free model, which assigns equal probability to

all possible datasets, would be extremely complex by Figure 1.1. Intuitively, com-

plex models ought to be able to extract lots of information from the data, but

the described parameter free model can’t learn anything : predictions made by this

model are independent of the data.

Furthermore, we would not want to perform model selection over the models of

simple, intermediate, or high complexity in Figure 1.1, nor would we even want

to perform a Bayesian model average over these models, because the number of

discrete order models is small (countably infinite), compared to a continuous spec-

trum of models, and we do not believe any of these models generated the data.

I will exemplify this point by considering polynomials of different orders. Sup-

pose we assume the observations y(x) follow p(y(x)|f(x)) = N(y(x); f(x), σ2), and

consider polynomials of orders

f0(x) = a0 , (1.8)

f1(x) = a0 + a1x , (1.9)

f2(x) = a0 + a1x+ a2x
2 , (1.10)

... (1.11)

fi(x) = a0 + a1x+ a2x
2 + · · ·+ aix

i , (1.12)

... (1.13)

fJ(x) = a0 + a1x+ a2x
2 + · · ·+ aJx

J . (1.14)

Furthermore, suppose the actual function underlying the observed data is out of

model class, as would always be the case in the real world. For instance, the data

could be a step function, which cannot be exactly represented at all inputs x ∈ R
by any finite order polynomial.
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1.2 Model Complexity and Model Selection

Introductory texts on machine learning and Bayesian inference such as Bishop

(2006) often specify an isotropic prior over all parameters p(a) = N(0, σ2
fI), and

then analytically integrate away the parameters a in each of the model speci-

fications above, to compute the evidence of the data y for each model order i,

p(y|Mi). The evidence is then plotted as a function of model order, as in Figure

1.2a to show an “Occam’s hill” effect: typically the plot is unimodal, with a model

of intermediate order giving the highest marginal likelihood. Like in Figure 1.1,

this effect is used to show that the evidence favours the “simplest” model that

describes the data – that model selection through marginal likelihood, in other

words, embodies “Occam’s razor”.
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(a) Isotropic Gaussian Prior
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(b) Anisotropic Gaussian Prior

Figure 1.2: Marginal likelihood as a function of model order. These plots are for data
outside the model class – e.g., modelling a step function with finite order polynomials.
These plots are based on the plots in Figures 2 and 4 in Rasmussen and Ghahramani
(2001). a) With an isotropic Gaussian prior on the parameters, the marginal likelihood
clearly favours a model of order 6. This effect is sometimes called “Occam’s hill”, and is
also illustrated in Bishop (2006). b) When the variance of a Gaussian prior on parameters
scales such that high order terms are given less prior probability mass – a scaling that is
typically favoured by and can be learned from the data – then there is no Occam’s hill;
instead, there is roughly an asymptote towards infinite order models.

However, in actuality, we don’t believe any finite order polynomial will describe real

data (our data will always be out of model class), but we know that higher order

polynomials can describe a larger variety of functions and over greater intervals.

A polynomial of order i encompases all polynomials of order less than i. And a

15



1.2 Model Complexity and Model Selection

polynomial of arbitrary order can approximate any real valued continuous function

on a closed interval to arbitrary accuracy (Weierstrass, 1885). In short, we know

we can get closer to describing the true data generating process with a high order

polynomial than a low order polynomial.

So we should not generally compute the evidence of multiple polynomials of dif-

ferent orders, and use these evidences to perform a Bayesian model average. We

should instead use as big a polynomial as is computationally feasible. But Figure

1.1 suggests that such a polynomial would have low model evidence. How do we

resolve this inconsistency? It turns out that, in this instance, “Occam’s hill” is

simply an artifact of a bad prior. If we let the variance on coefficient ai scale with

i, e.g. p(ai) = N(0, i−γI), and learn the scaling γ from the data by maximizing the

likelihood as a function of γ only (for a large, e.g. 200th, order model), then the

evidence plot looks fundamentally different as a function of model order: there is

now an asymptote towards infinite order models, as in Figure 1.2b.1

A similar result would be obtained from integrating away γ through sampling.

The data are telling us to use an infinite order model, which harmonizes with

our prior reasoning that infinite models will be closer to describing the true data

generating process, which is undoubtedly outside of our model class. In a sense γ

scales the complexity of the model – the higher gamma, the more low order models

are favoured. One can plot samples from a high order polynomial, varying γ, to

see how γ affects the induced distribution over functions: indeed, we ultimately

care about the functions that model data and not the parameters in a parametric

model, so it is sometimes more natural to directly consider functions at a high

level, rather than the parameters – an idea which is naturally compatible with the

Gaussian process framework presented in chapter 2.

The procedure that most honestly reflects our prior beliefs is therefore to use as

high an order polynomial as possible, and then perform Bayesian inference in that

model. As we will discuss in the next section, Bayesian nonparametric models

1Kass and Raftery (1995) and Kass and Greenhouse (1989) contain general discussions of the
sensitivity of Bayes factors (the ratio of marginal likelihoods under two different models) to the
choice of prior. For example, one must be careful when using improper priors when performing
Bayesian model comparison.
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1.2 Model Complexity and Model Selection

allow us to work with infinite order models – containing support, for example, for

polynomials of all order – with finite amounts of computation, and no over-fitting.

These models allow us, therefore, to properly reflect our beliefs, and side-step

conventional model selection.

So how should we define complexity? Recall that by Figure 1.1 a parameter free

model would be considered complex, but could not learn anything from the data,

which goes against our intuitive notions of complexity.

We therefore argue that we should tie the notion of complexity to the amount of

information that can be learned from data (and we ought to use the most complex

models possible). Murray and Ghahramani (2005) propose to use the mutual

information between the training data and the predictions made by a model to

define the “information capacity” of the model as

Definition 1.2.1. The capacity (flexibility) of a model Mi can be defined as the

mutual information between the data y (at N locations X) and predictions made

by the model y∗ (at test locations X∗)

Ii,N =
∑
y,y∗

p(y,y∗|Mi) log
p(y,y∗|Mi)

p(y|Mi)p(y∗|Mi)
(1.15)

If we condition on the training data y, and consider a continuous set of test points

y∗, then Eq. (1.15) becomes

Ii,N = p(y)

∫
p(y∗|y) log

p(y∗|y)

p(y∗)
dy∗ . (1.16)

If we are to use Def. 1.2.1 as a definition for complexity, then more complex models

are capable of extracting more information from the training data.

It would be worthwhile, in the future, to further explore exactly what it means for

a model to be complex. A complete definition should explicitly consider rates of

learning as well as a metric such as mutual information. Overall, one should use

the models with the largest support imaginable. And what these models can learn

from the data – and at what rate – is determined by their inductive biases.
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1.3 Bayesian Nonparametric Models

1.3 Bayesian Nonparametric Models

I have argued that one ought to pursue the most expressive models possible, as the

most expressive models typically reflect our honest beliefs about the real world.

In other words, one can typically always improve predictions by accounting for

additional structure in data. Moreover, in Bayesian modelling, one does not need

to limit the expressiveness of a model for fear of over-fitting.

A parametric Bayesian model can be completely summarized with a finite set of

parameters. Conversely, the number of parameters that determine the properties of

a Bayesian nonparametric model depends on the amount of available data. That is,

the information capacity of a Bayesian nonparametric model grows with the data,

which is an intuitively desirable property: the more information we have seen, the

more information the model ought to be able to express. In order to represent a

whole function with a Bayesian nonparametric model, one would need an infinite

number of parameters: for example, each function value f(xi) could be seen as a

separate parameter for every xi ∈ RM . Surprisingly, as shown in sections 2.3.1

and 2.4.3, it is possible to do inference and learning with Bayesian nonparametric

methods using finite amounts of computational power. Such infinite models can

exactly contain a wide range of conventional parametric models – for example, all

of the polynomials given in section 1.2.

In short, we can get closer to reflecting our true beliefs using Bayesian nonparamet-

ric models, since 1) the information capacity of a Bayesian nonparametric model

scales with the amount of available information, and 2) the large support of a

Bayesian nonparametric model reflects the belief that we do not know the exact

form of the function that generated any given dataset. Moreover, 3) Bayesian

nonparametric methods can express the rich prior information that may be neces-

sary for the remarkable generalisations we associate with human intelligence, and

4) when there is more available data, more information can be extracted by such

expressive models. For these reasons, I believe Bayesian nonparametric models

are naturally suited to pattern discovery, representation learning, and extrapola-

tion on large datasets, and have much unexplored promise in this direction, given
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1.3 Bayesian Nonparametric Models

that these models (particularly Gaussian processes) are almost exclusively used

for smoothing and interpolation on small datasets.

In section 2.6.1 I further discuss Bayesian nonparametrics in the context of future

directions for Gaussian process research. Ghahramani (2013), Orbanz and Teh

(2010) and Hjort et al. (2010) contain general expositions on Bayesian nonpara-

metrics.
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Chapter 2

Gaussian Processes

2.1 Introduction

In this thesis we wish to automatically discover rich structure in data with expres-

sive covariance kernels.1 Gaussian processes provide a uniquely interpretable and

principled probabilistic framework for learning with kernels. A Gaussian process

(GP) can be used as a distribution over functions, with support (prior probability)

for essentially any function that could generate a given dataset. The distribution of

this support – the properties of likely functions under a Gaussian process (smooth-

ness, periodicity, etc.) – can be controlled by an interpretable covariance kernel.

Indeed, “the problem of learning in Gaussian processes is exactly the problem of

finding suitable properties for the covariance kernel” (Rasmussen and Williams,

2006). Gaussian processes as distributions over functions, with properties con-

trolled by a kernel, have a rich history in statistics, starting with O’Hagan (1978)

and described in detail in Rasmussen and Williams (2006), Stein (1999), MacKay

(1998), and Cressie (1993).

Owing to their flexibility, interpretability, large support, consistency, simple exact

learning and inference procedures, suitability for kernel learning, and impressive

empirical performances (Rasmussen, 1996), Gaussian processes as kernel machines,

1We refer to kernels, covariance kernels and covariance functions interchangeably.
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have steadily grown in popularity over the last decade.1 However, despite their

many appealing qualities, Gaussian processes as kernel machines are still not in

widespread use. Their applications have mostly been limited to smoothing and in-

terpolation, on datasets with fewer than 10000 points. Perhaps Gaussian processes

have been held back by limited covariance kernels, computational intractability on

large datasets (naively requiring O(N3) operations and O(N2) storage for a dataset

of size N), and difficulties with multi-output regression and heteroscedasticity. We

discuss each of these limitations – and some solutions – in sections 2.6.2, 2.6.3,

2.6.4, 2.6.5, as part of a larger discussion about the promising future of Gaussian

processes (section 2.6), with pointers to new methodology presented in this thesis.

We begin with a self contained introduction to Gaussian process models. In sec-

tion 1.1 we provided a general overview of parametric modelling, which serves to

motivate 1) a function space, rather than weight space view of regression, and 2)

non-parametric modelling. Both of these properties are naturally accommodated

by a Gaussian process regression framework. I start with a general characterisation

of GPs in section 2.2, which quickly moves from the weight space to function space

views of modelling. We then discuss inference in section 2.3, covariance kernels in

section 2.4, and a Bayesian nonparametric interpretation, my focus in this thesis,

in section 2.6.1.

For concreteness, we will often be considering regression problems where we place

a latent Gaussian process prior over functions f(x) to model a set of observations,

y = (y(x1), . . . , y(xn))>, evaluated at a set of known inputs X = (x1, . . . , xn)>.2,3

We wish to infer a posterior distribution over f(x), and the predictive distribution

of y(x∗) at a test input x∗, given the observations y. The observations, for example,

could be measurements of a heavy metal, and the inputs could be spatial locations

1A kernel machine is any algorithm which makes use of a kernel, which is informally a
measure of similarity between pairs of input points, often involving an inner product of basis
functions in a ‘feature space’ (Bishop, 2006). The most well known kernel machine is perhaps
the support vector machine (SVM) (Cortes and Vapnik, 1995). Section 2.4 has more information
on kernels.

2We often use the terms observations, targets, responses, and outputs interchangeably.
3For notational convenience, we will often not explicitly write out conditional dependencies

on the inputs X.
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2.2 Gaussian Process Characterisation

in R2. However, my considerations typically extend – without modification – to

classification and unsupervised learning problems.

2.2 Gaussian Process Characterisation

Gaussian processes are ubiquitous. Even the basic linear model

f(x) = a0 + a1x , (2.1)

a0 ∼ N(0, 1), a1 ∼ N(0, 1) , (2.2)

is an example of a Gaussian process over f , an output variable, depending on an

input variable x ∈ R1.1

A Gaussian process is a type of stochastic process, and informally, a stochastic

process is a random function.2 Placing a distribution over a0 and a1 induces a

distribution over random linear functions f(x). In Figure 2.1, we sample a0 and

a1 from a standard Gaussian distribution and then condition on those samples to

use Eq. (2.1) to sample from f(x) for any x.

A Gaussian process is formally defined as follows:

Definition 2.2.1. (Gaussian process). A Gaussian process is a collection of ran-

dom variables, any finite number of which have a joint Gaussian distribution.

In Equation (2.1), any function value f(x) at any input x is marginally Gaussian,

since Gaussian variables are closed under addition. Any pair of function values,

1In statistics, x is sometimes called a predictor variable or a covariate. In general we will
consider x ∈ RM for any natural number M .

2In the time series literature, a stochastic process is often defined as a random variable that
evolves with time. In general, a stochastic process can depend on any arbitrary input, however.
See Grimmett and Stirzaker (2001) for a more detailed but still accessible treatment of stochastic
processes.
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Figure 2.1: Sample functions drawn from a Gaussian process distribution over linear
functions f(x). The mean function E[f(x)] is shown in thick blue, and 95% of the mass
of the distribution (2

√
var[f(x)]) is shown in gray shade. If we were to sample infinitely

many functions from Eq. (2.1) and then average these functions, we would recover the
mean function in thick blue. 95% of these sample functions would be contained within
the gray shade. 20 sample functions are shown as thin lines in different colours. These
functions are sampled at finitely many input points x and then the points are joined
together to create a line in this figure (in this case, only two points would fully define a
given sample, since these functions are straight lines).
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2.2 Gaussian Process Characterisation

f(xb) and f(xc), evaluated at a pair of input points, xb and xc, has covariance

cov(f(xb), f(xc)) = E[f(xb)f(xc)]− E[f(xb)]E[f(xc)] (2.3)

= E[a2
0 + a0a1(xb + xc) + a2

1xbxc]− 0 (2.4)

= E[a2
0] + E[a2

1xbxc] + E[a0a1(xb + xc)] (2.5)

= 1 + xbxc + 0 (2.6)

= 1 + xbxc . (2.7)

Moreover, any pair f(xb), f(xc) is jointly Gaussian, since each is a linear combi-

nation of the same a0, a1. An inductive argument can be used to show that any

collection of function values is thus jointly Gaussian. Therefore any collection of

function values in Eq. (2.1) has a joint Gaussian distribution with mean vector

µ = 0 and N ×N covariance matrix K,

[f(x1), . . . , f(xN)] ∼ N(µ, K) , (2.8)

where Kij = 1 + xixj. Hence Eq. (2.1) defines a Gaussian process over f(x).

In fact, any linear basis function model1

f(x) = w>φ(x) , (2.9)

with any Gaussian distribution over weights w, and (potentially non-linear) basis

functions φ(x) = [φ1(x), . . . , φJ(x)]>, is a Gaussian process,

f(x) ∼ GP(m(x), k(x, x′)) , (2.10)

entirely defined by its mean and covariance function

m(x) = E[f(x)] , (2.11)

k(x, x′) = cov[f(x), f(x′)], (2.12)

for any pair of inputs x and x′, in any arbitrary input space x ∈ X. That is, any

collection of function values, evaluated at any collection of input points, has a joint

Gaussian distribution,

[f(x1), . . . , f(xN)] ∼ N(µ, K) , (2.13)

1A linear basis function model in parameters w is any model which is linear in w; the model
does not also need to be linear in the inputs x.
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2.2 Gaussian Process Characterisation

with mean vector and covariance matrix

µi = E[f(xi)] (2.14)

Kij = k(xi, xj) . (2.15)

The standard notation in Eq. (2.10) can be confusing: x′ appears on the right

hand side of the equation, but not on the left hand side. Eq. (2.10) simply means

that the function evaluated at any finite set of input points can be expressed as

Eq. (2.13). The kernel k operates on a pair of input points, x and x′. To avoid

overloading the notation for the inputs x, it is often preferable to write the kernel

as k(xa, xb), where xa and xb are input points, or simply as k.

In the example of Eq. (2.2), w = (a0, a1)> and φ(x) = (1, x)>. In general, if w

has distribution N(0,Σw), then

m(x) = E[f(x)] = φ(x)>E[w] = 0 , (2.16)

k(x, x′) = E[f(x)f(x′)] = φ(x)>E[ww>]φ(x′) = φ(x)>Σwφ(x′) . (2.17)

It is also straightforward to prove that if w ∼ N(µ,Σw), with arbitrary mean µ,

then w>φ(x) is a Gaussian process.

A covariance function k(x, x′), also known as a covariance kernel, or simply a

kernel, controls the properties of likely functions under a Gaussian process f(x). In

other words, the inductive biases of a Gaussian process model – whether we expect

smooth functions, periodic functions, Brownian motion, etc. – are determined by

a kernel.

We are ultimately more interested in – and have stronger intuitions about – the

functions that model data than the weights w in a parametric model, and we

can express those intuitions with a covariance kernel. Thus it is more natural to

directly define a prior over functions, as in Eq. (2.10), and then perform inference

in function space, rather than work in weight space, as in Eq. (2.9).

The popular Gaussian or squared exponential (SE) kernel,

kSE(x, x′) = a2exp(−0.5||x− x′||2/`2) , (2.18)
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2.2 Gaussian Process Characterisation

Figure 2.2: Sample functions from a Gaussian process prior with an SE kernel for
x ∈ R1. A Gaussian process is sampled (black dots) at a given set of input locations.
Two other sample functions are shown by purple and green curves; here the function
values (dots) have been joined together. The Gaussian process mean function is shown
in thick blue, and 95% of the mass of the Gaussian process about the mean (2 standard
deviations) is shown in gray shade.

expresses the intuition that function values at nearby input points are more corre-

lated than function values at far away input points.1,2 Draws from a Gaussian pro-

cess with an SE kernel are shown in Figure 2.2. The length-scale hyper-parameter

` determines how quickly Gaussian process functions vary in input space – how

wiggly the functions in Figure 2.2 are. The signal variance parameter a2 controls

the variability of sample functions from the mean function – e.g. how concentrated

the support of the Gaussian process prior around the mean function is. A Gaus-

sian process with an SE kernel has support for any continuous function within

an arbitrarily small band of width ε (Ghosal and Roy, 2006), and is an example

of a truly nonparametric Gaussian process (section 2.6.1), derived from a linear

regression model with an infinite number of basis functions (section 2.4.3).

1Squared exponential for Eq. (2.18) is a misnomer in common use: the distance ||x − x′|| is
squared, not the whole exponential. Neil Lawrence has proposed exponentiated quadratic as an
alternative.

2We are now considering general input points x ∈ RP .
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2.3 Inference and Model Selection

Indeed, by representing Gaussian process models in function space, using a mean

function and covariance kernel, we can make predictions with models that have an

infinite number of parameters (weights), in a finite amount of computational time!

The “question of how we deal computationally with these infinite dimensional

objects has the most pleasant resolution imaginable” (Rasmussen and Williams,

2006), which we discuss in the next section on inference with Gaussian processes.

2.3 Inference and Model Selection

2.3.1 Inference

Suppose we place a Gaussian process prior over functions f(x) ∼ GP(m, k), to

model a set of noisy targets y = (y(x1), . . . , y(xN))> at a set of inputs X =

(x1, . . . , xN)>, where x ∈ RP .1 We want to infer a posterior distribution over func-

tions f(x) and make predictions of y∗ at a set of test inputs X∗ = (x∗1, . . . , x∗M)>.

An observation model (sometimes equivalent to a noise model) relates the Gaus-

sian process to the targets. For example, if the targets are the binary class labels

{−1,+1}, we can choose the observation model p(y(x) = 1|f(x)) = σ(f(x)) =

1/(1 + exp[−f(x)]). Alternatively, if the targets are real valued, we may assume

that each target is equal to a latent Gaussian process plus Gaussian noise. For

example,

y(x) = f(x) + ε(x) , (2.19)

ε(x) ∼ N(0, σ2) . (2.20)

Equivalently, p(y(x)|f(x)) = N(y(x); f(x), σ2). The predictive distribution p(y∗|y),

omitting the input sets X and X∗ for notational convenience, is given by

p(y∗|y) =

∫
p(y∗|f(x))p(f(x)|y)df(x) , (2.21)

p(f(x)|y) ∝ p(y|f(x))p(f(x)) . (2.22)

1For illustrative purposes, we will often assume x ∈ R1 in figures.
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2.3 Inference and Model Selection

The integral in Eq. (2.22) may seem daunting: how are we to access the Gaussian

process f(x) at every x in some potentially uncountably infinite input space X,

and even if we could, would the integral be analytically tractable?

2.3.1.1 Gaussian Likelihoods

With a Gaussian observation model, as in Eqs. 2.19 and 2.20, the integral in

Eq. 2.22 is indeed analytically tractable! For notational simplicity, we assume a

zero mean GP (m(x) = 0), let f∗ = (f(x∗1), . . . , f(x∗M))>, and let K(X,X∗) be

an N ×M matrix of covariances between the Gaussian process f(x) evaluated at

the training and test sets X and X∗, and likewise for K(X,X), K(X∗, X) and

K(X∗, X∗). We leave it as an exercise to show that the function y(x) is a Gaussian

process with covariance function cov(yp, yq) = k(xp, xq) + σ2δpq, where δpq is the

Kronecker delta, such that cov(y) = K(X,X) + σ2I. The joint distribution over

the targets (observations) y, at training locations X, and the Gaussian process f∗,

evaluated at the test locations X∗, is thus given by[
y

f∗

]
∼ N

(
0,

[
K(X,X) + σ2I K(X,X∗)

K(X∗, X) K(X∗, X∗)

])
. (2.23)

Since the Gaussian distribution is consistent, or has the marginalization property,

examination of any set of Gaussian random variables does not change the distribu-

tion of any subset, and so we can trivially marginalize away any unneeded values

of f(x) to obtain the expression in Equation (2.23). Therefore – since we only

ever need to query the Gaussian process at a finite number of points – we only

need finite computational resources, even if the covariance function we are using is

derived from an infinite basis function expansion, and this holds even if we are not

using a Gaussian observation model (we discuss non-Gaussian likelihoods next in

section 2.3.1.2). Given any hyperparameters1 θ of the covariance kernel, the joint

distribution p(f∗,y), and marginal p(y), we can apply Bayes’ theorem to find the

1It is conventional to say that the data depend on parameters, in this case f(x), and any
parameters f(x) depends on (in the next level of a hierarchical model) are called hyperparameters.
E.g., Hyperparameters → Parameters → Data.
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2.3 Inference and Model Selection

predictive distribution

f∗|X∗, X,y,θ ∼ N(f̄∗, cov(f∗)) , (2.24)

f̄∗ = K(X∗, X)[K(X,X) + σ2I]−1y , (2.25)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2I]−1K(X,X∗) . (2.26)

Letting k∗ be a vector of covariances between the N training points and a test

point x∗, (k∗)i = k(x∗, xi), the posterior distribution of a single output f∗ at x∗ is

f∗|x∗, X,y,θ ∼ N(f̄∗,V[f∗]) (2.27)

f̄∗ = k>∗ (K + σ2I)−1y (2.28)

V[f∗] = k(x∗, x∗)− k>∗ (K + σ2I)−1k∗ . (2.29)

The distribution over the targets, p(y∗|y), is Gaussian with the same moments

as Equation (2.24), except with σ2I added to the covariance in Equation (2.26).

Moreover, we can use Equation (2.24) to query a noise free Gaussian process f(x)

at a set of points X∗, conditioned on the Gaussian process f at a set of points X,

by setting σ2 = 0 and y = f .

Figure 2.3 shows sample a) prior and b) posterior functions drawn from a Gaussian

process with an SE kernel (Eq.(2.18)). We see that the functions look too quickly

varying – too wiggily, too complex – for the data. We have set the length-scale

hyperparameter ` too small. In order to automatically learn the rate of variation

of these functions, we must perform model selection, discussed in section 2.3.2, to

learn the hyperparameters θ of a covariance kernel.

2.3.1.2 Non-Gaussian Likelihoods

If the likelihood p(y|f) is not Gaussian in f – for instance, if we are doing clas-

sification where we have an observation model p(y(x) = 1|f(x)) = σ(f(x)) – then

the integral in Equation (2.22) is not analytic. To sample from the predictive

distribution p(y∗|y) it suffices to sample from p(f∗|y) using a simple Monte carlo
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Figure 2.3: Sample a) prior and b) posterior functions drawn from a GP with an SE
kernel with a too small length-scale. The length-scale ` is too small, causing sample
functions to vary too quickly. The GP mean function is shown in blue, and 95% of
the probability mass about the mean function is shown with gray shade. The data are
denoted by black markers.

(SMC) sum1,

p(y∗|y) =

∫
p(y∗|f∗)p(f∗|y)df∗ , (2.30)

p(y∗|y) = lim
J→∞

1

J

J∑
i=1

p(y∗|f (i)
∗ ) , f (i)

∗ ∼ p(f∗|y) , (2.31)

where Eq (2.31) is approximated using a finite value for J . However, typically

there is an analytic relationship between p(f∗|y) and p(y∗|y). Either way, one

must infer

p(f∗|y) =

∫
p(f∗|f)p(f |y)df (2.32)

Equation (2.24) gives an exact Gaussian expression for p(f∗|f) for σ2 = 0 and y =

f . Most GP inference efforts with non-Gaussian likelihoods p(y|f) are therefore

focused on inferring the latent function f at the training points

p(f |y,θ) ∝ p(y|f ,θ)p(f |θ) . (2.33)

1See, for example, http://videolectures.net/mlss09uk_murray_mcmc/
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2.3 Inference and Model Selection

If p(f |y) is Gaussian, then the integral in Equation (2.32) is analytic and Gaussian.

It is popular to approximate p(f |y) as a Gaussian, using the Laplace approxima-

tion, a variational approximation, or expectation propagation (EP).1 EP has been

especially successful for Gaussian process classification (Rasmussen and Williams,

2006). One can alternatively sample from p(f |y), and then approximate Equation

(2.32) with a simple Monte carlo sum. Elliptical slice sampling (Murray et al.,

2010) is particularly effective at sampling from posterior distributions like p(f |y)

in Eq. (2.33), with strongly correlated (highly non-diagonal) Gaussian priors. We

use variational inference and elliptical slice sampling in chapter 3 on Gaussian pro-

cess regression networks. Wilson and Ghahramani (2010a) discusses the Laplace

approximation for general non-Gaussian likelihoods.

2.3.2 Learning and Model Selection

Since the properties of likely functions under a Gaussian process – smoothness,

periodicity, rate of variability, etc. – are controlled by a covariance kernel and its

hyperparameters, model selection and learning with Gaussian processes amounts

to choosing a covariance kernel and learning its hyperparameters θ from data.

You may have found the Gaussian process sample functions in Figure 2.3 unset-

tling. While the datapoints are fit perfectly, the functions are too wiggly, and in

places, the predictive uncertainty is unreasonably large. Indeed the length-scale

hyperparameter of the SE kernel in Eq. (2.18) is too small, causing function values

at nearby input points to be too uncorrelated. The length-scale specifies roughly

on what scale a function will vary – what range of data is needed, for example,

to make a good forecast. To produce Figure 2.4 we increased the length-scale of

the SE kernel, and resampled functions from a GP. Now likely functions under

the GP are too slowly varying – the support of the model is too concentrated on

simple functions. We can see how the behaviour of a Gaussian process is extremely

sensitive to even this single kernel hyperparameter – and thus how important it

will be to properly determine this parameter. If we could automatically learn the

1The Laplace approximation, variational inference, and expectation propogation are dis-
cussed in a general setting in Bishop (2006). Rasmussen and Williams (2006) explicitly derive
EP and the Laplace approximation for Gaussian process classification.
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2.3 Inference and Model Selection

length-scale parameter from data – indeed if we could learn all hyperparameters

θ of a given covariance kernel, or ideally the entire functional form of the covari-

ance function itself – we could perform automatic model selection over a massive

space of models, and could discover interpretable properties of the data we are

modelling.
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Figure 2.4: Sample a) prior and b) posterior functions drawn from a GP with an SE
kernel with a too large length-scale. The length-scale ` is too large, causing sample
functions to vary too slowly. The GP mean function is shown in blue, and 95% of
the probability mass about the mean function is shown with gray shade. The data are
denoted by black markers.

In the kernel machines literature, particularly regarding support vector machines

(Cortes and Vapnik, 1995), learning covariance kernel hyperparameters – aka

model selection – is generally an unresolved problem, although there are many

possibilities (Gönen and Alpaydın, 2011). Gaussian processes provide a formal

and interpretable probabilistic framework for automatic model selection with ker-

nel machines, which is especially suited to the expressive kernels we introduce in

chapters 4 and 5.

Let us define a model Mi to mean a fully specified procedure for generating ob-

servations y – for example, a model is a function relating inputs to observations,

including a noise model and any prior distributions. The posterior for a model Mi
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2.3 Inference and Model Selection

given observations y is given by

p(Mi|y) =
p(y|Mi)p(Mi)

p(y)
. (2.34)

The normalizing constant p(y) is
∑

i p(y|Mi)p(Mi). If the prior on models p(Mi)

is flat, then the marginal likelihood (aka the evidence), p(y|Mi), is directly pro-

portional to p(Mi|y) in Eq. (2.34). The evidence is a probability distribution over

all possible datasets, given a model specification Mi. Therefore a model which

gives high probability to certain datasets must give relatively little probability to

other datasets, since p(y|Mi) must normalize to 1 over all possible data sets y.

We define such a model to be a simple model.

We can write the marginal likelihood as

p(y|Mi) =

∫
p(y|f ,Mi)p(f)df , (2.35)

where f are the parameters of the model (often parametrized as w). Thus the

evidence is the probability that randomly selected parameters from your model

class would generate the data y.

The first Gaussian process we encountered in this chapter, defined by Eqs. (2.1)-

(2.2), is an example of a simple model: if we were to repeatedly sample a0, a1

from N(0, 1), y(x) = a0 + a1x could generate a small range of datasets with high

probability. But since the evidence is a proper probability distribution, and must

normalize, such a model could not support many other datasets, as depicted in

Figure 2.5a. Conversely, a large Bayesian neural network, for example, might

support almost any dataset with reasonable likelihood, but could not generate any

particular dataset with high probability – such a model could be called complex.

Thus for a particular dataset y, the model with highest evidence will tend to be

the simplest model that can explain the data. This tendency for the marginal

likelihood to favour the simplest models that explain the data is sometimes called

automatic Occam’s razor, and it is explained pictorially in Figure 2.5a (MacKay,

1992a; Rasmussen and Ghahramani, 2001). We emphasize that complexity, in the

sense of Figure 2.5a, does not have much to do with the number of parameters
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Figure 2.5: Bayesian Occam’s Razor applied to Gaussian Processes. a) The marginal
likelihood (evidence) is on the vertical axis, and possible data sets are on the horizontal.
Models of three different complexities are shown. The simple model can only explain
a small number of data sets, but it explains them well: they have a high likelihood.
On the other hand, the complicated model can explain a large number of data sets,
but somewhat poorly. For a given data set, the model that maximizes the marginal
likelihood (having fully integrated away the Gaussian process) will typically have an
appropriate level of complexity. b) Posterior mean functions of a Gaussian process with
SE kernel and too short, too large, and appropriate length-scales determined through
marginal likelihood optimization.

in a model per se, but rather, the types of functions that are likely under a given

model.

We have seen in Figures 2.4 that sample functions from a Gaussian process with

a large length-scale are not flexible: the Gaussian process can support a small

range of datasets with high probability, but has little support for most datasets.

Conversely, sample functions from a GP with a short length-scale, e.g., Figure 2.3,

are highly complex. If we were to marginalise away the latent Gaussian process

f(x), then we could use the resulting marginal likelihood to automatically calibrate

model complexity.

The marginal likelihood (evidence) or probability density of the data y, given

hyperparameters θ and inputs X, is

p(y|θ, X) =

∫
p(y|f , X)p(f |θ, X)df . (2.36)
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If the likelihood of the data p(y|f , X) is Gaussian, such that p(y(x)|f(x)) =

N(y(x); f(x), σ2), then this integral in Eq. (2.36) can be exactly computed such

that

log p(y|θ, X) =

model fit︷ ︸︸ ︷
−1

2
y>(Kθ + σ2I)−1y−

complexity penalty︷ ︸︸ ︷
1

2
log |Kθ + σ2I| −N

2
log(2π) , (2.37)

as in Eq. (2.23), where K is an N×N covariance matrix for N data points y, with

Kij = k(xi, xj|θ).1 The marginal likelihood in Eq. (2.37) pleasingly compartmen-

talises into model fit and model complexity terms, as expected from the discussion

surrounding Figure 2.5. The model fit term is the only term that depends on the

data. The complexity penalty log |Kθ + σ2I| is sometimes called Occam’s term

(Rasmussen and Williams, 2006), and is the volume of the ellipsoid defined by

z>[K + σ2I]−1z> ≤ 1 for all z ∈ RN . The more datasets z that can be accom-

modated by the model, the larger log |K + σ2I|. Indeed both the model fit and

model complexity terms in Eq. (2.37) grow monotonically with decreases in the

length-scale hyperparameter.

The complexity penalty in Eq. (2.37) is automatically calibrated and profoundly

different from the penalties found in regularised or penalised likelihoods which are

often equivalent to the objective function used in maximum a posteriori (MAP)

optimization. There is no need to calibrate a penalty term, e.g. using cross-

validation.2

Now let us return to modelling the data in Figure 2.4. Suppose we choose an

SE kernel, and optimise the marginal likelihood in Eq. (2.37) with respect to its

hyperparameters θ and σ2, and sample from the posterior over Gaussian process

functions. 3 We see in Figure 2.6 that after learning θ through marginal likelihood

optimization, the resulting functions intuitively appear to have an appropriate level

of complexity – these functions are no longer too slowly or quickly varying. Figure

1I have overloaded notation. Kθ simply means that the entries of K depend on θ. Kij is the
ith row and jth column of K.

2However, GP marginal likelihood optimization has a small bias towards under-fitting, which
we discuss further in section 2.6.6.

3As discussed in section 2.3.1.1, the noise variance σ2 can be incorporated into the kernel
(when we have a Gaussian likelihood) and treated as one of the kernel hyperparameters θ, but
for clarity we write these parameters separately.
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2.3 Inference and Model Selection

2.5b shows the posterior mean functions from Figures 2.3, 2.4, and 2.6, for too

simple, too complex, and appropriately complex models.
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Figure 2.6: Sample a) prior and b) posterior functions drawn from a GP with an SE
kernel which has a length-scale that has been learned from the data. The length-scale `
has been learned from marginal likelihood optimization. Sample functions now appear
to have an appropriate level of complexity. The GP mean function is shown in blue, and
95% of the probability mass about the mean function is shown with gray shade. The
data are denoted by black markers.

In general, we ought not to only make predictions with the model that maximizes

the evidence. Rather, we should perform a weighted average – Bayesian model

averaging – over as large a space of models as is practically possible (Neal, 1996).

The marginal likelihood could be multimodal as a function of parameters, and

optimization of any likelihood can still lead to overfitting. Informally, one person’s

marginal likelihood is another person’s likelihood: any likelihood can be derived by

defining a hierarchical model and then marginalizing some parameters. Moreover,

Figure 2.5a is only an intuition to explain the complexity penalty in the marginal

likelihood. In section 1.2 of the introduction we considered a more precise and

general definition of complexity, as part of a more general discussion on model

selection.

Nonetheless, it is still remarkable that we can express the probability density of the

data y only as a function of a few parameters (e.g. length-scale, and noise and signal

variance), in such a flexible model as a Gaussian process with a squared exponential
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2.3 Inference and Model Selection

kernel. And, typically, optimizing the marginal likelihood with respect to only a

small number of Gaussian process kernel hyperparameters θ will not profoundly

differ from a fully Bayesian treatment of hyperparameters. The predictive mean

will be similar, and the predictive variance will tend to be somewhat too small

(overconfident) when conditioning on optimized parameters θ, since this procedure

erroneously assumes θ are perfectly determined by the data.

A fully Bayesian treatment of Gaussian process models would integrate away kernel

hyperparameters when making predictions:

p(f∗|X∗, X,y) =

∫
p(f∗|X∗, X,y,θ)p(θ|y)dθ (2.38)

where the predictive distribution p(f∗|X∗, X,y,θ) is given by Eq. (2.24).

The posterior over hyperparameters θ is given by

p(θ|y) ∝ p(y|θ)p(θ) . (2.39)

If the marginal likelihood p(y|θ) is analytically tractable, as in Equation (2.37),

then sampling from the posterior over hyperparameters p(θ|y) is relatively straight-

forward. For example, one might place independent inverse Gamma priors over

all parameters θ, and then sample from the posterior p(θ|y) using Hamiltonian

Monte Carlo (Duane et al., 1987; Neal, 2010; Rasmussen, 1996) or slice sampling

(Murray and Adams, 2010; Neal, 2003). Note that after integrating away random

hyperparameters, the resulting distribution over functions is no longer a Gaussian

process. For example, if we scale a kernel k with a signal variance hyperparameter

a2, such that k → a2k, and place an inverse Gamma prior on a2, then the resulting

process over functions after integrating away a2 is a Student-t process, meaning

that any collection of function values has a joint t distribution. Shah et al. (2014)

discuss t processes in detail.

If the marginal likelihood is not analytically tractable, then hyperparameter es-

timation is generally difficult. Perhaps the most successful approach has been to

approximate the marginal likelihood using, for example, Laplace, EP, or variational

approximations, and then optimize the approximate marginal likelihood with re-

spect to hyperparameters. This approximate marginal likelihood could also be

used to sample hyperparameters in analogy with Eq. (2.39).
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2.3 Inference and Model Selection

The reason a marginal likelihood is so important for inferring kernel hyperpa-

rameters, is because it gives us the likelihood of the data conditioned only on

those hyperparameters. If we cannot (at least approximately) marginalise away

the Gaussian process f(x), then we have to deal with the extremely strong depen-

dencies between the GP and its kernel hyperparameters. Indeed, in Figures 2.3,

2.4, 2.5, and 2.6, we see how profoundly the length-scale hyperparameter affects

sample functions under a GP.

To sample from p(θ|y) without an analytic marginal likelihood, one can alternately

sample from

p(f |θ,y) ∝ p(y|f ,θ)p(f |θ) , (2.40)

p(θ|f) ∝ p(f |θ)p(θ) , (2.41)

in a Gibbs sampling scheme (Wilson and Ghahramani, 2010b, 2011), which con-

verges to samples from the joint distribution p(f ,θ|y). The posterior over Gaus-

sian process function values in Eq. (2.40) can often be efficiently sampled using

elliptical slice sampling (Murray et al., 2010). Wilson and Ghahramani (2010b,

2011) have used slice sampling to sample from Eq. (2.41). This sampling scheme is

simple to implement in general Gaussian process settings, but is computationally

costly, since each new proposal for θ naively requires constructing an N × N co-

variance matrix K, and then an O(N3) decomposition of K. Moreover, the strong

dependencies between f and θ can lead to poor mixing. Murray and Adams

(2010) have discussed sampling kernel hyperparameters in cases where a Gaussian

process marginal likelihood is impossible, and have proposed solutions which ap-

pear to work nicely in special cases – for example, when a model has a likelihood

that factorizes into a product, and each term in the product contains only a single

Gaussian process function value. In intractable models which use multiple Gaus-

sian processes, efficient sampling of hyperparameters is still an open problem. A

robust and efficient method for estimating kernel hyperparameters in such models

involves a variational Bayes approximation of the marginal likelihood, e.g. Wilson

et al. (2012).
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2.4 Covariance Kernels

2.4 Covariance Kernels

At the heart of every Gaussian process model – controlling all the modelling power

– is a covariance kernel. The kernel k directly specifies the covariance between a

pair of random function values at a pair of input points: k(x, x′) = cov(f(x), f(x′)).

A covariance kernel therefore encodes inductive biases – what sorts of solution

functions we expect. By choosing a covariance function, we choose whether the

solution functions are periodic, smooth, linear, polynomial, etc. In other words,

we hardly need to modify our algorithm to radically change the model – we just

change the covariance function. Moreover, by estimating or inferring distributions

over hyperparameters of a kernel, we can also discover interpretable properties of

the data: periodicity, rate of variation, smoothness, etc.

We have so far used the terms kernel, covariance kernel, and covariance function

interchangeably. In general, a kernel is a function that maps any pair of inputs into

R. The covariance function of a Gaussian process is an example of a kernel. For

k(x, x′) to be a valid covariance function of a Gaussian process, any matrix K with

elements Kij = k(xi, xj) must be positive semi-definite (z>Kz ≥ 0 for all z ∈ RN);

this requirement follows since the covariance matrix in a Gaussian distribution

must be positive semi-definite. The positive semi-definite requirement is equivalent

to requiring that the covariance function correspond to an inner product in some

(potentially infinite) basis (feature) space (Bishop, 2006), although the positive

semidefinite requirement is often more easily checked directly. We saw in section

2.2 that the popular linear weight-space model,

f(x) = w>φ(x)w ∼ N(0,Σw) (2.42)

corresponds to a Gaussian process with covariance kernel

k(x, x′) = φ(x)>Σwφ(x′) . (2.43)

We have also already accumulated some experience with the popular squared ex-

ponential (SE) kernel

kSE(x, x′) = a2exp(−0.5||x− x′||2/`2) . (2.44)
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Below we list some simple techniques, reproduced from Bishop (2006) and MacKay

(1998), for constructing new valid covariance functions, from existing covariance

functions.

Suppose k1(x, x′) and k2(x, x′) are valid. Then the following covariance functions

are also valid:

k(x, x′) = g(x)k1(x, x′)g(x′) (2.45)

k(x, x′) = q(k1(x, x′)) (2.46)

k(x, x′) = exp(k1(x, x′)) (2.47)

k(x, x′) = k1(x, x′) + k2(x, x′) (2.48)

k(x, x′) = k1(x, x′)k2(x, x′) (2.49)

k(x, x′) = k3(φ(x),φ(x′)) (2.50)

k(x, x′) = x>Ax′ (2.51)

k(x, x′) = ka(xa, x
′
a) + kb(xb, x

′
b) (2.52)

k(x, x′) = ka(xa, x
′
a)kb(xb, x

′
b) (2.53)

where g is any function, q is a polynomial with nonnegative coefficients, φ(x) is a

function from x to RM , k3 is a valid covariance function in RM , A is a symmetric

positive definite matrix, xa and xb are not necessarily disjoint variables with x =

(xa, xb)
>, and ka and kb are valid covariance functions in their respective spaces.

We will now proceed to describe the dot product, squared exponential, rational

quadratic, neural network, Gibbs, Matérn, and periodic kernels in some detail,

after introducing the concept of stationarity. At the end of this section we sum-

marize some covariance functions in Table 2.1, including the new spectral mixture

(SM) covariance function we introduce in chapter 4.

2.4.1 Stationary Kernels

A kernel is stationary if it is invariant to translations of the inputs: e.g., if the

kernel is a function of τ = x−x′, for any pair of inputs x and x′. Roughly speaking,

the properties of a draw from a stationary process are similar at all x locations.
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2.4 Covariance Kernels

Isotropic kernels (distance kernels) are examples of stationary kernels. A kernel is

isotropic if it is a function of ||x− x′||.

The assumption of stationarity provides a useful inductive bias, and indeed most

popular covariance kernels, including the squared exponential, rational quadratic,

and Matérn kernels, to be discussed in the next sections, are not only stationary,

but isotropic. Indeed it is difficult to learn anything about the covariance function

of a stochastic process from a single realisation – e.g., to extract any information

from the data – if we assume that the kernel is any positive definite function with

equal probability, because such an assumption provides an unrealistic inductive

bias.

Any stationary kernel (aka covariance function) can be expressed as an integral

using Bochner’s theorem (Bochner, 1959; Stein, 1999):

Theorem 2.4.1. (Bochner) A complex-valued function k on RP is the covariance

function of a weakly stationary mean square continuous complex-valued random

process on RP if and only if it can be represented as

k(τ) =

∫
RP
e2πis>τψ(ds) , (2.54)

where ψ is a positive finite measure.

If ψ has a density S(s), then S is called the spectral density or power spectrum of

k, and k and S are Fourier duals (Chatfield, 1989):

k(τ) =

∫
S(s)e2πis>τds , (2.55)

S(s) =

∫
k(τ)e−2πis>τdτ . (2.56)

In other words, a spectral density entirely determines the properties of a stationary

kernel. And often spectral densities are more interpretable than kernels. If we

Fourier transform a stationary kernel, the resulting spectral density shows the

distribution of support for various frequencies. A heavy tailed spectral density has

relatively large support for high frequencies. A uniform density over the spectrum

corresponds to white noise (equivalent to an SE kernel with a length-scale `→ 0).

Therefore draws from a process with a heavy tailed spectral density (such as an
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Ornstein-Uhlenbeck process 2.4.8) tend to appear more erratic (containing higher

frequencies, and behaving more like white noise) than draws from a process with

spectral density that concentrates its support on low frequency functions. Indeed,

as we will see, one can gain insights into kernels by considering their spectral

densities.

For data on a regular 1D input grid of N points, we define the empirical spectral

density Ŝ(s) as follows:

Ŝ(sm) =
|ỹ(sm)|2

N
, m = 0, . . . , N − 1 , (2.57)

where ỹ(sm) is the mth element of the discrete Fourier transform (DFT) of the

data vector y. The empirical spectral density is defined for the frequencies sm =

0, fs/N, 2fs/N, . . . , fs/2, where fs is the sampling rate of the data. Past the

Nyquist frequency of 0.5fs, signals are aliased back to lower frequencies. That

is, on a regularly spaced grid, samples from a function with a frequency 0.5fs + δ

could be reproduced exactly by functions with frequencies 0.5fs − δ, 0.5fs − δ +

fs, 0.5fs+δ+fs, . . . . It is common practice to filter out all but the lowest frequency

alias. A derivation of the empirical spectrum can be found in section 2.6.3.1.

2.4.2 Dot Product Kernel

In section 2.2, we considered linear functions f(x) = ax + b, where a ∼ N(0, α)

and b ∼ N(0, β). As we have seen, it is easy to show that this random function is

a Gaussian process with mean and covariance functions m(x) = 0 and k(x, x′) =

α2xx′ + β. In other words, if we draw from a GP using this mean and covariance

function, we will be fitting our data with linear functions. This k(x, x′) is in

the class of dot product covariance functions, which are non-stationary. We can

generalize to the polynomial kernel, k(x, x′) = (x·x′+σ2
0)p. A GP with this kernel is

exactly equivalent to using polynomial basis functions in a linear regression model.

For example, if p = 2, σ2
0 = 0 and the dimension of x is 2, then k(x, x′) = φ(x)·φ(x)

and φ(x) = (x2
1, x

2
2,
√

2x1x2). These are valid kernels since they have been derived

as inner products of basis functions.
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2.4.3 Squared Exponential Kernel

The squared exponential (SE) kernel, also sometimes called the Gaussian, radial

basis function (RBF), or exponentiated quadratic kernel, is “probably the most

widely-used kernel within the kernel machines field” (Rasmussen and Williams,

2006).

To derive the SE kernel1, we start with the weight space model

f(x) =
J∑
i=1

wiφi(x) , (2.58)

wi ∼ N

(
0,
σ2

J

)
, (2.59)

φi(x) = exp

(
−(x− ci)2

2`2

)
. (2.60)

Equations (2.58)-(2.61) define a radial basis function regression model, with radial

basis functions centred at the points ci.

From Eq. (2.43), the kernel of this Gaussian process is

k(x, x′) =
σ2

J

J∑
i=1

φi(x)φi(x
′) . (2.61)

Thus the entire radial basis weight space model of Eq. (2.58)-(2.60) is encapsulated

as a distribution over functions with covariance kernel in Eq. (2.61). If we let

ci+1 − ci = ∆c = 1
J

, then we recognize Eq. (2.61) as a Riemann sum:

k(x, x′) = lim
J→∞

σ2

J

J∑
i=1

φi(x)φi(x
′) =

∫ c∞

c0

φc(x)φc(x
′)dc . (2.62)

By setting c0 = −∞ and c∞ = ∞, we spread the infinitely many basis functions

across the whole real line, each a distance ∆c→ 0 apart:

k(x, x′) =

∫ ∞
−∞

exp(−x− c
2`2

) exp(−x
′ − c
2`2

)dc (2.63)

=
√
π`σ2 exp(−(x− x′)2

2(
√

2`)2
) . (2.64)

1For notational simplicity, our derivation assumes the inputs x ∈ R1. Extension to inputs
x ∈ RP is straightforward.
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Figure 2.7: SE kernels with different length-scales, as a function of τ = x− x′.

Therefore a Gaussian process with an SE kernel

kSE(x, x′) = a2exp(−0.5||x− x′||2/`2) , (2.65)

is equivalent to a radial basis function model with infinitely many basis functions

densely scattered across the whole real line, yet inference and predictions can be

performed using a kernel representation, as in section 2.3, using finite computa-

tional resources!

Functions sampled from a Gaussian process with an SE kernel are infinitely dif-

ferentiable. A Gaussian process with SE kernel is also a universal approximator :

given enough data a GP with an SE kernel can approximate any function arbitrar-

ily well (Ghosal and Roy, 2006; van der Vaart and van Zanten, 2009). Moreover, a

GP with SE kernel has support for any continuous function to within an arbitrarily

small ε band (Ghosal and Roy, 2006).

Figure 2.7 shows SE kernels with various length-scales as a function of τ = x−x′ ∈
R1. We have already seen sample functions from SE kernels with each of these

length-scales in Figures 2.3, 2.4, and 2.6.

Taking the Fourier transform of the SE kernel, we find its spectral density for

inputs x ∈ RP is SSE(s) = (2π`2)P/2 exp(−2π2`2s2). The spectral density thus

places most of its support (aka power) on low frequencies.
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2.4.4 Rational Quadratic Kernel

The squared exponential kernel assumes that the data are only varying at one

particular length-scale. In reality, however, different mechanisms underlying the

data could be varying on different scales. For example, Brownlees et al. (2009)

found that the variance (volatility) on returns on equity indices have patterns that

vary over different scales. Thus, to model the volatility of equity index returns,

it might be sensible to use a sum of SE kernels, each with different length-scales

learned from the data.

However, we may often be unsure about the scales over which data are varying –

and indeed we may wish to account for infinitely many possible scales. The rational

quadratic (RQ) kernel is a scale mixture (infinite sum) of squared exponential

kernels with different length-scales.

Expressing the SE kernel as a function of r = ||x − x′||, we can write a general

scale mixture of SE kernels as

k(r) =

∫
exp(− r

2

2l2
)p(`)d` , (2.66)

where p(`) is a distribution over length-scales `.

If we place a Gamma distribution on inverse squared length-scales, γ = `−2,

g(γ|α, β) ∝ γα−1 exp(−αγ/β), with β−1 = `′2, the RQ kernel is derived as∫ ∞
0

kSE(r|γ)g(γ|α, β)dγ = (1 +
r2

2α`′2
)−α . (2.67)

The RQ kernel is intended to model multi-scale data. Figure 2.8 shows the RQ

kernel, and sample functions, for various settings of α. As α → ∞, the rational

quadratic kernel converges to the SE kernel. One could derive other interesting

covariance functions using different (non Gamma) density functions for p(`).

2.4.5 Neural Network Kernel

The neural network kernel is perhaps most notable for catalyzing research on

Gaussian processes within the machine learning community. Neal (1996) argued
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Figure 2.8: The rational quadratic (RQ) kernel. a) RQ kernels with three different
settings of alpha, each with the ‘appropriate’ length-scale of 2.28 used in the Figures for
the SE kernel. b) Sample functions from GPs with each of these kernels. Decreasing α
significantly broadens the tails of the RQ kernel, increasing support for higher frequen-
cies. Thus sample functions from an RQ kernel with a smaller α have less smooth (more
erratic) appearance.

that since Bayesian models do not overfit, we ought to use expressive models that

are more capable of describing sophisticated real world processes. No matter how

sophisticated the model, there is likely some fresh detail in data that could be con-

sidered for improved modelling performance. Accordingly, Neal (1996) pursued

the limits of large models, and showed that a Bayesian neural network becomes a

Gaussian process with a neural network kernel as the number of units approaches

infinity. This observation inspired Williams and Rasmussen (1996) to further ex-

plore Gaussian process models.

Following Neal (1996); Rasmussen and Williams (2006); Williams (1998), we con-

sider a neural network with one hidden layer:

f(x) = b+
J∑
i=1

vih(x;ui) . (2.68)

vi are the hidden to output weights, h is any bounded hidden unit transfer function,

ui are the input to hidden weights, and J is the number of hidden units.

We let the bias b and hidden to output weights vi have independent zero mean
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distributions with variances σ2
b and σ2

v/J , and the weights for each hidden unit ui

have independent and identical distributions.

The first two moments of f(x) in Eq. (2.68), collecting all weights together into

the vector w, are

Ew[f(x)] = 0 , (2.69)

cov[f(x), f(x′)] = Ew[f(x)f(x′)] = σ2
b +

1

J

J∑
i=1

σ2
vEu[hi(x;ui)hi(x

′;ui)] , (2.70)

= σ2
b + σ2

vEu[h(x;u)h(x′;u)] . (2.71)

Eq. (2.71) follows from Eq. (2.70) since each of the ui are identically distributed.

The sum in Eq. (2.70) is over J i.i.d. random variables, and all moments are

bounded. If b has a Gaussian distribution, the central theorem can be applied

to show that as J → ∞ any collection of function values f(x1), . . . , f(xN) has a

joint Gaussian distribution, and thus the neural network in Eq. (2.70) becomes

a Gaussian process with covariance function given by Eq. (2.71), with a rate of

convergence of J−0.5.

If we choose the transfer function as h(x;u) = erf(u0 +
∑P

j=1 ujxj), where erf(z) =
2√
π

∫ z
0
e−t

2
dt, and we choose u ∼ N(0,Σ), then we obtain (Williams, 1998) from

Eq. (2.71)

kNN(x, x′) =
2

π
sin(

2x̃>Σx̃′√
(1 + 2x̃>Σx̃)(1 + 2x̃′>Σx̃′)

) , (2.72)

where x ∈ RP and x̃ = (1, x>)>.

As discussed in Rasmussen and Williams (2006), samples from a GP with this

kernel are superpositions of the functions erf(u0 +u>x) – which is consistent with

how draws tend to a constant value for large positive or negative x; indeed this is

a non-stationary covariance function.

The squared exponential kernel, derived in section 2.4.3, can be re-derived using

an infinite neural network with transfer function h(x;u) = exp(−||x−u||2/σ2
l ) and

u ∼ N(0, σ2
uI), which results in a generalised form of the SE kernel (Rasmussen

and Williams, 2006).

47



2.4 Covariance Kernels

   (a)                                                 (b)

Figure 2.9: GP sample functions using a non-stationary Gibbs covariance function,
with an input dependent length-scale. In a) is the length-scale function l(x), and in
b) are sample functions from a Gaussian process using this length-scale with the Gibbs
covariance function (2.73). This figure is reproduced from Rasmussen and Williams
(2006).

2.4.6 Gibbs Kernel

Suppose that we wanted a non-stationary covariance function that had an input

dependent length-scale, l(x). We cannot, for instance, simply replace l in the

squared exponential covariance function of Eq. (2.65) with any l(x) and have a

valid covariance function. For k(x, x′) to be a valid covariance function, any matrix

K with elements k(xn, xm) must be positive semidefinite; this follows since the

covariance matrix in a Gaussian distribution must be positive semidefinite. Gibbs

(1997) derived a valid covariance function with an input dependent length-scale:

k(x, x′) =
P∏
p=1

( 2lp(x)lp(x
′)

l2p(x) + l2p(x
′)

)1/2
exp

(
−

P∑
p=1

(xp − x′p)2

l2p(x) + l2p(x
′)

)
, (2.73)

where xp is the pth component of x. In Figure 2.9b we see some Gaussian process

sample functions drawn using the Gibbs covariance function (2.73) with the length-

scale function in a).
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2.4.7 Periodic Kernel

One technique for creating a valid non-stationary covariance function is to map the

inputs through a non-linear function v(x), and then use a stationary covariance

function in v-space. MacKay (1998) uses this transformation in a different way

to create a stationary periodic covariance function. He uses the transformation

v = (cos(x), sin(x)), and then applies the squared exponential covariance function

(2.65) in v-space to get

k(x, x′) = exp(−
2 sin2(x−x

′

2
)

l2
) . (2.74)

Although this kernel gives rise to periodic functions, notice that it is strictly posi-

tive – as with all stationary kernels presented in this section. We would intuitively

expect periodic functions, like a sinusoid, to have negative covariances, since peaks

are anticorrelated with troughs.

This kernel is mostly useful in combination with other covariance functions. For

example, Rasmussen and Williams (2006) uses this kernel in combination with

squared exponential (SE) and rational quadratic (RQ) kernels to model oscillatory

CO2 data with a rising trend.

2.4.8 Matérn Kernel

The Matérn kernel is likely the second most popular kernel, after the squared

exponential. Stein (1999) argues that the smoothness assumption of the squared

exponential kernel is unrealistic for modelling physical processes, and recommends

the Matérn kernel as an alternative.

The Matérn kernel can be derived by modelling a spectral density S(s) as a t-

distribution, and then performing the integral in Eq. (4.3), which has an analytic

solution. The heavy tails of a t-distribution in frequency space will give more

importance (‘power’) to higher frequencies. Sample functions from a Matérn kernel

are finitely differentiable.
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The most general form of the Matérn kernel is

kMatérn(x, x′) =
21−ν

Γ(ν)
(

√
2ν|x− x′|

l
)νKν(

√
2ν|x− x′|

l
) , (2.75)

where Kν is a modified Bessel function (Abramowitz and Stegun, 1964).

In one dimension, and when ν + 1/2 = p, for some natural number p, the corre-

sponding GP is a continuous time AR(p) process. By setting ν = 1, we obtain the

Ornstein-Uhlenbeck (OU) kernel,

k(x, x′) = exp(−|x− x
′|

l
) , (2.76)

which is the covariance function of an Ornstein-Uhlenbeck process (Uhlenback

and Ornstein, 1930), introduced to model the velocity of a particle undergoing

Brownian motion.

Recently (Le et al., 2013), the Matérn kernel has been found to have superior

performance to the squared exponential kernel on datasets with high dimensional

inputs, e.g. x ∈ RP , P � 1. It has been speculated that this improved perfor-

mance is because the Matérn kernel obviates a ‘concentration of measure’ effect

in high dimensions. The squared exponential or (Gaussian) kernel can be derived

from a Gaussian spectral density. In high dimensions we can imagine samples from

this density function will be highly constrained to the surface of P dimensional

ellipse – and thus all samples will have a similar characteristic scale. This problem

is less severe with a high dimensional (heavy tailed) t-distribution for the spectral

density. It will be interesting to further investigate the use of Matérn kernels in

high dimensional input spaces.

2.4.9 Summary

We have seen how all sorts of models, even infinite order models, can be simply

encapsulated by a Gaussian process with a mean function and covariance kernel.

The kernel is indeed the heart of a Gaussian process, and it can be used to pro-

foundly change a Gaussian process model, without needing to change inference and

learning procedures. This thesis is concerned with developing expressive kernels
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Table 2.1: Example covariance functions.

Covariance function Expression Stationary

Constant a0 Yes
Linear x · x′ No
Polynomial (x · x′ + a0)p No

Squared Exponential exp(− |x−x
′|2

2l2
) Yes

Matérn 21−ν

Γ(ν) (
√

2ν|x−x′|
l )νKν(

√
2ν|x−x′|

l ) Yes

Ornstein-Uhlenbeck exp(− |x−x
′|

l ) Yes

Rational Quadratic (1 + |x−x′|2
2αl2

)−α Yes

Periodic exp(−2 sin2(x−x
′

2
)

l2
) Yes

Gibbs
∏P
p=1

( 2lp(x)lp(x′)
l2p(x)+l2p(x′)

)1/2
exp

(
−
∑P

p=1
(xp−x′p)2

l2p(x)+l2p(x′)

)
No

Spectral Mixture
∑Q

q=1wq
∏P
p=1 exp{−2π2(x− x′)2

pvqp} cos(2π(x− x′)pµqp) Yes

to learn structure in data, and exploiting the existing structure in these kernels,

for exact efficient inference and learning.

In Table 2.1 we summarize some covariance kernels, including the new spectral

mixture kernel we introduce in chapter 4, for automatic pattern discovery and

extrapolation.

One can use a combination of covariance functions to model data. For example,

squared exponential and periodic covariance functions could be used together, e.g.

through the identities (2.48) and (2.49), to capture both an increasing trend and

periodicity.

2.5 The Mean Function

The mean function of a Gaussian process is often ignored. It is common practice to

subtract the empirical mean from the data, and then assume a zero mean function.

However, like the covariance function, the mean function is also a powerful way to

encode assumptions (inductive biases) into a Gaussian process model, important

for extracting useful information from a given dataset.
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For example, an objection I have often heard to using Gaussian processes – and

flexible Bayesian nonparametric models in general – is that they do not make use

of any physical model we might have for the data. Surely – the argument runs –

it is more sensible to write down the parametric physical model for a system (if

one exists), and then estimate unknown parameters in that model, rather than use

some flexible black box function approximator.

However, any parametric functional form (e.g. any physical model) is going to be

wrong – often very wrong – and honestly reflecting uncertainty in our efforts to

model data will yield better inferences and predictions. If we do have a parametric

physical model for the data, we can always use this model as the mean function

of a Gaussian process. We can then concentrate the support of the distribution

over functions induced by a GP around the mean function, using a signal variance

parameter in the kernel (e.g., the a2 term in the SE kernel of Eq. (2.65)). How

much we concentrate this support, as well as the unknown parameters in the

physical model, can easily be learned from data. Any parameters of the mean

function will become hyperparameters in a marginal likelihood, and can be learned

in the same way as covariance kernel hyperparameters (learning techniques for

hyperparameters are discussed in section 2.3.2).

In short, we can leverage the assumptions of any parametric function in a Gaussian

process through a mean function, and still retain support for other possible solution

functions. All solution functions will be concentrated around the mean function,

e.g. a desired parametric model, to an extent suggested by the data, or hard-coded

by the user. Thus, to faithfully represent our beliefs, one should never exclusively

use a physically (or otherwise) motivated parametric model in favour of a Gaussian

process: the Gaussian process can leverage the assumptions of a parametric model

through a mean function and also reflect the belief that the parametric form of

that model will not be entirely accurate.

52



2.6 The Future of Gaussian Processes

2.6 The Future of Gaussian Processes

In this section, I give my views on the future of Gaussian process research – my

intuitions about what will become mainstream in five years time, and what present

limitations have so far held back Gaussian processes from widespread applications,

and potential solutions, with references to some of my new work in this thesis.

2.6.1 Bayesian Nonparametric Gaussian Processes

Bayesian nonparametric Gaussian processes are not new, but given the recent

movement towards finite basis function models for large datasets (Lázaro-Gredilla

et al., 2010; Le et al., 2013; Rahimi and Recht, 2007; Williams and Seeger, 2001),

discussed further in section 2.6.3, we ought not to overlook the importance of

non-parametric Gaussian process representations in the future.

Parametric models are completely described by a finite set of parameters w. These

models therefore have fixed degrees of freedom. The capacity of a parametric

model – the amount of information that the model can represent – “is bounded,

even if the amount of observed data becomes unbounded” (Ghahramani, 2013).

Conversely, non-parametric models have an infinite number of parameters – and

the number of free parameters grows with the size of the data. In this sense,

non-parametric models have the desirable property that they can extract more

information when there is more information available. Indeed in the introductory

chapter to this thesis, I argued that Bayesian nonparametric representations have

many ideal properties. E.g., Bayesian nonparametric models are naturally suited

to learning rich information from the data, and reflect the belief that the real world

is highly sophisticated.

The function space view of Gaussian process regression, presented in section 2.2,

complements nonparametric modelling. In a sense, the parameters of the function

space model are the function values f (evaluated at training locations) themselves,

and the number of function values describing a given dataset equals the number

of points in that dataset. However, not all Gaussian processes are Bayesian non-

parametric models: indeed we have shown how many basic parametric models are
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Figure 2.10: Finite radial basis function (RBF) regression versus Gaussian process
regression with an SE kernel. Data points are shown with green crosses, basis functions
for the finite RBF model are shown in blue, and predictions made using the RBF model
are shown in red. With only finitely many basis functions, the RBF model is constrained
to have a high confidence in its predictions far away from the data – even though we
ought to have low confidence in this region. A Gaussian process model with a squared
exponential kernel, however, is equivalent to RBF regression with infinitely many basis
functions everywhere along the input domain, and can therefore properly represent prior
uncertainty far away from the data. This image originally appeared in a talk by Carl
Edward Rasmussen at the 2009 Cambridge Machine Learning Summer School: http:

//videolectures.net/mlss09uk_rasmussen_gp/

examples of Gaussian processes. For a Gaussian process to be non-parametric,

each component function value f(xi) in any collection f = (f(x1), . . . , f(xN))>

must be free to take any value, regardless of the other function values. Expressed

differently, the conditional distribution f(xi)|f−i, where f−i is any collection of

function values excluding f(xi), must be free to take any value in R. For this

freedom to be possible it is a necessary (but not sufficient) condition for the kernel

of the Gaussian process to be derived from an infinite basis function expansion,

such as the squared exponential kernel in section 2.4.3.

In an abstract sense, it is straightforward that more basis functions leads to more

flexibility and is therefore desirable, given that over-fitting is not an issue with

Bayesian inference. However, it is enlightening to explicitly compare the differences

between infinite basis function models and their finite dimensional analogues.

Suppose we observe three data points, shown with green crosses in Figure 2.10. We

can model these data by centering a Gaussian basis function (aka a radial basis

function) on each data point. We can place a Gaussian prior distribution over

the weights in this model, with zero mean, and perform fully Bayesian inference
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to make predictions; this model with finite basis functions is indeed a Gaussian

process. Suppose now that we wish to make a prediction far away from the data,

e.g., at x = 7. The radial basis function model will predict a value near 0 with

high confidence (low variance). However, we cannot be confident about what is

happening far away from the data – so something is wrong with this finite basis

function model.

We can also model these datapoints using a Gaussian process with a squared

exponential kernel, which, as derived in section 2.4.3, corresponds to using an

infinite number of densely dispersed radial basis functions. The mean prediction

of the Gaussian process with an SE kernel at the test location x = 7 will still be

zero, but now the predictive variance is non-zero, as we would expect. The GP

with SE kernel places basis functions around the test location, which will not be too

influenced by the far away data. The GP with SE kernel has this nonparametric

flexibility for free: the model is equivalent to placing an infinite number of radial

basis functions across the whole real line, but predictions can be made with finite

computation and memory.

In the future, where it appears “big data” will be of great interest, we must not

forget why we moved away from finite basis function models in the first place.

The infinite models provide incredible flexibility, and more faithfully reflect our

prior beliefs. With more training data available in the future, we have a greater

opportunity to learn sophisticated structure in data and therefore it will only be

more important to have expressive models. The need for expressive models is a

theme across the next two sections on the future of Gaussian processes.

In chapter 5, we show how nonparametric Gaussian process representations – and

their particular ability to capture more information when more data are avail-

able – are one of many critical ingredients for successful pattern discovery and

extrapolation.
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2.6.2 Did We Throw the Baby Out with the Bathwater?
(Expressive New Kernels)

In machine learning, Gaussian processes developed out of neural networks research,

partly in response to the unanswered questions concerning neural network archi-

tectures, activation functions, etc. (e.g., Bishop (1995); Rasmussen and Williams

(2006)) .

Gaussian processes, by contrast, are flexible and interpretable and manageable,

with easy model specification through covariance kernels, and a principled frame-

work for learning kernel hyperparameters.

However, neural networks became popular because they could automatically dis-

cover interesting hidden representations in data. They were part of a machine

learning dream of developing intelligent agents that would automatically learn

and make decisions. Gaussian processes, by contrast, are simply smoothing de-

vices, if used with popular kernels, such as the squared exponential (SE) kernel,

which cannot discover sophisticated structure in data and extrapolate. This ob-

servation prompted MacKay (1998) to ask whether we had “thrown the baby out

with the bathwater” in treating Gaussian processes as a potential replacement for

neural networks.

The resolution to this problem – more expressive covariance kernels – is the main

subject of this thesis. In the next chapter, on Gaussian process regression net-

works, we introduce a highly flexible Gaussian process model which can discover

interpretable features in data, through input dependent mixtures of ‘base’ kernels.

In chapters 4 and 5 we introduce expressive closed form kernels, which form a

highly effective basis for all stationary covariance functions. Overall, expressive

kernels allow us to extract additional information from the data – to discover sci-

entifically interesting properties in the data, and profoundly improve predictive

accuracy.

In general, expressive covariance functions are “an important area of future de-

velopments for GP models” (Rasmussen and Williams, 2006). Indeed GPs are
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particularly suited to expressive covariance functions, since GPs provide a power-

ful framework for hyperparameter learning – a framework which has not yet been

fully exploited with the simple covariance functions which are popular today.

At present, research on expressive kernels is in its infancy. We cannot even typ-

ically model negative covariances with kernel functions popular in the machine

learning community.1 Yet negative covariances are such a basic property of so

many datasets – even linear trends will have long range negative covariances. We

discuss modelling negative covariances further in section 4.3.3.

2.6.3 Exact Efficient Inference

With increasingly large datasets, there has been a growing movement towards

improving the scalability of Gaussian process based kernel machines, which are

often seen as having prohibitive computational and memory requirements.

Gaussian process inference and learning requires evaluating (K + σ2I)−1y and

log |K +σ2I|, for an N ×N covariance matrix K, a vector of N training instances

y, and noise variance σ2, as in Equations (2.27) and (2.37), respectively. For this

purpose, it is standard practice to take the Cholesky decomposition of (K + σ2I)

which requires O(N3) computations and O(N2) storage.

Methods to reduce these computational limitations often involve simplifying as-

sumptions, such as finite basis function expansions (Lázaro-Gredilla et al., 2010;

Le et al., 2013; Rahimi and Recht, 2007; Williams and Seeger, 2001), or sparse

approximations using pseudo inputs (Csató and Opper, 2001; Quiñonero-Candela

and Rasmussen, 2005; Rasmussen and Williams, 2006; Seeger et al., 2003; Snelson

and Ghahramani, 2006), which scale as O(M2N), where M � N is a fixed num-

ber of pseudo (aka inducing) inputs or basis functions.2 The number of required

pseudo inputs or basis functions for good performance will generally increase with

the size of the dataset. While these methods are successful with simple smoothing

1Basic discrete time autoregressive Gaussian processes, however, often express negative cor-
relations. See, for example, section 4.3.3 or appendix A.

2Hensman et al. (2013) recently developed an inducing input approach which scales as O(M3),
for smoothing and interpolation on large (e.g., N ≈ 106) datasets.
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kernels, they can be extremely prohibitive when combined with more expressive

models (e.g., section 2.6.2 and chapter 5) – sacrificing the structure, or information

in the data, which makes these expressive models useful in the first place.

However, there is often significant structure in the covariance matrix K, which can

be exploited for fast and exact learning and inference procedures. Indeed, a covari-

ance kernel must be structured to reflect the inductive biases in any given model.

I believe methods that exploit existing structure in kernels for exact inference and

learning will play an important role in the future of Gaussian process research and

applications. In section 5 we show how expressive kernels, nonparametric repre-

sentations, and scalable and exact inference and learning are all critical for large

scale multidimensional pattern extrapolation with Gaussian processes.

Here we will briefly describe two complementary approaches which exploit kernel

structure for exact scalable inference. Both of these methods allow us to efficiently

determine the eigenvalues of a covariance matrix K, which in turn enables us to

efficiently compute (K+σ2I)−1y and log |K+σ2I|, for fast inference and learning.

2.6.3.1 Toeplitz Structure

Given N training instances on a regularly spaced 1D input grid, a stationary kernel

k (section 2.4.1) will give rise to a Toeplitz covariance matrix K, meaning that

every diagonal of K is the same (note also K is a covariance matrix, so is symmetric

as well as Toeplitz)1

K =


k0 k1 . . . kN−2 kN−1

k1 k0 . . . kN3 kN−2
...

...
. . .

...
...

kN−2 kN−3 . . . k0 k1

kN−1 kN−2 . . . k1 k0

 . (2.77)

1Since k is stationary, we write k(x, x′) = k(x− x′) = kτ .
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One can embed this N×N Toeplitz matrix K into a 2(N +1)×2(N +1) circulant

matrix C (every column is shifted a position from the next):

C =



k0 k1 . . . kN−2 kN−1 kN−2 kN−3 . . . k2 k1

k1 k0 . . . kN−3 kN−2 kN−1 kN−2 . . . k3 k2
...

...
. . .

...
...

...
...

. . .
...

...
kN−2 kN−3 . . . k0 k1 k2 k3 . . . kN−2 kN−1

kN−1 kN−2 . . . k1 k0 k1 k2 . . . kN−3 kN−2

kN−2 kN−1 . . . k2 k1 k0 k1 . . . kN−4 kN−3

kN−3 kN−2 . . . k3 k2 k1 k0 . . . kN−3 kN−2
...

...
. . .

...
...

...
...

. . .
...

...
k2 k3 . . . kN−2 kN−3 kN−4 kN−3 . . . k0 k1

k1 k2 . . . kN−1 kN−2 kN−3 kN−2 . . . k1 k0


=

[
K S
S> A

]
. (2.78)

Notice that all of the information in C is contained in its first column c, and that

entry Ct,j = c(j−t) mod N .

In finding the eigenvectors and eigenvalues of C, we can formulate an efficient

procedure for solving K−1y and |C|. An eigenvector u and eigenvalue λ of C

satisfy

Cu = λu , (2.79)

which is equivalent to the N difference equations

m−1∑
t=0

cN−m+tut +
N−1∑
t=m

ct−mut = λum , m = 0, . . . , N − 1 , (2.80)

where ut is the tth element of u. Eq. (2.80) can be re-written as

N−1−m∑
t=0

ctut+m +
N−1∑

t=N−m

ctut−(N−m) = λum . (2.81)

As with differential equations, a common strategy in solving difference equations

is to guess and then verify the form of the solution. Following Gray (2006), a

reasonable guess for a system which is linear with constant coefficients is ut = γt.
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Substituting ut = γt into Eq. (2.81), we find

N−1−m∑
t=0

ctγ
t + γ−N

N−1∑
t=N−m

ctγ
t = λ . (2.82)

For γ−N = 1, the solution eigenvalues and eigenvectors are

λ =
N−1∑
t=0

ctγ
t , (2.83)

u = N−1/2(1, γ, γ2, . . . , γN−1)> . (2.84)

Solving γ−N = 1, we find the N unique complex valued roots of 1 (unity) are

γ = 1
1
N = [e−2πim]

1
N , (2.85)

for m = 0, . . . , N − 1. Taking γ = γ(m), the mth order root, the corresponding

eigenvalues and eigenvectors are

λ(m) =
N−1∑
t=0

cte
− 2πimt

N = DFT[ct] = c̃m , (2.86)

u(m) =
1√
N

(1, e−
2πim
N , . . . , e−

2πim(N−1)
N )> . (2.87)

Therefore the eigenvalues of C, represented in Eq. (2.86), are equal to the Discrete

Fourier Transform (DFT) of the first column of C.1

We can thus express Cz for any vector z, using the DFT and its inverse, as follows:

Cz =
1

N

∑
t,m

e
2πimt
N c̃mzt (2.88)

=
1

N

∑
m

e
2πimt
N c̃mz̃m = DFT−1[c̃z̃] . (2.89)

The product of C with a 2(N + 1)× 2(N + 1) vector z = [w,0]>, where w is any

N × 1 vector is

Cz = C

[
w

0

]
=

[
Kw

0

]
. (2.90)

1We write DFT[ct] = c̃m. The inverse discrete Fourier transform, DFT−1[c̃m] =
1
N

∑N−1
m=0 c̃me

2πitm
N = ct.
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The DFT and inverse DFT of an M × 1 vector can be computed efficiently in

O(M logM) using fast Fourier transforms (FFTs). Thus Cz can be used to exactly

find Kw for any w in O(N logN) computations and O(N) memory!

Inverse matrix vector products, K−1w, can then be found in O(N logN) computa-

tions, and O(N) storage using preconditioned conjugate gradients (PCG) (Atkin-

son, 2008), which exclusively make use of matrix vector products for solving linear

systems. Although an exact solution is guaranteed after N iterations, typically a

very small number of PCG iterations J � N are required for convergence within

machine precision. The required number of iterations for a practically exact solu-

tion is essentially independent of N , and depends more directly on the conditioning

of the matrix K.

Thus exact Gaussian process inference can be achieved in O(N logN) and O(N)

memory, if K has Toeplitz structure, which is often the case for time series data.

This compares to the standard O(N3) computations and O(N2) memory required

using a Cholesky decomposition.

Inference, however, only solves half of the problem – hyperparameter learning,

which requires many marginal likelihood evaluations – is often equally important.

Toeplitz structure in K can be exploited to exactly evaluate log |K + σ2I| (Zohar,

1969); however, this operation requires O(N2) computations and O(N) memory.

A Matlab toolbox for Toeplitz operations can be found at http://mloss.org/

software/view/496/. Turner (2010) and Cunningham et al. (2008) contain ex-

amples of Toeplitz methods applied to GPs.

Toeplitz methods can be applied to almost any of the models introduced in this

thesis in the cases where stationary kernels are often used as components in a

model (even if the overall kernel is non-stationary), and inputs are on a regular

grid (e.g., time series, spatial statistics (with some modifications to the Toeplitz

methods), etc.). For instance, these conditions apply to the econometrics and gene

expression examples in chapter 3. We pursue Toeplitz methods further in section

4.4.

Gaussian Processes with Circulant Covariance Matrices, Discrete Bochner’s

Theorem, and the Empirical Spectral Density
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One can show, using the identities presented in this section, that a circulant co-

variance matrix in the time (untransformed) domain becomes a diagonal matrix

in the frequency (Fourier transformed) domain. For example,

Cz = DFT−1[diag(c̃)]DFT[z] , (2.91)

as in Eq. (2.89). We will see in section 4.4.4 that the diagonalization of a circulant

covariance matrix in the frequency space provides an efficient means of sampling

from Gaussian processes with Toeplitz matrices.

Expressed differently,

cτ =
1

N

∑
m

e
2πimτ
N c̃m . (2.92)

Eq. (2.92) is in fact a discrete version of Bochner’s theorem (section 2.4.1)! We

could imagine modelling c̃m as a Gaussian process (with, for instance, a simple

SE kernel), queried at the N points in the sum of Eq. (2.92), in order to learn a

flexible circulant kernel, which could perform extrapolation, in the time domain.

Such a model would transform an extrapolation problem in the time domain into

an interpolation problem in the frequency domain.

The log marginal likelihood of a Gaussian process with a circulant covariance

matrix (assuming now that the matrix has N rows), is

log p(y|X) = −1

2
y>C−1y − 1

2
log |C| − N

2
log(2π) , (2.93)

= − 1

2N

∑
m

|ỹm|2

c̃m
− 1

2

∑
m

log(c̃m)− N

2
log(2π) . (2.94)

The circulant kernel in frequency space, cm, which maximizes the log likelihood in

Eq. (2.94) is

ĉ(sm) =
|ỹ(sm)|2

N
, (2.95)

and is known as the empirical spectral density, defined for frequencies sm =

0, fs/N, 2fs/N, . . . , fs/2, where fs is the sampling rate of the data. We first dis-

cussed the empirical spectral density in section 2.4.1. In chapter 4 we compare the
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spectral densities we learn using a spectral mixture (SM) kernel with the empirical

spectral density of Eq. (2.95).

2.6.3.2 Kronecker Structure

Certain popular stationary kernels for multidimensional inputs, such as the squared

exponential kernel, decompose as a product across input dimensions:

k(xi, xj) =
P∏
p=1

kp(xpi , x
p
j) . (2.96)

Assuming a product kernel as in Eq. (2.96), and inputs x ∈ X on a multidimen-

sional grid X = X1 × · · · × XP ⊂ RP ,1 the covariance matrix K decomposes into

a Kronecker product of matrices over each input dimension K = K1 ⊗ · · · ⊗KP

(Saatchi, 2011).2 The eigendecomposition of K into QV Q> similarly decomposes:

Q = Q1⊗· · ·⊗QP and V = V 1⊗· · ·⊗V P . Each covariance matrix Kp in the Kro-

necker product has entries Kp
ij = kp(xpi , x

p
j) and decomposes as Kp = QpV pQp>.

Thus the N ×N covariance matrix K can be stored in O(PN
2
P ) and decomposed

intoQV Q> in O(PN
3
P ) operations, forN datapoints and P input dimensions.3 For

a covariance matrix with Kronecker structure, this property thus greatly reduces

the cost of both inference and learning.4

Kronecker methods were first used with Gaussian processes in Saatchi (2011).

More detail on inference and learning using Kronecker structure, and details about

how to relax the grid assumption, can be found in chapter 5, where we develop and

exploit the structure in expressive kernels for large-scale multidimensional pattern

extrapolation.

Indeed Kronecker methods can be directly applied to many of the models in this

thesis, where we use product kernels on a grid.

1Note that this grid does not need to be evenly spaced.
2To be clear, we are indexing matrices using superscripts when describing Kronecker products

⊗. For example, Kj would be the jth matrix in the Kronecker product, not the jth power of K.
3The total number of datapoints N =

∏
p |Xp|, where |Xp| is the cardinality of Xp. For clarity

of presentation, we assume each |Xp| has equal cardinality N1/P .
4Note that the log determinant term in the marginal likelihood can be written as a sum of

eigenvalues.
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2.6.4 Multi-Output Gaussian Processes

It is unnatural to think of regression as finding a mapping from f : RP → R1,

P ∈ N. There is no more reason to think, in general, that the output variable

should be one dimensional, than there is to believe the function f only depends

on one input variable. Real world problems often exhibit strong and sophisticated

correlations between many output variables – particularly spatial coordinates in

R3. For example, in positron emission tomography (PET) one wishes to localize the

position of a particle emitting isotropic light – a regression from P photodetectors

to a 3D position in space (Wilson, 2008). Thus we ought to generally be modelling

functions f : RP → RW , for any natural numbers P and W . The often held

assumption that W = 1 is for convenience, and not because it truly reflects our

beliefs about the world.

Indeed neural networks became popular partly because they allowed for sophis-

ticated correlations between multiple outputs, through sharing adaptive hidden

basis functions across the outputs. In taking the infinite limit of hidden units in

a Bayesian neural network to derive a Gaussian process, as in section 2.4.5, these

correlations vanish. In general, Gaussian process models do not naturally account

for multiple correlated output variables.

Nonetheless, due to the prevalence of ‘multiple output’ (aka multi-task) regres-

sion problems – where it is entirely unsatisfactory to assume independence across

outputs – there has been a rapidly growing effort to extend Gaussian process re-

gression models to account for fixed correlations between output variables (Alvarez

and Lawrence, 2011; Bonilla et al., 2008; Boyle and Frean, 2004; Teh et al., 2005;

Yu et al., 2009).

In chapter 3 we introduce a scalable multi-output regression model, the Gaussian

process regression network (GPRN), which accounts for input varying correlations

between multiple outputs, to improve predictions about the values of each of these

outputs.
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2.6.5 Heteroscedastic Gaussian Processes

The predictive variance of a Gaussian process typically does not explicitly depend

on the values of observations, only on their input locations, as shown in Eq. (2.27),

except insomuch as kernel hyperparameters can be learned from data.1 This is an

undesirable property: if the variance of observations in a particular region of the

input space is high, the predictive variance in that region should also be high.

Much like the assumption of uncorrelated outputs, the assumption of i.i.d. Gaus-

sian noise is often grounded in convenience, rather than a true reflection of our be-

liefs. If we assume input dependent (aka heteroscedastic) noise, then our predictive

variance at given test locations depends on the values of the nearby observations.

There has recently been an explosion of interest in extending Gaussian process re-

gression to account for input dependent noise variances (Adams and Stegle, 2008;

Goldberg et al., 1998; Kersting et al., 2007; Lázaro-Gredilla and Titsias, 2011;

Turner, 2010; Wilson and Ghahramani, 2010a,b). In the case of multi-output re-

gression, Wilson and Ghahramani (2010b, 2011) developed Gaussian process mod-

els to account for input dependent noise covariances (multivariate volatility) be-

tween multiple outputs. In chapter 3, we introduce the Gaussian process regression

network (GPRN), which accounts for input dependent signal and noise correlations

between multiple outputs, through an expressive input dependent combination of

covariance kernels.

2.6.6 Sampling Kernel Hyperparameters

Kernel hyperparameters can be learned through marginal likelihood optimization,

or integrated away using sampling methods (section 2.3.1.2). At the present time,

marginal likelihood optimization is almost exclusively preferred, which at first

glance is somewhat puzzling: since Gaussian processes (as kernel machines) are

Bayesian methods, one would expect GP practitioners to be biased towards fully

Bayesian treatments of kernel hyperparameters, which have been well known for

1Conversely, the predictive variance of a t-process does explicitly depend on the values of
training observations (Shah et al., 2014).
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decades (Rasmussen, 1996). Thus common practice suggests that a fully Bayesian

treatment of hyperparameters may not be worthwhile.

Some potential reasons sampling kernel hyperparameters is not yet common prac-

tice include:

1. Historically any tuning of kernel hyperparameters – sampling or otherwise –

has not been given the attention it deserves, given how significantly param-

eters like length-scale can affect predictions. This is perhaps partly because

the more well known SVM framework only provides heuristics for kernel hy-

perparameter tuning, and heuristics are typically not emphasized in paper

writing.

2. Sampling methods are not typically as computationally efficient, or as easy

to implement, as optimization. Furthermore, it is not clear what sampling

method ought to be implemented for kernel hyperparameters, although Hy-

brid Monte Carlo (HMC) and slice sampling are two common choices, as

discussed in section 2.3.1.2.

3. Most importantly, the marginal likelihood surface is often sharply peaked

for the kernels that are popular at the present time, such as the squared ex-

ponential kernel, which only use a small number of parameters (Rasmussen

and Williams, 2006). In a range of experiments, Rasmussen (1996) found no

significant empirical advantages to sampling over marginal likelihood opti-

misation for the squared exponential kernel.

However, there are a few niche areas, such as Bayesian optimization (Brochu et al.,

2010), where sampling kernel hyperparameters has become standard. In such

applications, predictive variances are particularly important for good performance,

suggesting that sampling kernel hyperparameters can usefully improve predictive

variances, even for standard kernels.

As discussed in section 2.6.2, we expect sophisticated kernels to become increas-

ingly mainstream, in which case the marginal likelihood surface of Gaussian process

models will generally become increasingly broad and multimodal, and sampling

will become increasingly useful.
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Overall, the biggest challenge in learning kernel hyperparameters in Gaussian pro-

cess models, at the present time, arises when the Gaussian processes cannot be

analytically marginalised. In this case one has to deal with the strong dependen-

cies between Gaussian processes and their kernel hyperparameters. Perhaps the

most successful resolution thus far is to approximate the marginal likelihood with

an analytic expression, and optimize this approximate marginal likelihood with

respect to hyperparameters (chapter 3).

Sampling kernel hyperparameters may also be useful when there are very few data

points. GP marginal likelihood optimization is surprisingly biased towards length-

scale overestimation, as over-fitting the covariance function corresponds to under-

fitting in function space; and this effect is most pronounced on small datasets.

To exemplify this surprising under-fitting property of maximum marginal like-

lihood estimation of kernel hyperparameters, consider the following experiment.

We sampled 100 datasets of size N = 150 from a GP with a squared exponen-

tial covariance function with a true length-scale of 4, signal standard deviation

(a in Eq. (2.65)) of 1, and noise standard deviation 0.2, at 1 unit intervals. Us-

ing marginal likelihood optimization, I then estimated the kernel hyperparameters

(length-scale, signal, and noise stdev) on each of these datasets, as a function of

increasing datasize, initializing hyperparameters at their true values. Each curve

in Figure 2.11a shows the estimated log length-scale, for a particular dataset, as

a function of datasize. Figure 2.11b shows the learned length-scale, averaged in

log-space, e.g. an estimate of E[log `], not logE[l], over the 100 datasets. The

truth is in black. The trend is clearest in Figure 2.11b: there is a systematic

length-scale overestimation (underfitting), which is mostly negligable after about

N = 20 datapoints. In high dimensional input spaces, this under-fitting effect may

be even more pronounced. As shown in Figure 2.11b, averaging 1000 datasets gives

almost exactly the same results.

2.6.7 Non-Gaussian Processes

It is natural to wonder about nonparametric kernel machines which do not have

any Gaussianity assumptions. Surely we could easily use other elliptical processes
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Figure 2.11: GP Underfitting via Marginal Likelihood Hyperparameter Estimation. a)
Each curve represents the estimated length-scale of a Gaussian process for a particular
dataset, at a given datasize. There are 100 datasets (and thus 100 different coloured
curves). b) The log-lengthscale results in panel a) have been averaged to produce this
figure. The results using 1000 datasets are shown in magenta, and they are similar to the
results with 100 datasets. These figures consistently show length-scale overestimation,
equivalently GP under-fitting, particularly for small N < 20 datasets. The standard
deviation over the 1000 datasets follows the same trend as the magenta curve with a low
of 0 and a high of 7.

parametrized by a covariance kernel – and after all, isn’t the Gaussian distribution

routinely criticized as too simplistic with unrealistically small tails?

However, the Gaussian assumption is not nearly as restrictive as it might initially

seem. For example, Gaussian processes can essentially have support for any con-

tinuous function, and are universal approximators (Ghosal and Roy, 2006; van der

Vaart and van Zanten, 2009). The choice of kernel is typically far more impor-

tant than whether or not the process is truly Gaussian. Even when the Gaussian

assumption clearly does not hold, it has not been a significant restriction in my

experience.

Nonetheless, the Gaussian assumption obviously does not hold in many situations.

For example, if data are known to be strictly positive, then a Gaussian distribution

would erroneously assign negative values non-zero probability. In such cases, often

a log transform is applied to the data as a preprocessing step, and then a Gaussian
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process is used on the transformed data. However, this procedure assumes the data

are lognormal distributed, which will likely also be incorrect. Snelson et al. (2003)

propose to marginally transform a Gaussian process, and to learn the transforma-

tion as part of Bayesian inference; this procedure is equivalent to pre-processing

the data with some unknown function and then modelling the transformed data

with a Gaussian process, having learned the transformation from data.

However, the joint dependency structure of the function may also be non-Gaussian.

For example, a process may have tail-dependence, where extreme values of f(xp) are

highly correlated with extreme values of f(xq) for inputs xp, xq ∈ X. Wilson and

Ghahramani (2010a) introduce the copula process, which separates the marginal

distributions of a stochastic process from its joint dependency structure.

It is intuitive that much of the standard Gaussian process machinery could be

straightforwardly extended to more general elliptical processes – where any collec-

tion of function values has a joint elliptical distribution with a covariance matrix

parametrized by a kernel. At present, however, the theoretical and practical bene-

fits of elliptical processes, such as t-processes, are not well understood; for example,

Rasmussen and Williams (2006) wonder whether “the t-process is perhaps not as

exciting as one might have hoped”.

In response to these questions, the recent paper Shah et al. (2014) deeply explores

t-processes and elliptical processes in general, and shows that t-processes can be

meaningfully more flexible than Gaussian processes, without additional computa-

tional limitations. In particular, the predictive variances of a t-process explicitly

depend on the values of training observations – an intuitively desirable property –

and are generally of higher quality than the GP predictive variances. This property

of the t-process is especially useful in growing GP applications such as Bayesian

optimisation (Brochu et al., 2010), where high quality predictive variances are

particularly important for efficiently finding global optima.

In the future it is reasonable to expect departures away from Gaussianity to become

more common, since there can be very little computational expense in relaxing

the Gaussian assumption, and we will become increasingly confident about what
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(non-Gaussian) distribution more truly describes the data in many specialized

applications.
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Chapter 3

Gaussian Process Regression
Networks

In this chapter we introduce a new regression framework, Gaussian Process Regres-

sion Networks (GPRNs), which unifies many of the themes identified in chapter 2

as promising areas of future Gaussian process research: multi-output regression,

multivariate heteroscedasticity, non-parametric modelling, scalable inference, non-

Gaussian predictive distributions, pattern discovery, and flexible kernels. Under-

lying all of the properties of the GPRN is a highly expressive covariance kernel,

which combines the structural properties of Bayesian neural networks with the

non-parametric flexibility of Gaussian processes.

Each output variable in the Gaussian process regression network is an input depen-

dent mixture of latent Gaussian process basis functions, where the mixing weights

are themselves Gaussian processes. Thus, conditioned on the mixing weights, each

output is a Gaussian process with a kernel that is an input dependent mixture of

the kernels used for each basis function. Even if the kernels used in each basis

function are simple, a shared adaptive mixture of kernels can be highly expres-

sive – allowing each individual output (response) variable to capture enlightening

shifts in covariance structure, and enabling expressive input dependent correla-

tions across each output. As we will see, these expressive kernels can be used to

discover meaningful features in our data, such a geological structures which can

affect how correlations between different metals vary with geographical location.
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Moreover, the structure of the GPRN can be exploited for 1) input dependent noise

correlations between outputs (multivariate heteroscedasticity), at no additional

computational cost, and 2) inference that scales linearly with the total number of

output (response) variables, as opposed to the cubic scaling that is common for

multi-output Gaussian process models (which, incidentally, do not typically model

input dependent correlations).

The GPRN is an example of how one can construct expressive kernels for fast

automatic pattern discovery with Gaussian processes. Moreover, the idea of an

adaptive mixture of latent basis functions extends beyond Gaussian processes –

this general architecture, which we henceforth refer to as an adaptive network, is a

powerful machine learning tool even if the basis functions and mixing functions are

not Gaussian processes. Indeed, adaptive networks could usefully be viewed as an

extension of standard neural network architectures, and like neural networks, could

have enlightening analogues in biological learning. We further discuss adaptive

networks, and some potential applications, in section 3.9.

This chapter extends the material in my papers Wilson et al. (2011, 2012), which

first introduced the GPRN. The material on variational Bayes inference was largely

contributed by David A. Knowles. Since the introduction of the GPRN, Nguyen

and Bonilla (2013) have derived particularly efficient variational inference espe-

cially designed for Gaussian process regression networks. The proposed NMR

application extends the model of Wilson et al. (2014) to account for time-varying

reactions.

In section 3.8 we discuss the connection between the GPRN and the generalised

Wishart process (GWP) (Wilson and Ghahramani, 2010b, 2011), a nonparametric

process over matrices which evolves over time, space, or another covariate. Wil-

son and Ghahramani (2012) discuss both GWPs and GPRNs in the context of

modelling input dependent correlations between multiple output variables.

The benefits of the GPRN framework introduced in this chapter, and the closed

form spectral mixture (SM) kernels of chapter 4, are largely complementary. In-

deed, SM kernels can be used as the basis function kernels within the GPRN
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framework, to form powerful new non-stationary kernels, which we discuss further

in section 4.4 of the next chapter.

3.1 Introduction

Neural networks became popular largely because they shared adaptive hidden

basis functions across multiple outputs, which allowed for correlations between

the outputs, and the ability to discover hidden features in data. By contrast,

Gaussian processes with standard kernels, though effective at many regression and

classification problems, are simply smoothing devices (MacKay, 1998), and do not

naturally handle correlations between multiple output variables.

Recently there has been an explosion of interest in extending the Gaussian process

regression framework to account for fixed correlations between output variables

(Alvarez and Lawrence, 2011; Bonilla et al., 2008; Boyle and Frean, 2004; Teh et al.,

2005; Yu et al., 2009). These are often called ‘multi-task’ learning or ‘multiple

output’ regression models. Capturing correlations between outputs (responses)

can be used to make better predictions. Imagine we wish to predict cadmium

concentrations in a region of the Swiss Jura, where geologists are interested in

heavy metal concentrations. A standard Gaussian process regression model would

only be able to use cadmium training measurements. With a multi-task method,

we can also make use of correlated heavy metal measurements to enhance cadmium

predictions (Goovaerts, 1997). We could further enhance predictions if we could

use how these (signal) correlations change with geographical location.

There has similarly been great interest in extending Gaussian process (GP) re-

gression to account for input dependent noise variances (Adams and Stegle, 2008;

Goldberg et al., 1998; Kersting et al., 2007; Lázaro-Gredilla and Titsias, 2011;

Turner, 2010; Wilson and Ghahramani, 2010a,b). Wilson and Ghahramani (2010b,

2011) further extended the GP framework to accommodate input dependent noise

correlations between multiple output (response) variables, with the generalised

Wishart process (section 3.8).
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In this chapter, we introduce a new regression framework, Gaussian Process Re-

gression Networks (GPRN), which combines the structural properties of Bayesian

neural networks with the nonparametric flexibility of Gaussian processes. This

network is an adaptive mixture of Gaussian processes, which naturally accom-

modates input dependent signal and noise correlations between multiple output

variables, input dependent length-scales and amplitudes, and heavy tailed predic-

tive distributions, without expensive or numerically unstable computations. The

GPRN framework extends and unifies the work of Journel and Huijbregts (1978),

Neal (1996), Gelfand et al. (2004), Teh et al. (2005), Adams and Stegle (2008),

Turner (2010), and Wilson and Ghahramani (2010a, 2011).

Throughout this chapter we assume we are given a dataset of input output pairs,

D = {(xi,y(xi)) : i = 1, . . . , N}, where x ∈ X is an input (predictor) variable

belonging to an arbitrary set X, and y(x) is the corresponding p dimensional

output; each element of y(x) is a one dimensional output (response) variable, for

example the concentration of a single heavy metal at a geographical location x.

We aim to predict y(x∗)|x∗,D and Σ(x∗) = cov[y(x∗)|x∗,D] at a test input x∗,

while accounting for input dependent signal and noise correlations between the

elements of y(x).

We start by introducing the GPRN framework and discussing inference and com-

putational complexity, in sections 3.2, 3.3, and 3.4, respectively. We describe

related work in depth (section 3.5), before comparing to eight multiple output GP

models, on geostatistics and large-scale gene expression datasets, and three mul-

tivariate volatility models on several benchmark financial datasets.1 We then dis-

cuss connections with the generalised Wishart process (Wilson and Ghahramani,

2010b, 2011) in section 3.8, and a generalisation of the Gaussian process regres-

sion network to adaptive networks, with example applications in nuclear magnetic

resonance (NMR) spectroscopy, ensemble learning, and changepoint modelling, in

section 3.9. The NMR spectroscopy application is related to work in preparation

(Wilson et al., 2014).

1appendix A on time series introduces much of the background material needed to fully
appreciate the financial and multivariate volatility experiments.

74



3.2 Model Specification

3.2 Model Specification

We wish to model a p dimensional function y(x), with signal and noise correlations

that vary with x in an arbitrary input space X (although we are typically interested

in x ∈ RM , for M ∈ Z+).

We model y(x) as

y(x) = W (x)[f(x) + σfε] + σyz , (3.1)

where ε = ε(x) and z = z(x) are respectively N(0, Iq) and N(0, Ip) white noise

processes.1 Iq and Ip are q × q and p × p dimensional identity matrices. W (x) is

a p × q matrix of independent Gaussian processes such that W (x)ij ∼ GP(0, kw),

and f(x) = (f1(x), . . . , fq(x))> is a q × 1 vector of independent GPs with fi(x) ∼
GP(0, kfi). The GPRN prior on y(x) is induced through GP priors in W (x) and

f(x), and the noise model is induced through ε and z.

We represent the Gaussian process regression network (GPRN)2 of Equation (3.1)

in Figure 3.1. Each of the latent Gaussian processes in f(x) has additive Gaussian

noise. Changing variables to include the noise σfε, we let f̂i(x) = fi(x) + σfε ∼
GP(0, kf̂i), where

kf̂i(xa, xw) = kfi(xa, xw) + σ2
fδaw , (3.2)

and δaw is the Kronecker delta. The latent node functions f̂(x) are connected

together to form the outputs y(x). The strengths of the connections change as

a function of x; the weights themselves – the entries of W (x) – are functions.3

Old connections can break and new connections can form. This is an adaptive

network, where the signal and noise correlations between the components of y(x)

vary with x. We label the length-scale hyperparameters for the kernels kw and

kfi as θw and θf respectively. We often assume that all the weight GPs share

1We have not explicitly written the functional dependence of ε and z on x in Eq. (3.1) to
emphasize that these ‘noise parameters’ do not have an input dependent variance.

2Coincidentally, there is an unrelated paper called “Gaussian process networks” (Friedman
and Nachman, 2000), which is about learning the structure of Bayesian networks – e.g. the
direction of dependence between random variables.

3When W (x) is a matrix of constants W (x)→W , we essentially recover the semiparametric
latent factor (SLFM) model of Teh et al. (2005). A detailed discussion of related models is in
section 3.5.
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Figure 3.1: Structure of the Gaussian process regression network. Latent random
variables and observables are respectively labelled with circles and squares, except for
the weight functions in a). a) This neural network style diagram shows the q components
of the vector f̂ (GPs with additive noise), and the p components of the vector y. The
links in the graph, four of which are labelled, are latent random weight functions. Every
quantity in this graph depends on the input x. This graph emphasises the adaptive
nature of this network: links can change strength or even disappear as x changes. b)
A directed graphical model showing the generative procedure with relevant variables.
Hyperparameters are labelled with dots.

the same covariance kernel kw, including hyperparameters. Roughly speaking,

sharing length-scale hyperparameters amongst the weights means that, a priori,

the strengths of the connections in Figure 3.1 vary with x at roughly the same

rate.

To explicitly separate the adaptive signal and noise correlations, we re-write (3.1)

as

y(x) = W (x)f(x)︸ ︷︷ ︸
signal

+σfW (x)ε+ σyz︸ ︷︷ ︸
noise

. (3.3)

Given W (x), each of the outputs yi(x), i = 1, . . . , p, is a Gaussian process with

kernel

kyi(xa, xw) =

q∑
j=1

Wij(xa)kf̂j(xa, xw)Wij(xw) + δawσ
2
y , (3.4)

76



3.2 Model Specification

which follows from Eqs. (3.2) and (3.1).

The components of y(x) are coupled through the matrix W (x). Training the net-

work involves conditioning W (x) on the data D, and so the predictive covariances

of y(x∗)|D are now influenced by the values of the observations, and not just dis-

tances between the test point x∗ and the observed points x1, . . . , xN , as is the case

for independent GPs.

We can view (3.4) as an adaptive kernel learned from the data. There are several

other interesting features in equation (3.4): 1) the amplitude of the covariance

function,
∑q

j=1Wij(x)Wij(x
′), is non-stationary (input dependent); 2) even if each

of the kernels kfj has different stationary length-scales, the mixture of the kernels

kfj is input dependent and so the effective overall length-scale is non-stationary;

3) the kernels kfj may be entirely different: some may be periodic, others squared

exponential, others Brownian motion, and so on. Therefore the overall covari-

ance kernel may be continuously switching between regions of entirely different

covariance structures.

In addition to modelling signal correlations, we can see from Equation (3.3) that

the GPRN is also a multivariate volatility model. The noise covariance is σ2
fW (x)W (x)>+

σ2
yIp. Since the entries of W (x) are GPs, this noise model is an example of a gener-

alised Wishart process (Wilson and Ghahramani, 2010b, 2011) (discussed further

in section 3.8).

The number of nodes q influences how the model accounts for signal and noise

correlations. If q is smaller than p, the dimension of y(x), the model performs

dimensionality reduction and matrix factorization as part of the regression on

y(x) and cov[y(x)]. However, we may want q > p, for instance if the output space

were one dimensional (p = 1). In this case we would need q > 1 for nonstationary

length-scales and covariance structures. For a given dataset, we can vary q and

select the value which gives the highest marginal likelihood on training data.

Note that the signal and noise components of the model are encouraged to increase

and decrease together with the magnitude of the weight matrix W (x). It turns out

this is a crucial inductive bias for extracting meaningful structure with the matrix

W (x) in models like the GPRN. We have found, for instance, that if the signal is
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modelled by W (x)f(x), but the noise is modelled by a separate matrix G(x) (and

not influenced by W (x), then it is difficult to extract useful information from the

data – because such a model is highly flexible but lacks reasonable assumptions.

3.3 Inference

We have specified a prior p(y(x)) at all points x in the domain X, and a noise

model, so we can infer the posterior p(y(x)|D). The prior on y(x) is induced

through the GP priors in W (x) and f(x), and the parameters γ = {θf ,θw, σf , σy}.
We perform inference directly over the GPs and parameters.

We explicitly re-write the prior over GPs in terms of u = (f̂ ,W), a vector com-

posed of all the node and weight Gaussian process functions, evaluated at the

training points {x1, . . . , xN}. There are q node functions and p × q weight func-

tions. Therefore

p(u|σf ,θf ,θw) = N(0, CB) , (3.5)

where CB is an Nq(p + 1) × Nq(p + 1) block diagonal matrix, since the weight

and node functions are a priori independent. We order the entries of u so that the

first q blocks are N × N covariance matrices Kf̂i
from the node kernels kf̂i , and

the last blocks are N ×N covariance matrices Kw from the weight kernel kw.

From (3.1), the likelihood is

p(D|u, σy) =
N∏
i=1

N(y(xi);W (xi)f̂(xi), σ
2
yIp) . (3.6)

Applying Bayes’ theorem,

p(u|D,γ) ∝ p(D|u, σy)p(u|σf ,θf ,θw) . (3.7)

We sample from the posterior in (3.7) using elliptical slice sampling (ESS) (Murray

et al., 2010), which is specifically designed to sample from posteriors with strongly

correlated Gaussian priors. For comparison we approximate (3.7) using a message

passing implementation of variational Bayes (VB). We also use VB to learn the
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hyperparameters γ|D. In the next sections we describe the ESS and VB inference

in greater detail.

By incorporating noise on f , the GP network accounts for input dependent noise

correlations (as in (3.3)), without the need for costly or numerically unstable ma-

trix decompositions during inference. The matrix σ2
yIp does not change with x

and requires only one O(1) operation to invert. In a more typical multivariate

volatility model, one must decompose a p× p matrix Σ(x) once for each datapoint

xi (N times in total), an O(Np3) operation which is prone to numerical instability.

In general, multivariate volatility models are intractable for p > 5 (Engle, 2002;

Gouriéroux et al., 2009). Moreover, multi-task Gaussian process models typically

have an O(N3p3) complexity (Alvarez and Lawrence, 2011). In section 3.4 we show

that, fixing the number of ESS or VB iterations, GPRN inference scales linearly

with the number of input dimensions p. This scaling is possible because of the

inference in this section, which exploits the structure of the GPRN. Similar scaling

could be achieved with the popular SLFM (Teh et al., 2005) and LMC (Journel

and Huijbregts, 1978) multi-task models through exploiting model structure in

inference in a similar way.

We note that it is possible to reduce the number of modes in the posterior over the

weights W and nodes f by constraining W or f to be positive. For MCMC it is

straightforward to do this by exponentiating the weights, as in Adams and Stegle

(2008), Turner (2010) and Adams et al. (2010). For VB it is more straightforward

to explicitly constrain the weights to be positive using a truncated Gaussian repre-

sentation. We found that these extensions did not significantly improve empirical

performance, although exponentiating the weights sometimes improved numerical

stability for MCMC on the multivariate volatility experiments. For Adams and

Stegle (2008) exponentiating the weights will have been more valuable because

they use Expectation Propagation, which in their case would centre probability

mass between symmetric modes. MCMC and VB approaches are more robust to

this problem. MCMC can explore these symmetric modes, and VB will concentrate

on one of these modes without losing the expressivity of the GPRN prior.
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3.3.1 Elliptical Slice Sampling

To sample from p(u|D,γ), we could use a Gibbs sampling scheme which would

have conjugate posterior updates, alternately conditioning on weight and node

functions. However, this Gibbs cycle would mix poorly because of the correlations

between the weight and node functions in the posterior p(u|D,γ). In general,

MCMC samples from p(u|D,γ) mix poorly because of the strong correlations in

the prior p(u|σf ,θf ,θw) imposed by CB. The sampling process is also often slowed

by costly matrix inversions in the likelihood.

We use Elliptical Slice Sampling (Murray et al., 2010), a recent MCMC technique

specifically designed to sample from posteriors with tightly correlated Gaussian

priors. ESS performs joint updates and has no free parameters. Since there are

no costly or numerically unstable matrix inversions in the likelihood of Eq. (3.6)

we also find sampling to be efficient.

With a sample from p(u|D,γ), we can sample from the predictive p(W (x∗),f(x∗)|u, σf ,D).

Let W i
∗,f

i
∗ be the ith such joint sample. Using our generative GPRN model we can

then construct samples of p(y(x∗)|W i
∗,f

i
∗, σf , σy), from which we can construct the

predictive distribution

p(y(x∗)|D) = lim
J→∞

1

J

J∑
i=1

p(y(x∗)|W i
∗,f

i
∗, σf , σy) . (3.8)

We see that even with a Gaussian observation model, the predictive distribution in

(3.8) is an infinite mixture of Gaussians, and will generally be heavy tailed. Since

samples ofW i
∗,f

i
∗ can take any value, the joint posterior p(W (x∗),f(x∗)|u, σf ,D) is

highly non-Gaussian, and mixtures of Gaussians are dense in the set of probability

distributions, the GPRN has the potential to be highly flexible.

Mixing was assessed by looking at trace plots of samples, and the likelihoods of

these samples. Specific information about how long it takes to sample a solution

for a given problem is in the experiments of section 3.6.
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3.3.2 Variational Inference for the GPRN

We perform variational EM (Jordan et al., 1999) to fit an approximate posterior q

to the true posterior p, by minimising the Kullback-Leibler divergence KL(q||p) =

−H[q(v)]−
∫
q(v) log p(v)dv, where H[q(v)] = −

∫
q(v) log q(v)dv is the entropy

and v = {f ,W, σ2
f , σ

2
y, aj}.

E-step. We use Variational Message Passing (Ghahramani and Beal, 2001; Winn

and Bishop, 2006) under the Infer.NET framework (Minka et al., 2010) to esti-

mate the posterior over v = {f ,W, σ2
f , σ

2
y , aj}, where the {aj} are signal variance

hyperparameters for each node function j, so that kf̂j → ajkf̂j .

We specify inverse Gamma priors on {σ2
f , σ

2
y, aj}:

σ2
fj ∼ IG(ασ2

f
, βσ2

f
), σ2

y ∼ IG(ασ2
y
, βσ2

y
), aj ∼ IG(αa, βa).

We use a variational posterior of the following form:

q(v) = qσ2
y
(σ2

y)

Q∏
j=1

qfj(fj)qσ2
fj

(σ2
fj)qaj(aj)

P∏
i=1

qWij
(Wij)

N∏
n=1

qf̂nj(f̂nj)

where qσ2
y
, qσ2

fj
and qaj are inverse Gamma distributions; qf̂nj is a univariate nor-

mal distribution (indexed by training datapoint number n); and qfj and qWij
are

N dimensional multivariate normal distributions (operating over the N training

points). We have included the noise free variables f and the noisy variables f̂ .

The lengthscales {θf , θw} do not appear here because they are optimised in the

M-step below (we could equivalently consider a point mass “distribution” on the

lengthscales).

For mathematical and computational convenience we introduce the following vari-

ables which are deterministic functions of the existing variables in the model:

wnij := Wij(xn), f ′nj := fj(xn) (3.9)

tnij := wnij f̂nj, sin :=
∑
j

tnij (3.10)
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We refer to these as “derived” variables. Note that the observations yi(xn) ∼
N(sin, σ

2
y) and that f̂nj ∼ N(f ′nj, σ

2
fj

). These derived variables are all given uni-

variate normal “pseudo-marginals” which Variational message passing uses as con-

duits to pass appropriate moments, resulting in the same updates as standard VB

(see Winn and Bishop (2006) for details). Using the derived variables the full

model can be written as

p(v) ∝ IG(σ2
y;ασ2

y
, βσ2

y
)

Q∏
j=1

(
N(fj; 0, ajKfj)

IG(σ2
fj;ασ2

f
, βσ2

f
)IG(aj;αa, βa)

P∏
i=1

[
N(Wij; 0, Kw)

N∏
n=1

δ(wnij −Wij(xn))δ(f ′nj − f̂j(xn))N(f̂nj; f
′
nj, σ

2
fj

)

δ(tnij − wnij f̂nj)δ(sin −
∑
j

tnij)N(yi(xn); sin, σ
2
y)

])

The updates for f ,W, σ2
f , σ

2
y are standard VB updates and are available in In-

fer.NET. The update for the ARD parameters aj however required specific imple-

mentation. The factor itself is

logN(fj;0, ajKf )
c
= −1

2
log |ajKj| −

1

2
fTj (ajKf )

−1fj

= −N
2

log aj −
1

2
log |Kj| −

1

2
a−1
j fTj K

−1
f fj (3.11)

where
c
= denotes equality up to an additive constant. Taking expectations with re-

spect to f under q we obtain the VMP message to aj as IG
(
aj;

N
2
− 1, 1

2
〈fTj K−1

f fj〉
)
.

Since the variational posterior on f is multivariate normal the expectation 〈fTj K−1
f fj〉

is straightforward to calculate.

M-step. In the M-step we optimise the variational lower bound with respect to

the log length scale parameters {θf , θw}, using gradient descent with line search.

When optimising θf we only need to consider the contribution to the lower bound
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of the factor N(fj; 0, ajKfj) (see (3.11)), which is straightforward to evaluate and

differentiate. From (3.11) we have:

〈logN(fj; 0, ajKfj)〉q
c
= −N

2
log aj −

1

2
log |Kfj | −

1

2
〈a−1
j 〉〈fTj K−1

fj
fj〉

We will need the gradient with respect to θf :

∂〈logN(fj; 0, ajKfj)〉
∂θf

= −1

2
tr

(
K−1
fj

∂Kfj

∂θf

)
− 1

2
〈a−1
j 〉〈fTj K−1

fj

∂Kfj

∂θf
K−1
fj

fj〉

The expectations here are straightforward to compute analytically since fj has

multivariate normal variational posterior. Analogously for θw we consider the

contribution of N(Wpq; 0, KW ).

VB predictive distribution. The predictive distribution for the output y∗(x)

at a new input location x is calculated as

p(y∗(x)|D) =

∫
p(y∗(x)|W (x), f(x))p(W (x), f(x)|D)dWdf (3.12)

VB fits the approximation p(W (x), f(x)|D) = q(W )q(f), so the approximate pre-

dictive is

p(y∗(x)|D) =

∫
p(y∗(x)|W (x), f̂(x))q(W )q(f̂)dWdf̂ (3.13)

We can calculate the mean and covariance of this distribution analytically:

ȳ∗(x)i =
∑
k

E(W ∗
ik)E[f̂ ∗k ] (3.14)

cov(y∗(x))ij =
∑
k

[E(W ∗
ik)E(W ∗

jk)var(f̂ ∗k ) + δijvar(W ∗
ik)E(f̂ ∗2k )] + δijE[σ2

y ] (3.15)

where δij = I[i = j] is the Kronecker delta function, W ∗
ik = Wik(x) and f̂ ∗k = f̂k(x).

The moments of W ∗
ik and f̂ ∗k under q are straightforward to obtain from q(W ) and

q(f) respectively using the standard GP prediction equations (chapter 2). It is
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also of interest to calculate the noise covariance. Recall our model can be written

as

y(x) = W (x)f(x)︸ ︷︷ ︸
signal

+σfW (x)ε+ σyz︸ ︷︷ ︸
noise

(3.16)

Let n(x) = σfW (x)ε+σyz be the noise component. The covariance of n(x) under

q is then

cov(n(x))ij =
∑
k

E[σ2
fk

][E(W ∗
ik)E(W ∗

jk) + δijvar(W ∗
jk)] + δijE[σ2

y] (3.17)

3.4 Computational Considerations

The computational complexity of a Markov chain Monte Carlo GPRN approach

is mainly limited by taking the Cholesky decomposition of the block diagonal

CB, an Nq(p + 1) × Nq(p + 1) covariance matrix in the prior on GP function

values (u ∼ N(0, CB)). But pq of these blocks are the same N × N covariance

matrix Kw for the weight functions, and q of these blocks are the covariance

matrices Kf̂i
associated with the node functions, and chol(blkdiag(A,B, . . . )) =

blkdiag(chol(A), chol(B), . . . ). Therefore assuming the node functions share the

same covariance function (which they do in our experiments), the complexity of

this operation is only O(N3), the same as for regular Gaussian process regression.

At worst this complexity is O(qN3), assuming different covariance functions for

each node.

Sampling also requires likelihood evaluations. Since there are input dependent

noise correlations between the elements of the p dimensional observations y(xi),

multivariate volatility models would normally require inverting1 a p×p covariance

matrix N times. Such models include MGARCH (Bollerslev et al., 1988) or mul-

tivariate stochastic volatility models (Harvey et al., 1994). These inversions (or

Cholesky decompositions) would lead to a complexity of O(Nqp + Np3) per like-

lihood evaluation. However, by working directly with the noisy f̂ instead of the

1In this context, “inverting” means decomposing (e.g., a Cholesky decomposition of) the
matrix Σ(x) in question. For instance, we may wish to take the Cholesky decomposition to take
the determinant of Σ−1(x), or the matrix vector product y>(x)Σ−1(x)y(x).
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noise free f , evaluating the likelihood requires no costly or numerically unstable

inversions, and thus has a complexity of only O(Nqp).

The computational complexity of variational Bayes is dominated by the O(N3)

inversions required to calculate the covariance of the node and weight functions in

the E-step. Naively q and qp such inversions are required per iteration for the node

and weight functions respectively, giving a total complexity of O(qpN3). However,

under VB the covariances of the weight functions for the same p are all equal,

reducing the complexity to O(qN3). If p is large the O(pqN2) cost of calculating

the weight function means may become significant. Although the per iteration

cost of VB is actually higher than for MCMC, far fewer iterations are typically

required to reach convergence.

We see that when fixing q and p, the computational complexity of GPRN scales

cubically with the number of data points, like standard Gaussian process regres-

sion. On modern computers, this limits GPRN to datasets with fewer than about

N = 10000 points. However, one could adopt a sparse representation of GPRN,

for example following the DTC (Csató and Opper, 2001; Quiñonero-Candela and

Rasmussen, 2005; Rasmussen and Williams, 2006; Seeger et al., 2003), PITC

(Quiñonero-Candela and Rasmussen, 2005), or FITC (Snelson and Ghahramani,

2006) approximations, which would lead to O(M2N) scaling where M � N . Im-

portantly, if the input space X is on a grid, then the computational complexity for

inference in N can reduce to O(N logN) using Toeplitz methods (section 2.6.3.1),

with no loss of predictive accuracy. For instance, these conditions for Toeplitz

methods apply to essentially all time series applications, such as the multivariate

volatility applications in this chapter. For inputs on a grid, one may also exploit

Kronecker structure, for fast and exact inference and learning as in chapter 5 and

Saatchi (2011).

Fixing q and N , the per iteration (for MCMC or VB) computational complexity

of GPRN scales linearly with p. Overall, the computational demands of GPRN

compare favourably to most multi-task GP models, which commonly have a com-

plexity of O(p3N3) (e.g. SLFM, LMC, and CMOGP in the experiments) and do not
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account for either input dependent signal or noise correlations. Moreover, multi-

variate volatility models, which account for input dependent noise correlations, are

commonly intractable for p > 5 (Engle, 2002; Gouriéroux et al., 2009). The 1000

dimensional gene expression experiment is tractable for GPRN, but intractable

for the alternative multi-task models used on the 50 dimensional gene expression

set, and the multivariate volatility models. Note that the computational efficiency

gains in the GPRN come about through exploiting the structure of the GPRN

during inference. Similar structure could also be exploited, for example, in the

SLFM model, which can be viewed as a special case of the GPRN (section 3.5).

Using either MCMC or VB with the GPRN, the memory requirement is O(N2) if

all covariance kernels share the same hyperparameters, O(qN2) is the node func-

tions have different kernel hyperparameters, and O(pq2N2) if all GPs have differ-

ent kernel hyperparameters. This memory requirement comes from storing the

information in the block diagonal CB in the prior p(u|σf ,θf ,θw). This memory

requirement can also be significantly reduced at no loss in predictive accuracy if

the relevant covariance matrices have Toeplitz or Kronecker structure (e.g., section

5.3 and chapter 5).

3.5 Related Work

Gaussian process regression networks are related to a large body of seemingly dis-

parate work in machine learning, econometrics, geostatistics, physics, and proba-

bility theory.

In machine learning, the semiparametric latent factor model (SLFM) (Teh et al.,

2005) was introduced to model multiple outputs with fixed signal correlations.

SLFM specifies a linear mixing of latent Gaussian processes. The SLFM is similar

to the linear model of coregionalisation (LMC) (Journel and Huijbregts, 1978)

and intrinsic coregionalisation model (ICM) (Goovaerts, 1997) in geostatistics, but

the SLFM incorporates important Gaussian process hyperparameters like length-

scales, and methodology for learning these hyperparameters. The SLFM in Teh

et al. (2005) also uses the efficient informative vector machine (IVM) framework
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(Lawrence et al., 2003) for inference. In machine learning, the SLFM has also

been developed as “Gaussian process factor analysis” (Yu et al., 2009), with an

emphasis on time being the input (predictor) variable.

For changing correlations, the Wishart process (Bru, 1991) was first introduced in

probability theory as a distribution over a collection of positive definite covariance

matrices with Wishart marginals. It was defined as an outer product of autore-

gressive Gaussian processes restricted to a Brownian motion or Ornstein-Uhlenbeck

covariance structure. In the geostatistics literature, Gelfand et al. (2004) applied a

Wishart process as part of a linear coregionalisation model with spatially varying

signal covariances, on a p = 2 dimensional real-estate example. Later Gouriéroux

et al. (2009) returned to the Wishart process of Bru (1991) to model multivariate

volatility, letting the noise covariance be specified as an outer product of AR(1)

Gaussian processes, assuming that the covariance matrices Σ(t) = cov(y|t) are

observables on an evenly spaced one dimensional grid. In machine learning, Wil-

son and Ghahramani (2010b, 2011) introduced the generalised Wishart process

(GWP)1, which generalises the Wishart process of (Bru, 1991) to a process over

arbitrary positive definite matrices (Wishart marginals are not required) with a

flexible covariance structure, and using the GWP, extended the GP framework to

account for input dependent noise correlations (multivariate volatility), without

assuming the noise is observable, or that the input space is 1D, or on a grid. Fox

and Dunson (2011) also propose a related Bayesian nonparametric process over

covariance matrices. More on the GWP is in section 3.8, with novel extensions in

appendix B.

Gaussian process regression networks act as both a multi-task and multivariate

volatility model. The GPRN and the GWP are closely related to the model of

Gelfand et al. (2004). The GPRN (and also the GWP, in many respects) differs

from Gelfand et al. (2004) in that 1) the GPRN incorporates and estimates Gaus-

sian process hyperparameters, like length-scales, and thus learns more covariance

structure from data data, 2) is tractable for p > 3 due to scalable inference (the

VB and ESS inference procedures we present here are significantly more efficient

than the Metropolis-Hastings proposals in Gelfand et al. (2004)), 3) is used as

1The relationship between the GWP and GPRN is discussed in more detail in section 3.8.
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a latent factor model (where q < p), 4) incorporates an input dependent noise

correlation model.

4) is especially pertinent, as a noise model in general strongly influences a regres-

sion on the signal, even if the noise and signal models are a priori independent. In

the GPRN prior of Equation (3.3) the noise and signal correlations are explicitly

related: through sharing W (x), the signal and noise are encouraged to increase

and decrease together (which provides an inductive bias which is critical for learn-

ing input dependent signal and noise structure using a model like the GPRN).

The noise model is an example of a GWP, although with the inference presented

in section 3.3, the GPRN scales linearly and not cubically with p (as in Wilson

and Ghahramani (2010b)), per iteration of ESS or VB. This inference could be

applied to the GWP for the same efficiency gains. If the GPRN is exposed solely

to input dependent noise, the length-scales on the node functions f(x) will train to

large values, turning the GPRN into solely a multivariate volatility model: all the

modelling then takes place in W (x). In other words, through learning Gaussian

process hyperparameters, the GPRN can automatically vary between a multi-task

and multivariate volatility model, making the GPRN a highly distinct model. The

hyperparameters in the GPRN are also important for distinguishing between the

behaviour of the weight and node functions. We may expect, for example, that the

node functions will vary more quickly than the weight functions, so that the com-

ponents of y(x) vary more quickly than the correlations between the components

of y(x). The rate at which the node and weight functions vary is controlled by

the Gaussian process length-scale hyperparameters, which are learned from data.

When q = p = 1, the GPRN resembles the nonstationary GP regression model

of Adams and Stegle (2008). Likewise, when the weight functions are constants,

the GPRN becomes the semiparametric latent factor model (SLFM) of Teh et al.

(2005), except that the resulting GP regression network is less prone to over-fitting

through its use of full Bayesian inference. The GPRN also somewhat resembles

the natural sound model (MPAD) in section 5.3 of Turner (2010), except in MPAD

the analogue of the node functions are AR(2) Gaussian processes, the inputs are

1D and on a regular grid, and the “weight functions” are a priori correlated and

constrained to be positive.
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Ver Hoef and Barry (1998) and Higdon (2002) in geostatistics and Boyle and

Frean (2004) in machine learning proposed an alternate convolution GP model for

multiple outputs (CMOGP) with fixed signal correlations, where each output at

each x ∈ X is a mixture of latent Gaussian processes mixed across the whole input

domain X.

3.6 Experiments

We compare the GPRN to multi-task learning and multivariate volatility models.

We also compare between variational Bayes (VB) and elliptical slice sampling

(ESS) inference within the GPRN framework. In the multi-task setting, there are

p dimensional observations y(x), and the goal is to use the correlations between

the elements of y(x) to make better predictions of y(x∗), for a test input x∗, than

if we were to treat the dimensions (aka “tasks”) independently. A major difference

between the GPRN and alternative multi-task models is that the GPRN accounts

for signal correlations that change with x, and input dependent noise correlations,

rather than fixed correlations. We compare to multi-task GP models on gene

expression and geostatistics datasets.

To specifically test the GPRN’s ability to model input dependent noise covariances

(multivariate volatility), we compare predictions of cov[y(x)] = Σ(x) to those made

by popular multivariate volatility models on benchmark financial datasets.

In all experiments, the GPRN uses squared exponential covariance functions, with

a length-scale shared across all node functions, and another length-scale shared

across all weight functions. The GPRN is robust to initialisation. We use an

adversarial initialisation of N(0, 1) white noise for all Gaussian process functions.

3.6.1 Gene Expression

Tomancak et al. (2002) measured gene expression levels every hour for 12 hours

during Drosophila embryogenesis; they then repeated this experiment for an inde-

pendent replica (a second independent time series). This dataset was subsequently
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analyzed by Alvarez and Lawrence (2011). Gene expression is activated and deac-

tivated by transcription factor proteins. We focus on genes which are thought to

at least be regulated by the transcription factor twi, which influences mesoderm

and muscle development in Drosophila (Zinzen et al., 2009). The assumption is

that these gene expression levels are all correlated. We would like to use how

these correlations change over time to make better predictions of time varying

gene expression in the presence of transcription factors. In total there are 1621

genes (outputs) at N = 12 time points (inputs), on two independent replicas. For

training, p = 50 random genes were selected from the first replica, and the corre-

sponding 50 genes in the second replica were used for testing. We then repeated

this experiment 10 times with a different set of genes each time, and averaged the

results. We then repeated the whole experiment, but with p = 1000 genes. We

used exactly the same training and testing sets as Alvarez and Lawrence (2011).

As in Alvarez and Lawrence (2011), we start with the p = 50 dataset, to compare

with popular alternative multi-task methods (LMC, CMOGP, and SLFM) methods

which have a complexity of O(N3p3) and do not scale to p = 1000 when using exact

inference.1,2. On the p = 1000 dataset we compare to CMOFITC, CMODTC,

and CMOPITC (Alvarez and Lawrence, 2011), sparse variants of CMOGP, which

significantly outperforms LMC and SLFM on the p = 50 example. In both of

these regressions, the GPRN is accounting for multivariate volatility; this is the

first time a multivariate stochastic volatility model has been estimated for p > 50

(Chib et al., 2006). We assess performance using standardised mean square error

(SMSE) and mean standardized log loss (MSLL). The SMSE is defined as

SMSE =
||y∗ − f∗||2

σ2
y∗

, (3.18)

where y∗ is the vector of test points, f∗ is the vector of predictions at test locations,

and σ2
y∗ is the variance of the test points. The MSLL is the log likelihood of the data

1Here we are using the standard inference procedures for these alternative models. The
SLFM, for instance, could scale with the same complexity as the GPRN if using the same
inference procedures as the GPRN.

2We also implemented the SVLMC of Gelfand et al. (2004) but found it computationally
intractable on the gene expression and geostatistics datasets, and on a subset of data it gave
worse results than the other methods we compare to. SVLMC is not applicable to the multivariate
volatility datasets.
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minus the log likelihood obtained using the trivial model of using the empirical

mean and covariance of the training instances to fit the data. The SMSE and

MSLL metrics are similarly defined on page 23 of Rasmussen and Williams (2006).

Smaller SMSE values and more negative MSLL values correpond to better fits of

the data.

The results are in Table 3.1, under the headings GENE (50D) and GENE (1000D).

For SET 2 we reverse training and testing replicas in SET 1. The results for LMC,

CMOGP, CMOFITC, CMOPITC, and CMODTC can also be found in Alvarez and

Lawrence (2011). GPRN outperforms all of the other models, with between 46%

and 68% of the SMSE, and similarly strong results on the MSLL error metric.1

On both the 50 and 1000 dimensional datasets, the marginal likelihood for the

network structure is sharply peaked at q = 1, as we might expect since there is

likely one transcription factor twi controlling the expression levels of the genes in

question.

Typical GPRN (VB) runtimes for the 50D and 1000D datasets were respectively

12 seconds and 330 seconds. These runtimes scale roughly linearly with dimen-

sion (p), which is what we expect. GPRN (VB) runs at about the same speed as

the sparse CMOGP methods, and much faster than CMOGP, LMC and SLFM,

which take days to run on the 1000D dataset. The GPRN (ESS) runtimes for the

50D and 1000D datasets were 40 seconds and 9000 seconds (2.5 hr), and required

respectively 6000 and 104 samples to reach convergence, as assessed by trace plots

of sample likelihoods. In terms of both speed and accuracy GPRN (ESS) out-

performs all methods except GPRN (VB). GPRN (ESS) does not mix as well in

high dimensions, and the number of ESS iterations required to reach convergence

noticeably grows with p. However, ESS is still tractable and performing relatively

well in p = 1000 dimensions, in terms of speed and predictive accuracy. Runtimes

are on a 2.3 GHz Intel i5 Duo Core processor.

1Independent GPs severely overfit on GENE, giving an MSLL of ∞.
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3.6.2 Jura Geostatistics

Here we are interested in predicting concentrations of cadmium at 100 locations

within a 14.5 km2 region of the Swiss Jura. For training, we have access to mea-

surements of cadmium at 259 neighbouring locations. We also have access to

nickel and zinc concentrations at these 259 locations, as well as at the 100 loca-

tions we wish to predict cadmium. While a standard Gaussian process regression

model would only be able to make use of the cadmium training measurements, a

multi-task method can use the correlated nickel and zinc measurements to enhance

predictions. With the GPRN we can also make use of how the correlations between

nickel, zinc, and cadmium change with location to further enhance predictions.

The network structure with the highest marginal likelihood has q = 2 latent node

functions. The node and weight functions learnt using VB for this setting are

shown in Figure 3.2. Since there are p = 3 output dimensions, the result q < p

suggests that heavy metal concentrations in the Swiss Jura are correlated. Indeed,

using our model we can observe the spatially varying correlations between heavy

metal concentrations, as shown for the noise correlations between cadmium and

zinc in Figure 3.3. Although the correlation between cadmium and zinc is generally

positive (with values around 0.6), there is a region where the correlations noticeably

decrease, perhaps corresponding to a geological structure. The quantitative results

in Table 3.1 suggest that the ability of the GPRN to learn these spatially varying

correlations is beneficial for predicting cadmium concentrations.

We assess performance quantitatively using mean absolute error (MAE) between

the predicted and true cadmium concentrations. We restart the experiment 10

times with different initialisations of the parameters, and average the MAE. The

results are marked by JURA in Table 3.1. The experimental setup follows Goovaerts

(1997) and Alvarez and Lawrence (2011). We found log transforming and normal-

ising each dimension to have zero mean and unit variance to be beneficial due to

the skewed distribution of the y-values (but we also include results on untrans-

formed data, marked with *). All the multiple output methods give lower MAE

than using an independent GP, and the GPRN outperforms SLFM and the other

methods.
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Figure 3.2: Network structure for the Jura dataset learnt by the GPRN (VB). The spa-
tially varying node and weight functions shown, along with the predictive means for the
observations. The three output dimensions are cadmium, nickel and zinc concentrations
respectively. The horizontal and vertical axes are latitude and longitude as in Figure
3.3.
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Figure 3.3: Spatially dependent correlations between cadmium and zinc learned by the
GPRN. Markers show the locations where measurements were made.

93



3.6 Experiments

For the JURA dataset, the improved performance of the GPRN is at the cost of a

slightly greater runtime. However, the GPRN is accounting for input dependent

signal and noise correlations, unlike the other methods. Moreover, the complexity

of the GPRN scales linearly with p (per iteration), unlike the other methods which

scale as O(N3p3). This scaling is why the GPRN runs relatively quickly on the 1000

dimensional gene expression dataset, for which the other methods are intractable.

These data are available from http://www.ai-geostats.org/.

3.6.3 Multivariate Volatility

In the previous experiments the GPRN implicitly accounted for multivariate volatil-

ity (input dependent noise covariances) in making predictions of y(x∗). We now

test the GPRN explicitly as a model of multivariate volatility, and assess predic-

tions of Σ(t) = cov[y(t)]. We make 200 historical predictions of Σ(t) at observed

time points, and 200 one day ahead forecasts. Historical predictions can be used,

for example, to understand a past financial crisis. The forecasts are assessed using

the log likelihood of new observations under the predicted covariance, denoted L

Forecast. We follow Wilson and Ghahramani (2010b), and predict Σ(t) for re-

turns on three currency exchanges (EXCHANGE) and five equity indices (EQUITY)

processed as in Wilson and Ghahramani (2010b). These datasets are especially

suited to MGARCH, the most popular multivariate volatility model, and have

become a benchmark for assessing GARCH models (Brooks et al., 2001; Brown-

lees et al., 2009; Hansen and Lunde, 2005; McCullough and Renfro, 1998; Poon

and Granger, 2005). We compare to full BEKK MGARCH (Engle and Kroner,

1995), the generalised Wishart process (Wilson and Ghahramani, 2010b), and the

original Wishart process (Bru, 1991; Gouriéroux et al., 2009).

We see in Table 3.1 that GPRN (ESS) is often outperformed by GPRN (VB) on

multivariate volatility sets, suggesting convergence difficulties with ESS. The high

historical MSE for GPRN on EXCHANGE is essentially training error, and less mean-

ingful than the encouraging step ahead forecast likelihoods; to harmonize with the

econometrics literature, historical MSE for EXCHANGE is between the learnt covari-

ance Σ(x) and observed y(x)y(x)>. Wilson and Ghahramani (2010b) contains
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further details. The small differences in performance between the GPRN and

GWP on these datsets are a result of minor differences in implementation and

the fact we used GPRN as a factor model with q < p which is suitable for these

particular datasets.

Overall, the GPRN shows promise as both a multi-task and multivariate volatility

model, especially since the multivariate volatility datasets are suited to MGARCH.

These data were obtained using Datastream (http://www.datastream.com/).

3.7 Discussion

A Gaussian process regression network (GPRN) has a simple and interpretable

structure, and generalises many of the recent extensions to the Gaussian process

regression framework. The model naturally accommodates input dependent signal

and noise correlations between multiple output variables, heavy tailed predictive

distributions, input dependent length-scales and amplitudes, and adaptive covari-

ance functions. Furthermore, GPRN has scalable inference procedures, and strong

empirical performance on several real datasets. In the future, one could apply the

ideas behind GPRN to classification, so that one can model non-mutually exclusive

class labels with predictor dependent correlations. For example, the class labels

could be education level and profession, and the predictor could be geographical

location.

In the next sections we describe the relationship between the GPRN and the gen-

eralised Wishart process (GWP), and provide some more detail about generalised

Wishart processes. We also generalise the GPRN framework to adaptive networks,

and describe applications in nuclear magnetic spectroscopy, ensemble learning, and

changepoint modelling.

In the next chapter we introduce closed form kernels for automatic pattern discov-

ery and extrapolation. These kernels are highly complementary with the GPRN

framework – and can be used as the node kernels in a GPRN to form a powerful

non-stationary process, which we describe in section 4.4.
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Table 3.1: Comparative performance on all datasets.

GENE (50D) Average SMSE Average MSLL

SET 1:
GPRN (VB) 0.3356± 0.0294 −0.5945± 0.0536
GPRN (ESS) 0.3236± 0.0311 −0.5523± 0.0478
LMC 0.6069± 0.0294 −0.2687± 0.0594
CMOGP 0.4859± 0.0387 −0.3617± 0.0511
SLFM 0.6435± 0.0657 −0.2376± 0.0456

SET 2:
GPRN (VB) 0.3403± 0.0339 −0.6142± 0.0557
GPRN (ESS) 0.3266± 0.0321 −0.5683± 0.0542
LMC 0.6194± 0.0447 −0.2360± 0.0696
CMOGP 0.4615± 0.0626 −0.3811± 0.0748
SLFM 0.6264± 0.0610 −0.2528± 0.0453

GENE (1000D) Average SMSE Average MSLL

SET 1:
GPRN (VB) 0.3473± 0.0062 −0.6209± 0.0085
GPRN (ESS) 0.4520± 0.0079 −0.4712± 0.0327
CMOFITC 0.5469± 0.0125 −0.3124± 0.0200
CMOPITC 0.5537± 0.0136 −0.3162± 0.0206
CMODTC 0.5421± 0.0085 −0.2493± 0.0183

SET 2:
GPRN (VB) 0.3287± 0.0050 −0.6430± 0.0071
GPRN (ESS) 0.4140± 0.0078 −0.4787± 0.0315
CMOFITC 0.5565± 0.0425 −0.3024± 0.0294
CMOPITC 0.5713± 0.0794 −0.3128± 0.0138
CMODTC 0.5454± 0.0173 0.6499± 0.7961

JURA Average MAE Training (secs)

GPRN (VB) 0.4040± 0.0006 1040
GPRN* (VB) 0.4525± 0.0036 1190
SLFM (VB) 0.4247± 0.0004 614
SLFM* (VB) 0.4679± 0.0030 810
SLFM 0.4578± 0.0025 792
Co-kriging 0.51
ICM 0.4608± 0.0025 507
CMOGP 0.4552± 0.0013 784
GP 0.5739± 0.0003 74

EXCHANGE Historical MSE L Forecast

GPRN (VB) 3.83× 10−8 2073
GPRN (ESS) 6.120× 10−9 2012
GWP 3.88× 10−9 2020
WP 3.88× 10−9 1950
MGARCH 3.96× 10−9 2050

EQUITY Historical MSE L Forecast

GPRN (VB) 0.978× 10−9 2740
GPRN (ESS) 0.827× 10−9 2630
GWP 2.80× 10−9 2930
WP 3.96× 10−9 1710
MGARCH 6.68× 10−9 2760
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3.8 Relationship with Generalised Wishart Pro-

cesses

In section 3.2, we noted that the noise covariance of a GPRN,

Σ(x) = σ2
fW (x)W (x)> + σ2

yIp , (3.19)

is an example of a generalised Wishart process (Wilson and Ghahramani, 2010b,

2011), because the entries of W (x) are GPs. Here we describe generalised Wishart

processes in some more detail. In the process, the connections between GPRNs

and GWPs will become increasingly clear.

Gaussian processes are distributions over functions. Intuitively we can think of

these functions as sequences of indexed (e.g., input dependent) points, which are

marginally Gaussian and correlated with one another as described by a covari-

ance kernel. We can therefore intuitively think of a sequence of input dependent

matrices as a generalised function. A generalised Wishart process (GWP) is a dis-

tribution over sequences of matrices which are correlated using a kernel function.1

In the simplest formulation of the GWP, these matrices are marginally Wishart

distributed. Therefore the GWP can be thought of as a generalisation of the GP

framework to sequences of matrices.

To construct a GWP with Wishart marginals, we start with νp independent Gaus-

sian process functions, uid(x) ∼ GP(0, k), where i = 1, . . . , ν and d = 1, . . . , p. This

means

cov[uid(x), ui′d′(x
′)] = k(x, x′)δii′δdd′ , (3.20)

(uid(x1), uid(x2), . . . , uid(xN))> ∼ N(0, K) , (3.21)

where δij is the Kronecker delta, and K is an N × N covariance matrix with

elements Kij = k(xi, xj). Let ûi(x) = (ui1(x), . . . , uip(x))>, and let L be the lower

Cholesky decomposition of a p × p scale matrix V , such that LL> = V . Also,

1See also Fox and Dunson (2011) and Gelfand et al. (2004) for a related approach.
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3.8 Relationship with Generalised Wishart Processes

suppose, without loss of generality, that k(x, x) = 1. We can then construct a

GWP as

Σ(x) =
ν∑
i=1

Lûi(x)û>i (x)L> . (3.22)

Theorem 3.8.1. At each x ∈ X the covariance matrix Σ(x) defined in (3.22) has

a Wishart marginal distribution Wp(V, ν).

Proof 3.8.1. Each element of the vector ûi(x) is a univariate Gaussian with zero

mean and variance k(x, x) = 1. Since these elements are uncorrelated, ûi(x) ∼
N(0, I). Therefore Lûi(x) ∼ N(0, V ), since E[Lûi(x)ûi(x)>L>] = LIL> =

LL> = V . Eq. (3.22) is a sum of outer products of independent N(0, V ) random

variables, and there are ν terms in the sum, so by definition this has a Wishart

distribution Wp(V, ν). It was not a restriction to assume k(x, x) = 1, since any

scaling of k (e.g. ak with a ∈ R) can be absorbed into the matrix L.

We can re-write this construction in a way that lends itself to modification. If

A(x) is a p× ν matrix of GPs, such that Aij(x) ∼ GP(0, k), then

Σ(x) = LA(x)A(x)>L> , (3.23)

is equivalent to Equation (3.22). A simple modification (for parsimony) is to let

A(x) be lower triangular, at the expense of expressive power. Eq. (3.19) is a

factor representation of a GWP, since W (x) is p × q, typically with q � p. In

appendix B3 we construct a GWP, with lower triangular A(x), which has more

expressive power than (3.22), since it has a real valued degrees of freedom ν. This

construction makes use of copula processes (Wilson and Ghahramani, 2010a).

Definition 3.8.1. A Generalised Wishart Process is a collection of positive semi-

definite random matrices indexed by x ∈ X and constructed from outer products

of points from collections of stochastic processes like in Eqs. (3.22) or (3.23). If

the random matrices have 1) Wishart marginal distributions, meaning that Σ(x) ∼
Wp(V, ν) at every x ∈ X, and 2) dependence on x as defined by a kernel k(x, x′),

then we write

Σ(x) ∼ GWP(V, ν, k(x, x′)) . (3.24)

The GWP notation of Definition 3.8.1 is just like the notation for a Wishart dis-

tribution, but includes a kernel which controls the dynamics of how Σ(x) varies
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3.8 Relationship with Generalised Wishart Processes

Figure 3.4: A draw from a generalised Wishart process (GWP). Each ellipse is repre-
sented by a 2× 2 covariance matrix indexed by time, which increases from left to right.
The rotation indicates the correlation between the two variables, and the major and mi-
nor axes scale with the eigenvalues of the matrix. The way in which these matrices vary
with time is controlled by the kernel function k. Like a draw from a Gaussian process
is a collection of function values indexed by time, a draw from a GWP is a collection of
matrices indexed by time.

with x. This notation pleasingly compartmentalises the shape parameters and

temporal (or spatial) dynamics parameters. We show an example of these dynam-

ics in Figure 3.4 in a draw from a GWP. In appendix B1 we explicitly show how

cov[Σij(x),Σls(x
′)] is controlled by k(x, x′).

Definition 3.8.1 contains the construction of Equation (3.22) as a special case, since

Gaussian processes need not be used. In appendix B4, for example, we construct a

GWP with copula processes (Wilson and Ghahramani, 2010a) instead of Gaussian

processes, resulting in marginals which belong to a more general class of matrix

variate distributions.

Like the Gaussian process, the generalised Wishart process is a fundamental model,

with limitless applications. However, GWPs appear to have obvious promise in

econometrics, for modelling multivariate volatility. The generalised Wishart pro-

cess, associated inference procedures, and an application to multivariate volatility,

are discussed in more depth in Wilson and Ghahramani (2010b, 2011). Novel

properties and constructions of the GWP are presented in appendix B.

We now present adaptive networks, a generalisation of the GPRN framework.
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Figure 3.5: Transformation from a typical multi-task network (e.g. a neural network,
or the semiparametric latent factor model (Teh et al., 2005)) to an adaptive network.
For a review of the depicted adaptive network see section 3.2.

3.9 Generalisation to Adaptive Networks

Underlying the Gaussian process regression network is the high level idea that

connections in undirected graphical models, typically used to represent neural

networks, can be functions rather than constants. In this section we wish to

emphasize that many of the properties of the GPRN do not depend on using

Gaussian processes at all. Gaussian processes are one of many convenient choices

for the node and weight functions. We will refer to a network with input dependent

weights and nodes (as in Figure 3.5b) – regardless of what precise form these weight

and node functions might take – as an adaptive network.

In a typical multi-task network structure there is an input (predictor) layer, x,

which represents times, spatial locations, or any other predictor variables. De-

pending on the inputs is a layer of hidden basis functions (nodes) f1, . . . , fq. Con-

nected to this layer of basis functions are the response variables y1, . . . , yp. These

response variables, for example, could be the observable noisy expression levels of

p different genes. The p genes are correlated because they share basis functions

through the connections W in the graph. In an adaptive network, the connec-
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tions become functions of the inputs: W → W (x). The transformation from a

typical network structure to an adaptive network structure is shown in Figure 3.5.

This structure naturally allows for a great amount of flexibility without sacrificing

tractability. In particular,

• There are now signal correlations between the responses that vary with in-

puts. For example, when predicting time-varying gene expression levels, we

can learn how the correlations between expression levels vary with time, and

use that extra information to make better predictions.

• If we place additive Gaussian noise on the nodes, so that f1, . . . , fq →
f̂1, . . . , f̂q, then we automatically have an input dependent noise (multivari-

ate volatility) covariance model for the responses, because of how the additive

noise is mixed by the weight functions to form the responses. Typically a

model of input dependent noise has a complexity that scales at least cubi-

cally with the number of responses. In the case of the adaptive network, the

scaling can be linear in the number of responses, as explained in section 3.3

on GPRN inference. In an adaptive network, the magnitude of the signal and

noise are encouraged (but not restricted) to increase together, as discussed in

section 3.5. I have found that encouraging but not restricting the magnitude

of the signal and noise to increase and decrease together is generally a good

assumption and will provide superior predictions to models which treat the

signal and noise as a priori independent.

• If the node functions are Gaussian processes with different covariance ker-

nels, then the covariance kernel for each response is an input dependent mix-

ture of kernels. Such an expressive covariance kernel allows for significant

kernel-learning. One can have for example, non-parametric non-stationary

length-scales. Overall, the covariance kernel1 for each response can signifi-

cantly adapt to data, unlike the typical squared exponential covariance ker-

nels (Rasmussen and Williams, 2006).

• If the node functions are entirely different regression methods – for instance,

one node function is a linear regression model, another is a neural network

1See section 2.4 for a discussion of covariance kernels.
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model, etc. – then the adaptive network can be viewed as an ensemble learn-

ing method.1 Many different regressors are then combined to make pre-

dictions of the responses. Each regressor has a different weighting which

depends on the input space. At certain input locations, one regressor may

have more value than the others, and will receive a greater weighting. This

model would generalise the mixtures of experts framework (Jacobs et al.,

1991).

• The concept of an adaptive network is independent of Gaussian processes or

Bayesian inference.

The Gaussian process regression network (GPRN) demonstrates the promise of an

adaptive network structure: the GPRN has impressive predictive performance on

several scientific datasets. In the next sections I briefly propose models for NMR

spectroscopy and change points, to exemplify the variety of applications possible

with adaptive network structures. These are not fully developed applications, but

rather pointers to potentially interesting future work.

3.9.1 NMR Spectroscopy Application

Here we briefy propose a model for NMR spectroscopy, as an example application

of an adaptive network structure.

Nuclear magnetic resonance (NMR) spectroscopy exploits the magnetic properties

of atomic nuclei to discover the structure, dynamics, reaction state and chemical

environment of molecules. NMR spectroscopy has been instrumental in under-

standing molecular properties, developing pharmaceuticals, and in medicine and

chemical engineering in general. Robert Ernst won the Nobel Prize in chemistry

for Fourier transform spectroscopy (Ernst, 1992), the most widely used NMR spec-

troscopy technique.

To understand how NMR spectroscopy works at a high level, imagine a chemical

mixture is placed in a strong magnetic field. Nuclei within this mixture that

1chapter 14 of Bishop (2006) contains an introduction to boosting and other ensemble learning
techniques for combining models.
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have non-zero spin will interact with the magnetic field to produce “magnetic

moments”. We can imagine these magnetic moments as small bar magnets. Radio

frequency (rf) pulses are then directed at the mixture, exerting a torque on these

“bar magnets”, causing them to precess perpendicular to the strong magnetic field.

The rotating magnets create a magnetic flux through a coil in the NMR machine,

which induces a current with periodic components at the resonant frequencies of

the chemical mixture. The voltage associated with this current is what is measured

in an NMR experiment and is called the free induction decay (FID).1 The resonant

frequencies are sensitive to the local molecular structure, which is what permits

NMR to be used as a spectroscopic technique.

Conventional Fourier transform spectroscopy does not explicitly model decay or

noise in the signal, and is thus limited to studying systems with relatively high

signal to noise ratios. Moreover, it is assumed in conventional Fourier transform

spectroscopy that the system in question is not changing – for example, that

chemicals in a mixture are not reacting over the acquisition time of the FID signal.

Systems which are transient over the acquisition time of an FID signal (acquisition

time is at least 10-100 ms using the most recent hardware developments such as

stopped flow (Hore et al., 1997) or rapid injection (Bowen and Hilty, 2010)) are

of interest in chemical engineering and biochemistry. These systems are widely

encountered in rapid chemical reactions (Kühne et al., 1969), enzyme catalysis

(Grimaldi and Sykes, 1975), and protein and nucleic acid folding (Balbach et al.,

1995; Fürtig et al., 2007).

Here we propose an NMR spectroscopy model which accounts for decay, noise,

and prior information about resonant frequencies in the FID signal. Moreover,

this model – an example of an adaptive network – is rather uniquely capable

of accounting for transient FID signals, with a high degree of flexibility. For

concreteness, we imagine we are modelling chemical mixtures – but the same exact

model could be applied to other transient FID signals.

1The FID signal is usually recorded in two channels, a real and imaginary channel, which
are close to 90 degrees out of phase. For clarity, we consider only the real channel here, because
accounting for the imaginary channel adds significant notational clutter and does not change any
of the fundamental modelling concepts.
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We model the FID, y(t), as

y(t) = A1(t)

m1∑
i=1

B
(1)
i cos((ω

(1)
i − ω0)(t+ τ) + θ)e−αt

+ A2(t)

m2∑
i=1

B
(2)
i cos((ω

(2)
i − ω0)(t+ τ) + θ)e−αt

+ . . .+ Ar(t)
mr∑
i=1

B
(r)
i cos((ω

(r)
i − ω0)(t+ τ + θ))e−αt

+ ε(t) , (3.25)

for r chemical species, with amplitude functions Aj(t) ∼ GP(0, ki), resonant fre-

quencies {ω}(j)
i , global phase θ and time delay τ , intensities {B}(j)

i , reference fre-

quency ω0, decay constant α, and noise ε(t) ∼ N(0, v). Chemical r has mr resonant

frequencies. We assume r is known and fixed. The relative values |Ai(t)/Aj(t)|
represent the relative concentrations of chemicals i and j at time t. Since we are

interested in |Ai(t)/Aj(t)|, the sign of the amplitudes is not important. Moreover,

the model of Eq. (3.25) can be generalised to have local phase variables {θ}(j)
i which

can absorb the sign of Aj(t), if desired. Various statistical models of the FID have

been proposed, resembling the stationary form of the model in Eq. (3.25) (where

A(t)→ A) (Bretthorst, 1990; Rubtsov and Griffin, 2007; Wilson et al., 2014). Hut-

ton et al. (2009) develop a specialised model for mixtures of water and metabolites,

where the amplitude coefficient representing water is time-varying. Eq. (3.25) also

resembles natural sound models for amplitude modulation, such as Turner and

Sahani (2007), which use AR processes (appendix A), and the model of Qi et al.

(2002) which use AR processes for amplitude modulation, for unevenly sampled

time series data.

We can assume ω0 and {B}(j)
i are fixed: ω0 can be calibrated, and {B}(j)

i can

be fixed from the tabulated values in http://sdbs.riodb.aist.go.up. In pre-

liminary experiments (Wilson et al., 2014), we found it critical to the success of

the proposed model to finely estimate the resonant frequencies from data – it is

not sufficient to use their approximate tabulated values. However, it is sensible to

leverage prior information about their approximate values through a prior distri-

bution over ω.
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We rewrite Eq. (3.25) as

y(t) = A1(t)φ1(t, ψ1) + A2(t)φ2(t, ψ2) + · · ·+ Ar(t)φr(t, ψr) + ε(t) (3.26)

Ai(t) ∼ GP(mi(t), ki(t, t
′)) , (3.27)

ε(t) ∼ N(0, v) , (3.28)

where ψj represents all variables associated with chemical j, such as the resonant

frequencies {ω}(j)
i , except the kernel hyperparameters for the Gaussian process

Aj(t). For notational simplicity, I will not explicitly include ψ in subsequent

equations.

Since we have placed a Gaussian process over each amplitude Ai(t) (all of which

are latent functions), the FID is a linear Gaussian system, and we can thus

infer an analytic posterior distribution over each Ai(t) given observations y =

[y(t1), . . . , y(tN)], allowing us to learn the history and forecast the future of chem-

ical reactions, from a signal acquired during a reaction.

It is promising that we can perform exact Bayesian inference over the amplitude

functions – the main quantity of interest – with the highly flexible nonparametric

model in (3.26)-(3.27). This model will have support for a wide range of amplitude

functions, but also has the flexibility to concentrate that support on a physical

model. This model is an example of an adaptive network. We can view the

amplitude functions as the latent basis functions, and the connections from the

amplitudes to the response (the FID signal) , the weight-functions in chapter 3, as

the non-linear basis functions φ1(t), . . . , φr(t). The adaptive network in (3.26) is

shown in Figure 3.6, in analogy with Figure 3.1 for the Gaussian process regression

network.

In order to predict the progress of the chemical reaction at any time t∗, given N

observations of the FID at times (t1, t2, . . . , tN), we wish to find p(a∗|y), where y

and a∗ are defined as

y = [
r∑
j=1

Aj(t1)φj(t1), . . . ,
r∑
j=1

Aj(tN)φj(tN)] + ε , (3.29)

a∗ = [A1(t∗), A2(t∗), . . . , Ar(t∗)] , (3.30)
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Figure 3.6: An adaptive network for modelling the NMR signal acquired during a
time-varying reaction. The hidden layer of amplitude functions describe the relative
concentrations of each chemical. There is a single response – the observed noisy free
induction decay (FID) signal. The connections from the amplitude functions to the FID
response are the basis functions φ1(t), . . . , φr(t).

where ε = (ε(t1), . . . , ε(tN))> ∼ N(0, σ2I).

Fortunately, y(t) is a GP with covariance function

ky(t, t
′) = φ1(t)k1(t, t′)φ1(t′)+φ2(t)k2(t, t′)φ2(t′)+ · · ·+φr(t)kr(t, t

′)φr(t
′) . (3.31)

The joint distribution over y and a∗ is1

[
y
a∗

]
∼ N(

[
my

ma∗

]
,


N×N︷︸︸︷
Ky +σ2I

N×r︷ ︸︸ ︷
Ky,a∗

r×N︷ ︸︸ ︷
Ka∗,y

r×r︷ ︸︸ ︷
Ka∗,a∗

) (3.32)

with

Ky(i, j) = φ1(ti)k1(ti, tj)φ1(tj) + φ2(ti)k2(ti, tj)φ2(tj) + · · ·+ φr(ti)kr(ti, tj)φr(tj)
(3.33)

Ka∗,y(i, j) = φi(tj)ki(tj, t∗) (3.34)

Ka∗,a∗(i, j) = δij , (3.35)

where, for instance, Ka∗,y(i, j) is row i and column j of Ka∗,y in Eq. (3.32).

1For generality, we have allowed for deterministic mean functions my and ma∗ .
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From this joint distribution, we find that the posterior over a∗ is

a∗|y ∼ N(µ, C) (3.36)

µ = ma∗ +Ka∗,y[Ky + σ2I]−1(y −my) (3.37)

C = Ka∗,a∗ −Ka∗,y[Ky + σ2I]−1K>a∗,y . (3.38)

The computational complexity for evaluating Eq. (3.36) is naively O(N3), where

N is the number of datapoints. Typically an N3 complexity is not an issue in

these NMR applications, where we would not expect to collect more than 10000

datapoints. However, we can exploit the structure of the covariance functions we

use for exact O(N logN) inference, as described in section 2.6.3.1.

The marginal likelihood of the data y, having integrated away all amplitude func-

tions, is given by Eq. (2.37) in chapter 2. One can use this marginal likelihood

to estimate or infer distributions over all remaining parameters ψ – the param-

eters of the basis functions, the noise variance, and the kernel hyperparameters.

However, we have found in Wilson et al. (2014) that the marginal likelihood is

highly multimodal as a function of the frequency parameters {ω}(j)
i , and the fre-

quencies are highly dependent on one another and the phase variables. Therefore

one cannot use conventional sampling techniques (e.g. Metropolis-Hastings, Slice

Sampling, Hamiltonian Monte Carlo, etc.) or greedy optimization methods (e.g.

quasi-Newton, conjugate-gradients, steepest descent, Newton) to estimate ψ. To

estimate ψ, we have had success with the SIMPSA algorithm (Cardoso et al.,

1996), which combines simulated annealing with the non-linear simplex algorithm

of Nelder and Mead (1965), a deterministic algorithm for global optimization.

SIMPSA is particularly effective for continuous constrained global optimization,

and in our preliminary work (Wilson et al., 2014) we have found it far more effec-

tive for NMR spectroscopy than greedy optimization with constraints.

Simulated annealing (Kirkpatrick et al., 1983) was inspired by annealing in met-

allurgy, where crystals are heated and cooled in a controlled manner in search

of a minimum energy configuration. Unlike a “greedy” minimization algorithm,

which will always move parameters so that the objective function (in this case

the negative log marginal likelihood) decreases on every move, simulated anneal-

ing allows “uphill” moves (with a probability proportional to the temperature),
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so that the parameters do not get stuck in a local minimum. To move from an

initial value, simulated annealing samples new values of ψ from a proposal distri-

bution. These new values will be accepted with a probability proporational to the

difference between the objective function evaluated at the new and old values, and

the temperature. Initially, when the temperature is high, the moves are almost

random, and as the temperature cools down, the moves become increasingly likely

to go downhill (the algorithm becomes increasingly like a deterministic greedy

optimisation algorithm).

3.9.2 Change Point Kernel

Adaptive regression networks – and GPRNs – can naturally be developed into

powerful changepoint models. In an adaptive network, a univariate output variable

y(x) is an input dependent mixture of functions:

y(x) = w1(x)f1(x) + w2(x)f2(x) + · · ·+ wq(x)fq(x) . (3.39)

If the node functions f1(x), . . . , fq(x) have different covariance functions – or co-

variance functions with different hyperparameters – then y(x) will switch between

different covariance regimes. We can imagine if f1 has a squared exponential (SE)

kernel, f2 has an Ornstein-Uhlenbeck (OU) kernel, and f3 has a periodic ker-

nel, y(x) could switch between regions with smooth, OU, and periodic covariance

structure, or some mixtures of these structures.

The changes in covariance structure can be made more discrete by warping the

weight functions through sigmoid functions:

y(x) = σ(w1(x))f1(x) + · · ·+ σ(wq(x))fq(x) . (3.40)

If we consider two node functions, and wish σ to act as a switch between the two

functions, we can adapt the model to

y(x) = σ(w(x))f1(x) + σ(−w(x))f2(x) . (3.41)

108



3.9 Generalisation to Adaptive Networks

If w(x), f1(x), f2(x) are all Gaussian processes (GPs), we can imagine the model

accounting for arbitrarily many change-points between f1 and f2. Conditioned on

w(x), y(x) is a Gaussian process with kernel

k(x, x′) = σ(w(x))k1(x, x′)σ(w(x′)) + σ(−w(x))k2(x, x′)σ(−w(x′)) , (3.42)

where k1 and k2 are the kernels of f1 and f2. A simple special case of the kernel in

Eq. (3.42) can be obtained when w(x) = ax>x+b, a simple linear function. Saatchi

et al. (2010) and Osborne (2010) contain alternative Gaussian process models for

change-points.
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Chapter 4

Closed Form Kernels for Pattern
Discovery and Extrapolation

In chapter 3 we introduced the Gaussian process regression network (GPRN)

framework, which builds expressive kernels from an adaptive mixture of base ker-

nels. Each base kernel can be chosen to be any valid kernel. This network was

used to discover input varying correlations between multiple response variables,

and provides an intuitive recipe for constructing non-stationary kernels.

However, the final kernel that is induced using a GPRN, after integrating away all

weights functions, does not have a closed form expression. Moreover, the Gaussian

process regression network requires approximate Bayesian inference; we pursued

elliptical slice sampling (ESS) and variational Bayes (VB) approximations.

In this chapter we introduce simple closed form kernels for automatic pattern

discovery and extrapolation. This chapter builds on the material in Wilson and

Adams (2013) and Wilson (2012), where I first introduced these kernels. These

kernels are derived by modelling a spectral density – the Fourier transform of a

kernel – with a Gaussian mixture. These spectral mixture (SM) kernels form a

basis for all stationary kernels. Furthermore, SM kernels can be used as a drop-in

replacement for popular alternative kernels, such as the Gaussian (squared expo-

nential) kernel, with benefits in expressive power and performance, while retaining

simple exact learning and inference procedures.
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Gaussian process regression networks (GPRNs) and spectral mixture (SM) kernels

are complementary. In this chapter, we develop powerful non-stationary kernels

by using the SM kernel as the base kernel in a GPRN. The GPRN framework

allows us to easily tune our inductive biases, so that the resulting model is both

highly expressive, but still has the necessary preference biases to extract useful

information from a wide range of datasets.

In this chapter we largely focus on univariate examples. In chapter 5 we extend

the spectral mixture kernel formulation for tractability with large multidimen-

sional patterns. We apply the resulting model, GPatt, on practically important

large scale pattern extrapolation problems, including inpainting problems involv-

ing image restoration, object removal, and scene reconstruction.

Code for reproducing the experiments in section 4.3, a tutorial, and general re-

sources for the SM kernel, including a video lecture, are available at http://

mlg.eng.cam.ac.uk/andrew/pattern. The spectral mixture (SM) kernel has

also been included in the GPML software package http://www.gaussianprocess.

org/gpml/code/matlab/doc/.

4.1 Introduction

Machine learning is fundamentally about pattern discovery. The first machine

learning models, such as the perceptron (Rosenblatt, 1962), were based on a sim-

ple model of a neuron (McCulloch and Pitts, 1943). Papers such as Rumelhart

et al. (1986) inspired hope that it would be possible to develop intelligent agents

with models like neural networks, which could automatically discover hidden repre-

sentations in data. Indeed, machine learning aims not only to equip humans with

tools to analyze data, but to fully automate the learning and decision making

process.

Research on Gaussian processes (GPs) within the machine learning community

developed out of neural networks research, triggered by Neal (1996), who observed

that Bayesian neural networks became Gaussian processes as the number of hidden
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4.1 Introduction

units approached infinity. Neal (1996) conjectured that “there may be simpler ways

to do inference in this case”.

These simple inference techniques became the subsequent Gaussian process models

for machine learning (Rasmussen and Williams, 2006) (chapter 2). These models

construct a prior directly over functions, rather than parameters. Assuming Gaus-

sian noise, one can analytically infer a posterior distribution over these functions,

given data. Gaussian process models have become popular for non-linear regres-

sion and classification (Rasmussen and Williams, 2006), and often have impressive

empirical performance (Rasmussen, 1996).

As discussed in detail in chapter 2, the properties of likely functions under a GP,

e.g., smoothness, periodicity, etc., are specified by a positive definite covariance

kernel1, an operator which determines the similarity between pairs of points in

the domain of the random function. The kernel controls the quality of predictions

made by a GP, and the ability for the GP to extract interpretable structure from

data.

Despite the importance of the kernel, and the long history of Gaussian process ker-

nel machines in statistics,, starting with O’Hagan (1978), Gaussian processes have

almost exclusively been used as smoothing interpolators with squared exponential

(Gaussian) kernels.

However, Gaussian processes can help build automated intelligent systems that

reason and make decisions. It has been suggested that the human ability for in-

ductive reasoning – concept generalization with remarkably few examples – could

derive from a prior combined with Bayesian inference (Steyvers et al., 2006; Tenen-

baum et al., 2011; Yuille and Kersten, 2006). Bayesian nonparametric models, and

Gaussian processes in particular, are an expressive way to encode prior knowledge,

and can express the unbounded complexity of the real world.

Sophisticated kernels are most often achieved by composing together a few stan-

dard kernel functions (Archambeau and Bach, 2011; Durrande et al., 2011; Du-

venaud et al., 2013; Gönen and Alpaydın, 2011; Rasmussen and Williams, 2006).

1The terms covariance kernel, covariance function, kernel function, and kernel are used
interchangeably.
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Tight restrictions are typically enforced on these compositions and they are hand-

crafted for specialized applications. Without such restrictions, complicated com-

positions of kernels can lead to overfitting and unmanageable hyperparameter in-

ference. Moreover, while some compositions (e.g., addition) have an interpretable

effect, many other operations change the distribution over functions in ways that

are difficult to identify. It is difficult, therefore, to construct an effective inductive

bias for kernel composition that leads to automatic discovery of the appropriate

statistical structure, without human intervention.

This difficulty is exacerbated by the fact that it is challenging to say anything

about the covariance function of a stochastic process from a single draw if no

assumptions are made. If we allow the covariance between any two points in the

input space to arise from any positive definite function, with equal probability, then

we gain essentially no information from a single realization. Most commonly one

assumes a restriction to stationary kernels, meaning that covariances are invariant

to translations in the input space.

In this chapter, we propose flexible classes of kernels, many of which maintain the

useful inductive bias of stationarity. These kernels can be used to automatically

discover patterns and extrapolate far beyond the available data. This class of ker-

nels contains many stationary kernels, but has a simple closed form that leads to

straightforward analytic inference. The simplicity of these kernels is one of their

strongest qualities. In many cases, these kernels can be used as a drop in replace-

ment for the popular squared exponential kernel, with benefits in performance

and expressiveness. Moreover, by learning features in data, we not only improve

predictive performance, but we can more deeply understand the structure of the

problem at hand – greenhouse gases, air travel, heart physiology, brain activity,

etc.

We start deriving these new kernels in section 4.2 by modelling a spectral density

with a mixture of Gaussians. We focus our experiments in section 4.3 on eluci-

dating the fundamental differences between the proposed kernels and the popular

alternatives in Rasmussen and Williams (2006). In particular, we show how the

proposed kernels can automatically discover patterns and extrapolate on the CO2
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dataset in Rasmussen and Williams (2006), on a synthetic dataset with strong

negative covariances, on a difficult synthetic sinc pattern, and on airline passenger

data. We also use our framework to reconstruct several popular standard ker-

nels. We then introduce new expressive processes over non-stationary kernels in

section 4.4, by using spectral mixture kernels with the adaptive basis functions in

the Gaussian process regression network of chapter 3. For a review of Gaussian

processes, see chapter 2.

4.2 Spectral Mixture (SM) Kernels

In this section we introduce a class of kernels that can discover patterns, extrapo-

late, and model negative covariances. This class contains a large set of stationary

kernels as special cases. Roughly, a kernel measures the similarity between data

points. As in Equation (2.65), the covariance kernel of a GP determines how the

associated random functions will tend to vary with inputs (predictors) x ∈ RP . A

stationary kernel is a function of τ = x− x′; i.e., it is invariant to translations of

the inputs.

Any stationary kernel (aka covariance function) can be expressed as an integral

using Bochner’s theorem (Bochner, 1959; Stein, 1999):

Theorem 4.2.1. (Bochner) A complex-valued function k on RP is the covariance

function of a weakly stationary mean square continuous complex-valued random

process on RP if and only if it can be represented as

k(τ) =

∫
RP
e2πis>τψ(ds) , (4.1)

where ψ is a positive finite measure.

If ψ has a density S(s), then S is called the spectral density or power spectrum of

k, and k and S are Fourier duals (Chatfield, 1989):

k(τ) =

∫
S(s)e2πis>τds , (4.2)

S(s) =

∫
k(τ)e−2πis>τdτ . (4.3)
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In other words, a spectral density entirely determines the properties of a stationary

kernel. Substituting the squared exponential kernel of Eq. (2.65) into Eq. (4.3),

we find its spectral density is SSE(s) = (2π`2)P/2 exp(−2π2`2s2). Likewise, the

Fourier transform of a Matérn kernel is a t distribution centred at the origin.

These results provide the intuition that arbitrary additive compositions of pop-

ular kernels correspond to a very small corner of the set of possible stationary

kernels – equivalent to density estimation with, e.g., scale mixtures of Gaussians

centred on the origin, which is not generally a model one would use for density

estimation. Scale-location mixtures of Gaussians, however, can approximate any

distribution to arbitrary precision with enough components (Kostantinos, 2000),

and even with a small number of components are highly flexible models. That is,

we can approximate any stationary covariance kernel to arbitrary precision, given

enough mixture components in the spectral representation. These observations

motivate our approach, which is to model GP covariance functions via spectral

densities that are scale-location mixtures of Gaussians.

We first consider a simple case, where

φ(s ;µ, σ2) =
1√

2πσ2
exp{− 1

2σ2
(s− µ)2}, and (4.4)

S(s) = [φ(s) + φ(−s)]/2 , (4.5)

noting that spectral densities for real kernels must be symmetric about s = 0

(Hörmander, 1990). Substituting S(s) into Equation (4.2) (taking the inverse

Fourier transform of S(s) in Eq. (4.5)) we find

k(τ) = exp{−2π2τ 2σ2} cos(2πτµ) . (4.6)

If φ(s) is instead a mixture of Q Gaussians on RP , where the qth component has

mean vector µq = (µ
(1)
q , . . . , µ

(P )
q ) and covariance matrix V = diag(v

(1)
q , . . . , v

(P )
q ),

wq are mixture weights, and τp is the pth component of the P dimensional input

vector τ = x− x′, then

k(τ) =

Q∑
q=1

wqcos(2πµ>q τ)
P∏
p=1

exp{−2π2τ 2
p v

(p)
q }. (4.7)
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The integral in (4.2) is tractable even when the spectral density is an arbitrary

Gaussian mixture, allowing us to derive1 the exact closed form expressions in

Eqs. (4.6) and (4.7), and to perform analytic inference with Gaussian processes.

Moreover, this class of kernels is expressive even with a small number of compo-

nents – containing many stationary kernels – but nevertheless has a simple form.

Indeed the asymptotic convergence of the kernel in Eq. (4.7) as Q → ∞ to any

stationary kernel is not solely why we choose to model the spectral density as a

scale-location mixture of Gaussians. Many potential models can have such asymp-

totic convergence, but may in practice have limited flexibility with a finite number

of components. With a finite Q, a scale-location mixture of Gaussians is highly

flexible – unlike, for example, a finite location mixture of point masses (which

would also have asymptotic convergence to any density for Q → ∞.). Lázaro-

Gredilla et al. (2010), for instance, consider modelling S(s) as a location mixture

of point masses.

Most work on spectrum estimation is specific to autoregressive models in the time

domain. Such models include Bretthorst (1988); Cemgil and Godsill (2005); Qi

et al. (2002), which we discuss further in section 4.4.2. As discussed in Turner

(2010), the spectrum of an AR(2) process can be expressed as a Lorentzian function

(in cos(µ), where µ is a spectral frequency). For AR time series models, there will

be a finite number of spectral points to consider. Turner (2010) also considers

placing independent inverse Gamma priors on each of these spectral points, with

applications to natural sound modelling.

The kernel in Eq. (4.7) is easy to interpret, and provides drop-in replacements

for kernels in Rasmussen and Williams (2006). The weights wq specify the rel-

ative contribution of each mixture component. The inverse means 1/µq are the

component periods, and the inverse standard deviations 1/
√
vq are length-scales,

determining how quickly a component varies with the inputs x. The kernel in

Eq. (4.7) can also be interpreted through its associated spectral density. In the

experiments of the next section we use the learned spectral density to interpret

1Detailed derivations of Eqs. (4.6) and (4.7) are in appendix C.
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the number of discovered patterns in the data and how these patterns generalize.

Henceforth, we refer to the kernel in Eq. (4.7) as a spectral mixture (SM) kernel.

We can generate other new kernels from the spectral mixture (SM) kernel, using

the techniques discussed in chapter 2. For example, in section 4.5, we consider

an infinite scale mixture of (SM) kernels, where each component has a different

bandwidth 1/
√
vq parameter.

4.3 Experiments

We show how the SM kernel in Eq. (4.7) can be used to discover patterns, extrap-

olate, and model negative covariances. We contrast the SM kernel with popular

kernels in, e.g., Rasmussen and Williams (2006) and Abrahamsen (1997), which

typically only provide smooth interpolation. Although the SM kernel generally

improves predictive likelihood over popular alternatives, we focus on clearly vi-

sualizing the learned kernels and spectral densities, examining patterns and pre-

dictions, and discovering structure in the data. Our objective is to elucidate the

fundamental differences between the proposed SM kernel and the alternatives.

In all experiments, we model the data using a zero mean Gaussian process with

additive i.i.d. Gaussian noise. As shown in section 2.3, inference in this model is

exact, and the Gaussian process can be marginalised in closed form, so that the

likelihood of the data can be expressed as a function of kernel hyperparameters

only. We train kernel hyperparameters using nonlinear conjugate gradients to opti-

mize the marginal likelihood p(y|θ, {xn}Nn=1) of the data y given hyperparameters

kernel θ, as described in section 2.3.2. We used Carl Edward Rasmussen’s 2010

version of minimize.m.

A type of automatic relevance determination (MacKay, 1994; Neal, 1996) takes

place during training, as a proxy for model selection. In particular, the complexity

penalty in the marginal likelihood (Eq. (2.37)) can be written as a sum of eigen-

values of the covariance matrix K. The greater the weights in the SM kernel,

the larger the eigenvalues of K. Therefore the weights of extraneous components

– components which do not significantly improve model fit – will shrink towards
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zero, which helps indicate and mitigate model overspecification. We explore this

property further in Figure 5.2 and section 5.4.1 of the next chapter.

Moreover, the exponential terms in the SM kernel of Eq. (4.7) have an anneal-

ing effect on the marginal likelihood, reducing multimodality in the frequency

parameters, making it easier to naively optimize the marginal likelihood without

converging to undesirable local optima. We discuss this annealing effect further in

section 4.6. For a fully Bayesian treatment, the spectral density could alternatively

be integrated out using Markov chain Monte Carlo, rather than choosing a point

estimate. We consider sampling further at the end of this chapter, in section 4.4.

However, we wish to emphasize that the SM kernel can be successfully used in

the same way as other popular kernels, without additional inference efforts, and

it is presently common practice to learn kernel hyperparameters through marginal

likelihood optimization.

We compare with the popular squared exponential (SE), Matérn (MA), rational

quadratic (RQ), and periodic (PE) kernels. In each comparison, we attempt to give

these alternative kernels fair treatment: we initialise hyperparameters at values

that give high marginal likelihoods and which are well suited to the datasets,

based on features we can already see in the data. To initialise the parameters

for the SM kernel, we draw length-scales and periods (inverse frequencies) from

truncated Gaussian distributions with means proportional to the range of the data.

We discuss initialisation further in section 4.6.

Training runtimes are on the order of minutes for all tested kernels. In these

examples, comparing with multiple kernel learning (MKL) (Gönen and Alpaydın,

2011) has limited additional value. MKL is not typically intended for pattern

discovery, and often uses mixtures of SE kernels. Mixtures of SE kernels correspond

to scale-mixtures of Gaussian spectral densities, and do not perform well on these

data, which are described by highly multimodal non-Gaussian spectral densities.

4.3.1 Extrapolating Atmospheric CO2

Keeling and Whorf (2004) recorded monthly average atmospheric CO2 concentra-
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tions at the Mauna Loa Observatory, Hawaii. The data are shown in Figure 4.1.

The first 200 months are used for training (in blue), and the remaining 301 months

(≈ 25 years) are used for testing (in green).

This dataset was used in Rasmussen and Williams (2006), and is frequently used in

Gaussian process tutorials, to show how GPs are flexible statistical tools: a human

can look at the data, recognize patterns, and then hard code those patterns into

covariance kernels. Rasmussen and Williams (2006) identify, by looking at the

blue and green curves in Figure 4.1a, a long term rising trend, seasonal variation

with possible decay away from periodicity, medium term irregularities, and noise,

and hard code a stationary covariance kernel to represent each of these features.

However, in this view of GP modelling, all of the interesting pattern discovery is

done by the human user, and the GP is used simply as a smoothing device, with

the flexibility to incorporate human inferences in the prior. Our contention is that

such pattern recognition can also be performed algorithmically. To discover these

patterns without encoding them a priori into the GP, we use the spectral mixture

kernel in Eq. (4.7), with Q = 10. The results are shown in Figure 4.1a.

In the training region, predictions using each kernel are essentially equivalent, and

entirely overlap with the training data. However, unlike the other kernels, the SM

kernel (in black) is able to discover patterns in the training data and accurately

extrapolate over a long range. The 95% credible region (CR) region contains the

true CO2 measurements for the duration of the measurements.

We can see the structure discovered by the SM kernel in its learned log spectral

density in Figure 4.1b, in black. Of the Q = 10 components, only seven were used –

an example of the automatic model selection we discuss further in the next chapter

(e.g., see Figure 5.2). Figure 4.1b is a good example of aliasing in the spectral

density. The sharp peak at a frequency near 1.08 corresponds to the period of 12

months, relating to pronounced yearly variations in CO2 readings. Since 1.08 is

greater than half the sampling rate of the data, 1/month, it will be aliased back to

0.08, and 1/0.08 ≈ 12 months. Since there is little width to the peak, the model

is confident that this feature (yearly periodicity) should extrapolate long into the

future. There is another large peak at a frequency of 1, equal to the sampling
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Figure 4.1: Extrapolating Mauna Loa CO2 Concentrations. a) Forecasting CO2. The
training data are in blue, the testing data in green. Mean forecasts made using a GP with
the SM kernel are in black, with 2 stdev about the mean (95% of the predictive mass, also
known as the credible region (CR)) in gray shade. Predictions using GPs with Matérn
(MA), rational quadratic (RQ), periodic kernels (PER), and squared exponential (SE)
kernels are in cyan, magenta, orange, and dashed red, respectively. b) The log spectral
densities of the learned SM and SE kernels are in black and red, respectively. The log
empirical spectral density is shown in purple.

rate of the data. This peak corresponds to an aliasing of a mean function. The

horizontal line (constant) at a value near −7 is noise aliasing. We can intuitively

see this constant as noise aliasing by imagining a GP with an SE kernel that has

a length-scale ` → 0. A draw from such a GP would be white noise, and would

have a Gaussian spectral density with a variance →∞, which would appear as a

constant. In these examples, aliasing will not hurt predictions, but can affect the

interpretability of results. It is easy to stop aliasing, for example, by restricting the

learned frequencies to be less than the Nyquist frequency (1/2 of the sampling rate

of the data). For pedagogical reasons – and since it does not affect performance

in these examples – we have not used such restrictions here. Finally, we see other

peaks corresponding to periods of 6 months, 4 months, and 3 months. In some

instances, the width of each peak can be interpreted as the model’s uncertainty

about the corresponding feature in the data.

In red, we show the log spectral density for the learned SE kernel, which misses

many of the frequencies identified as important using the SM kernel. Like the
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learned SM kernel log spectral density, the log empirical spectral density, shown

in purple, has pronounced maxima near the origin, and at 12 and 6 months, re-

flecting close correlations between nearby function values, and periodicities of 12

and 6 months. However, unlike the learned SM kernel log spectral density, the

empirical log spectral density is noisy and unreliable, fluctuating wildly in value,

with nothing meaningful in the data to support these fluctuations. For instance,

the local optima in the empirical spectral density at 4 and 3 months are indis-

tinguishable from noise. These fluctuations arise because the empirical spectral

density is calculated without an explicit noise model, and makes few assumptions,

which makes its behaviour susceptible to artifacts in the data. Stronger inductive

biases are needed to reliably reconstruct the spectral density, especially for smaller

datasets. Note that the empirical spectrum is only defined for s ∈ [0, 0.5]. More

on aliasing and empirical spectral densities can be found in section 2.4.1.

All SE kernels have a Gaussian spectral density centred on zero. Since a mixture of

Gaussians centred on the origin is a poor approximation to many density functions,

combinations of SE kernels have limited expressive power. Indeed the spectral

density learned by the SM kernel in Figure 4.1b is highly non-Gaussian. The test

predictive performance using the SM, SE, MA, RQ, and PE kernels is given in

Table 4.1, under the heading CO2.

Eventually, predictions made using a GP with an SM kernel will revert to the prior

mean. We contend that this is reasonable behaviour: the further away one gets

from the data, the less we can be informed by the data, until we revert to our prior

beliefs.

4.3.2 Recovering Popular Kernels

The SM class of kernels contains many stationary kernels, since mixtures of Gaus-

sians can be used to construct a wide range of spectral densities. Even with a small

number of mixture components, e.g., Q ≤ 10, the SM kernel can closely recover

popular stationary kernels catalogued in Rasmussen and Williams (2006).
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Figure 4.2: Automatically recovering popular correlation functions (normalised kernels)
using the SM kernel, as a function of τ = x− x′. The true correlation function underlying
the data is in green, and SM, SE, and empirical correlation functions are in dashed black,
red, and magenta, respectively. Data are generated from a) a Matérn kernel, and b) a
sum of RQ and periodic kernels.

As an example, we start by sampling 100 points from a one-dimensional GP with

a Matérn kernel with degrees of freedom ν = 3/2:

kMA(τ) = a(1 +

√
3τ

`
) exp(−

√
3τ

`
) , (4.8)

where ` = 5 and a = 4. Sample functions from a Gaussian process with this Matérn

kernel are far less smooth (only once-differentiable) than Gaussian process func-

tions with a squared exponential kernel.

We attempt to reconstruct the kernel underlying the data by training an SM kernel

with Q = 10. After training, only Q = 4 components are used. The log marginal

likelihood of the data – having integrated away the Gaussian process – using the

trained SM kernel is −133, compared to −138 for the Matérn kernel that generated

the data. Training the SE kernel in (2.65) gives a log marginal likelihood of −140.

So while the true kernel is accurately reconstructed in this case, the marginal

likelihoods of the fits provide evidence that there is mild over-fitting. Such over-

fitting could be mitigated by placing prior distributions over the parameters of the

spectral mixture kernel, and then integrating away these parameters via MCMC,

as proposed in section 4.4.1.
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Figure 4.2a shows the learned SM correlation function1, compared to the gen-

erating Matérn correlation function, the empirical autocorrelation function, and

learned squared exponential correlation function. Although often used in geostatis-

tics to guide choices of GP kernels (and parameters) (Cressie, 1993), the empirical

autocorrelation function tends to be unreliable, particularly with a small amount

of data (e.g., N < 1000), and at high lags (for τ > 10). Although the empirical au-

tocorrelation function leverages an inductive bias of stationarity, it does not have

the useful bias that correlations generally decrease with distance. In Figure 4.2a,

the empirical autocorrelation function is erratic and does not resemble the Matérn

kernel for τ > 10. Moreover, the squared exponential kernel cannot capture the

heavy tails of the Matérn kernel, no matter what length-scale it has. Even though

the SM kernel is infinitely differentiable, it can closely approximate processes which

are finitely differentiable, because mixtures of Gaussians can closely approximate

the spectral densities of these processes, even with a small number of components,

as in Figure 4.2a.

Next, we reconstruct a mixture of the rational quadratic (RQ) and periodic kernels

(PE) in Rasmussen and Williams (2006):

kRQ(τ) = (1 +
τ 2

2α `2
RQ

)−α , (4.9)

kPER(τ) = exp(−2 sin2(π τ ω)/`2
PER) . (4.10)

The rational quadratic kernel in (4.9) is derived as a scale mixture of squared

exponential kernels with different length-scales. The standard periodic kernel in

(4.10) is derived by mapping the two dimensional variable u(x) = (cos(x), sin(x))

through the squared exponential kernel in (2.65). Derivations for both the RQ

and PER kernels in Eqs. (4.9) and (4.10) are in sections 2.4.4 and 2.4.7. Rational

quadratic and Matérn kernels are also discussed in Abrahamsen (1997). We sam-

ple 100 points from a Gaussian process with kernel 10kRQ + 4kPER, with α = 2,

ω = 1/20, `RQ = 40, `PER = 1.

1A correlation function c(x, x′) is a normalised covariance kernel k(x, x′), such
that c(x, x′) = k(x, x′)/

√
k(x, x)k(x′, x′) and c(x, x) = 1.
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We reconstruct the kernel function of the sampled process using an SM kernel

with Q = 4, with the results shown in Figure 4.2b. The heavy tails of the RQ kernel

are modelled by two components with large periods (essentially aperiodic), and one

short length-scale and one large length-scale. The third component has a relatively

short length-scale, and a period of 20. There is not enough information in the 100

sample points to justify using more than Q = 3 components, and so the fourth

component in the SM kernel has no effect, through the complexity penalty in the

marginal likelihood. The empirical autocorrelation function somewhat captures

the periodicity in the data, but significantly underestimates the correlations. The

squared exponential kernel learns a long length-scale: since the SE kernel is highly

misspecified with the true generating kernel, the data are explained as noise.

4.3.3 Negative Covariances

All of the stationary covariance functions in the standard machine learning Gaus-

sian process reference Rasmussen and Williams (2006) are everywhere positive,

including the periodic kernel, k(τ) = exp(−2 sin2(π τ ω)/`2). While positive co-

variances are often suitable for interpolation, capturing negative covariances can

be essential for extrapolating patterns: for example, linear trends have long-range

negative covariances. Moreover, in the autoregressive time-series literature (ap-

pendix A), negative covariances are common. We test the ability of the SM kernel

to learn negative covariances, by sampling 400 points from a simple AR(1) discrete

time GP:

y(x+ 1) = −e−0.01y(x) + σε(x) , (4.11)

ε(x) ∼ N(0, 1) , (4.12)

which has kernel

k(x, x′) = σ2(−e−.01)|x−x
′|/(1− e−.02) . (4.13)

The process in Eq. (4.11) is shown in Figure 4.3a. This process follows an oscilla-

tory pattern, systematically switching states every x = 1 unit, but is not periodic
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Figure 4.3: Recovering negative covariances with the SM kernel. a) Observations of a
discrete time autoregressive (AR) series with negative covariances. b) The SM learned
kernel is shown in black, while the true kernel of the AR series is in green, with τ = x−x′.
c) The log empirical and learned SM kernel spectral densities are shown in purple and
black, respectively.

and has long range covariances: if we were to only view every second data point,

the resulting process would vary rather slowly and smoothly.

We see in Figure 4.3b that the learned SM covariance function accurately recon-

structs the true covariance function. The associated SM kernel log spectral density

shown in black in Figure 4.3c has a sharp peak at a frequency of 0.5, or a period

of 2. This feature represents the tendency for the process to oscillate from positive
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to negative every x = 1 unit. The log empirical spectral density, shown in purple,

also has a peak at a frequency of s = 0.5, but has wild (and erroneous) fluctua-

tions in value, due to a lack of reasonable inductive biases. In this example, Q was

set to a value of 4 in the SM kernel, but after automatic relevance determination

in training, only Q = 3 components were used, as can be seen by inspecting the

learned SM kernel log spectral density in black.

Using a GP with a SM kernel, we forecast 20 units ahead and compare to other

kernels in Table 4.1 (NEG COV).

4.3.4 Discovering the Sinc Pattern

The sinc function is defined as sinc(x) = sin(πx)/(πx). We created a pattern

combining three sinc functions:

y(x) = sinc(x+ 10) + sinc(x) + sinc(x− 10) . (4.14)

This is a complex oscillatory pattern. Given only the points shown in Figure 4.4a,

we wish to complete the pattern for x ∈ [−4.5, 4.5]. Unlike the CO2 example in

section 4.3.1, it is perhaps even difficult for a human to extrapolate the missing

pattern from the training data. It is an interesting exercise to focus on this figure,

identify features, and fill in the missing part.

Notice that there is complete symmetry about the origin x = 0, peaks at x = −10

and x = 10, and destructive interference on each side of the peaks facing the origin.

We therefore might expect a peak at x = 0 and a symmetric pattern around x = 0.

As shown in Figure 4.4b, the SM kernel with Q = 10 reconstructs the pattern in

the region x ∈ [−4.5, 4.5] almost perfectly from the 700 training points in blue.

Moreover, using the SM kernel, 95% of the posterior predictive mass entirely con-

tains the true pattern in x ∈ [−4.5, 4.5]. GPs using Matérn, SE, RQ, and periodic

kernels are able to predict reasonably within x = 0.5 units of the training data,

but entirely miss the pattern in x ∈ [−4.5, 4.5].
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Figure 4.4: Discovering a sinc pattern with the SM kernel. a) The training data are
shown in blue. The goal is to fill in the missing region x ∈ [−4.5, 4.5]. b) The training
data are in blue, the testing data in green. The mean of the predictive distribution using
the SM kernel is shown in dashed black. The mean of the predictive distributions us-
ing the Matérn (MA), rational quadratic (RQ), squared exponential (SE), and periodic
kernels (PER), are in cyan, magenta, red, and orange. c) The learned SM correlation
function (normalised kernel) is shown in black, and the learned Matérn correlation func-
tion is in cyan, with τ = x − x′. d) The learned log spectral densities of the SM and
SE kernels are respectively in black and red, and the log empirical spectral density is in
purple.

Figure 4.4c shows the learned SM correlation function (normalised kernel). For

τ ∈ [0, 10] there is a local pattern, roughly representing the behaviour of a sin-

gle sinc function. For τ > 10 there is a repetitive pattern representing a new sinc
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function every 10 units – an extrapolation a human might make. With a sinc func-

tions centred at x = −10, 0, 10, we might expect more sinc patterns every 10 units.

The learned Matérn correlation function is shown in red in Figure 4.4c. Unable to

discover complex patterns in the data, the learned Matérn kernel simply assigns

high correlation to nearby points.

In fact, the SM kernel reconstruction of the missing sinc function is so accurate

that it might arouse suspicion of over-fitting. Surely the reconstruction in dashed

black is only one of many functions that could describe the missing region. These

alternate solutions could be represented in the reconstruction by placing a prior

on SM kernel hyperparameters, and then sampling from the posterior over kernels

induced by this prior, as described in section 4.4. On the other hand, the sinc

function is an extremely likely candidate under this model, especially with the

inductive bias of stationarity. Therefore sampling might not have a profound

effect. If we had to choose the single most likely candidate for the missing region,

then it is reasonable to perform the extrapolation in dashed black. If we wished

to minimize the expected squared loss of our reconstruction, for example, then we

would not so exactly reconstruct a sinc function in [−5, 5]. Also note in Table

4.1 that the predictive test likelihood (which penalizes overconfidence) on this

sinc example, under a GP with an SM kernel, is significantly higher than for the

alternatives drawn in Figure 4.4b, which suggests that over-fitting may be such a

major problem in this example. Moreover, an informal lecture survey suggested

that the dashed black is close to what a person would choose if extrapolating the

region in [−5, 5]. What would you draw in the missing region of Figure 4.4a?

Figure 4.4d shows the (highly non-Gaussian) log spectral density of the SM kernel

in black, with peaks at 0.003, 0.1, 0.2, 0.3, 0.415, 0.424, 0.492. In this case, only 7 of

the Q = 10 components are used. The peak at 0.1 represents a period of 10: every

10 units, a sinc function is repeated. The variance of this peak is small, meaning

the method will extrapolate this structure over long distances. By contrast, the

log squared exponential spectral density in red simply has a broad peak, centred

at the origin. The log empirical spectral density in purple is unable to capture

the same features as the spectral mixture kernel. Here the empirical spectral

density is calculated assuming the gap in the training data does not exist; however,
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the empirical spectral density corresponding to the joined training and test sets

behaves similarly.

The predictive performance for recovering the missing 300 test points (in green) is

given in Table 4.1 (SINC).

4.3.5 Airline Passenger Data

Figure 4.5a shows airline passenger numbers, recorded monthly, from 1949 to 1961

(Hyndman, 2005). Based on only the first 96 monthly measurements, in blue, we

wish to forecast airline passenger numbers for the next 48 months (4 years); the

corresponding 48 test measurements are in green.

There are several features apparent in these data: short seasonal variations, a long

term rising trend, and an absence of white noise artifacts. Many popular kernels

are forced to make one of two choices: 1) Model the short term variations and

ignore the long term trend, at the expense of extrapolation. 2) Model the long

term trend and treat the shorter variations as noise, at the expense of interpolation.

As seen in Figure 4.5a, the Matérn kernel is more inclined to model the short term

trends than the smoother SE or RQ kernels, resulting in sensible interpolation

(predicting almost identical values to the training data in the training region),

but poor extrapolation – moving quickly to the prior mean, having learned no

structure to generalise beyond the data. The SE kernel interpolates somewhat

sensibly, but appears to underestimate the magnitudes of peaks and troughs, and

treats repetitive patterns in the data as noise. Extrapolation using the SE kernel

is poor. The RQ kernel, which is a scale mixture of SE kernels, is more able to

manage different length-scales in the data, and generalizes the long term trend

better than the SE kernel, but interpolates poorly. The sparse spectrum Gaussian

process (SSGP) (Lázaro-Gredilla et al., 2010), shown in dark green, also performs

poorly on this dataset (the fit shown is the best from a variety of hyperparameter

initialisations). The SSGP models the spectral density as a sum of point masses,

and is a finite basis function model with as many basis functions as point masses.

Although in principle the SSGP can model any spectral density (and thus any

129



4.3 Experiments

stationary kernel) with an infinite number of point masses, SSGP has very limited

expressive power with a finite number of point masses, as a finite number of point

masses is limited in its ability to perform density estimation, and will be prone to

over-fitting. More comparisons to SSGP, which provides fast and flexible kernel

learning, are shown in chapter 5.

By contrast, the SM kernel interpolates nicely (overlapping with the data in the

training region), and is able to extrapolate complex patterns far beyond the data,

capturing the true airline passenger numbers for years after the data ends, within

a small band containing 95% of the predictive probability mass.
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Figure 4.5: Predicting airline passenger numbers using the SM kernel. a) The training
and testing data are in blue and green, respectively. The mean of the predictive dis-
tribution using the SM kernel is shown in black, with 2 standard deviations about the
mean (95% of the predictive probability mass, aka the credible region (CR)) shown in
gray shade. The mean of the predictive distribution using the SM kernel is shown in
black. The mean of the predictive distributions using GPs with periodic (PER), squared
exponential (SE), rational quadratic (RQ), and Matérn (MA) kernels are in orange, red,
magenta, and cyan, respectively. Predictions using SSGP are shown in dashed dark
green. More comparisons involving SSGP are in chapter 5. In the training region, the
SM and Matérn kernels are not shown, since their predictions essentially overlap with
the training data. b) The log spectral densities of the SM and squared exponential ker-
nels are in black and red, respectively. The empirical log spectral density is shown in
purple.

Of the Q = 10 initial components specified for the SM kernel, 7 were used after

training. The learned log spectral density in Figure 4.5b shows a large sharp low
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frequency peak (at about 0.00148). This peak corresponds to the rising trend,

which generalises well beyond the data (small variance peak), is smooth (low fre-

quency), and is important for describing the data (large relative weighting). The

next largest peak corresponds to the yearly trend of 12 months, which again gen-

eralises, but not to the extent of the smooth rising trend, since the variance of

this peak is larger than for the peak near the origin. The higher frequency peak

at x = 0.34 (period of 3 months) corresponds to the beginnings of new seasons,

which can explain the effect of seasonal holidays on air traffic. The log empirical

spectral density (in purple) resembles the learned SM spectral density, with pro-

nounced optima in the same locations, which is a reassuring verification that the

SM kernel has discovered the relevant features in the data. However, the empirical

spectral density behaves erratically, with many peaks and troughs which do not

correspond to any interpretable features in the data.

A more detailed study of these features and their properties – frequencies, vari-

ances, etc. – could isolate less obvious features affecting airline passenger numbers.

Table 4.1 (AIRLINE) shows predictive performance for forecasting 48 months of

airline passenger numbers.

4.4 Processes over Kernels for

Pattern Discovery

In this section, we briefly introduce processes over kernels, including a process

over all non-stationary kernels, using the Gaussian process regression network

(chapter 3) as a starting point. We incorporate these processes into hierarchical

Gaussian process models, derive inference procedures for these models, and provide

a demonstration on the airline dataset, which illustrates several different types of

non-stationarity. In general, non-stationary processes over kernels is a promising

future direction for the body of work presented in this chapter.

With a process over kernels, one can naturally represent uncertainty in the kernel

function, and precisely control the inductive biases in a Gaussian process based

model. Placing a prior distribution over the hyperparameters of a kernel induces a
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Table 4.1: We compare the test performance of the proposed spectral mixture (SM)
kernel with squared exponential (SE), Matérn (MA), rational quadratic (RQ), and
periodic (PE) kernels. The SM kernel consistently has the lowest mean squared
error (MSE) and highest log likelihood (L).

SM SE MA RQ PE

CO2

MSE 9.5 1200 1200 980 1200
L 170 −320 −240 −100 −1800

NEG COV

MSE 62 210 210 210 210
L −25 −70 −70 −70 −70

SINC

MSE 0.000045 0.16 0.10 0.11 0.05
L 3900 2000 1600 2000 600

AIRLINE

MSE 460 43000 37000 4200 46000
L −190 −260 −240 −280 −370
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process prior over kernels. It is natural to think of this process over kernels in the

same way we think of processes over functions in function space regression (chapter

2). We can sample from a prior over kernel hyperparameters, and then condition

on these samples, to draw sample kernels (aka covariance functions). Given data,

we can sample from a posterior over kernel hyperparameters, and therefore we can

also draw samples from the induced posterior distribution over kernels.

4.4.1 Processes over SM Kernels

We induce a process prior over stationary kernels, p(kS), by placing prior distri-

butions on the parameters θ = {aq, σq, µq}Qq=1 of the spectral mixture (SM) kernel

in Equation (4.7), such that kS|θ = kSM (we have switched notation from wq to aq

for the mixture weights, for clarity in the proceeding discussion), and performing

Bayesian inference over SM kernel parameters. For demonstration purposes, we

will initially use the following prior distributions:

p(aq) = Gamma(aq|2, 4) , p(1/σq) = Gamma(aq|10, 10) , (4.15)

where we parametrize the Gamma density as

Gamma(x|α, β) =
xα−1e−x/α

βαΓ(β)
, x ≥ 0 , α, β > 0 (4.16)

E[x] = αβ , (4.17)

V[x] = αβ2 . (4.18)

We place an isotropic (spherical) Gaussian prior on the frequency parameters µq

with a mean vector ranging uniformly from 4 to 200, and a covariance matrix of

202I. For demonstration purposes we set the number of mixture components in

the SM kernel to Q = 10.

Samples of kernel functions from p(kS) are shown in Figure 4.6a. One can incor-

porate this process prior over kernels into a hierarchical Gaussian process model
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as follows:

kS ∼ p(kS) (4.19)

f(x)|kS ∼ GP(0, kS) (4.20)

y(x)|f(x) = f(x) + ε(x) , (4.21)

where ε(x) ∼ N(0, vε) is i.i.d. Gaussian white noise. Samples from y(x) are shown

in Figure 4.6b. We show in section 4.4.1 that the unconditional process for y(x)

is typically non-Gaussian.
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Figure 4.6: Processes over kernels. a) Sample kernels drawn from kS, a process over
kernels in Equation. (4.19) using the kernel hyperpriors in Eq. (4.15). τ = x− x′ ∈ R1.
The mean kernel is shown in green and 2 standard deviations about the mean kernel is
shown in gray shade (both determined from 10000 samples). Sample kernels are shown
in blue, black, red, and purple. b) Sample functions drawn using the kernels in panel
a): the colour of the function correponds to the kernel used in Figure a). The green
function, for example, is sampled using the green (mean) kernel in Figure a).

Conditioned on the kernel hyperparameters θ, we assume the data D are sampled

from a Gaussian process y(x) with kernel kSM = kS|θ + δijvε. The unconditional

process posterior y(x∗), evaluated at test input(s) x = x∗, is given by

p(y(x∗)|D) =

∫
p(y(x∗)|θ,D)p(θ|D) , (4.22)

= lim
J→∞

1

J

J∑
i=1

p(y(x∗)|D, θi) , θi ∼ p(θ|D) , (4.23)
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where p(y(x∗)|D, θi) is the standard predictive distribution for a Gaussian process,

given in Eq. (2.27), with N ×N covariance matrix Kij = kSM(xi, xj|θi). Since the

sum of Eq. (4.23) is an infinite scale-location mixture of Gaussians, the distribution

p(y(x∗)|D), and hence the process y(x)|D, can be highly non-Gaussian. Equation

(4.23) holds if we do not condition on the data D, and so the prior process p(y(x))

can also be highly non-Gaussian.

Similarly, a process prior over stationary kernels p(kS) is defined by the spec-

tral mixture (SM) kernel kSM in Eq. (4.7) together with the hyperprior p(θ) in

Eq. (4.15). The posterior process p(kS|D) over stationary kernels is given by

p(kS|D) =

∫
p(kS|θ)p(θ|D)dθ , (4.24)

= lim
J→∞

1

J

J∑
i=1

p(kS|θi) , θi ∼ p(θ|D) . (4.25)

Since each component of the mixtures in (4.23) and (4.25) has equal weighting

1/J , if we draw a sample from the posterior distribution over hyperparameters

p(θ|D), we can condition on that sample to draw a sample from p(y(x∗)|D) or

p(kS|D).

One can sample from a posterior over hyperparameters,

p(θ|D) ∝ p(D|θ)p(θ) , (4.26)

using, for example, slice sampling (Neal, 2003). p(D|θ) is the marginal likelihood

of the Gaussian process y(x)|θ in Eq. (4.21), with N ×N covariance matrix Kij =

kSM(xi, xj|θ), and p(θ) is the prior over SM kernel hyperparameters.

4.4.2 Processes over Non-Stationary Kernels

To construct a non-stationary kernel, kNS, we can imagine the process given by

Equation (4.21) is modulated by a function w(x):

y(x) = w(x)(f(x) + ε(x)) + γ(x) , (4.27)
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where γ(x) ∼ N(0, vγ).
1 The induced non-stationary (NS) kernel for the Gaussian

process y(x) given w(x) and hyperparameters θ are

kNS(x, x′)|w(x), θ = w(x)kSM(x, x′)w(x′) + (w(x)w(x′)vε + vγ)δxx′ , (4.28)

where δxx′ is the Kronecker delta function. We let

w(x) = log[1 + exp(z(x))] , (4.29)

z(x) ∼ GP(0, kSE) , (4.30)

where kSE is the squared exponential kernel in (2.65). Increasing the length-scale

hyperparameter of kSE concentrates the support of w(x) around constant functions,

and thus concentrates the support of kNS on stationary kernels. Therefore kNS can

leverage the inductive bias of stationarity to extract useful information from the

data, yet has the ability to respond to a wide range of non-stationarity through

w(x), which has support for any positive continuous function2.

We can further extend the model of y(x) as

y(x)|{wq(x), fq(x)}Qq=1 =

Q∑
q=1

wq(x)fq(x) , (4.31)

where each modulating wq(x) is specified by Eqs. (4.29)-(4.30), and each fq(x) is a

GP with kernel k(τ) = exp{−2π2τ 2σ2
q} cos(2πτµq). The kernel gNS(x, x′) for y(x)

conditioned on {wq(x)}Qq=1 is

gNS(x, x′) =

Q∑
q=1

w(x) exp{−2π2τ 2σ2
q} cos(2πτµq)w(x′) . (4.32)

For any pair of inputs x, x′, the kernel in Eq. (4.32) is a process over spectral

mixture kernels, as in Eq. (4.7), which has support for any stationary kernel, given

sufficiently many components Q. Therefore the kernel gNS(x, x′) has support for

1Natural sounds, for example, can often be viewed as stationary patterns modulated by
envelope functions (Turner, 2010).

2Strictly speaking, y(x) in Eq. (4.27) is a stationary process after integrating away w(x),
since w(x) is a Gaussian process with a stationary kernel. However y(x) has support for highly
nonstationary data, since w(x) has large support for non-constant functions.
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Figure 4.7: Processes over non-stationary kernels. a) Sample amplitude modulators
w(x) drawn using Equation (4.29). b) Sample functions from the non-stationary process
defined by Equation (4.27). These sample functions are the same sample functions as in
Figure 4.6, but modulated by the sample functions in w(x), following the same colour
scheme as in Figure 4.6.

any non-stationary kernel, given sufficiently large Q, since all non-stationary ker-

nels are locally stationary. One can concentrate the support of gNS(x, x′) around

stationary kernels, by concentrating the support of {wq}Qq=1 around constant func-

tions, so that the process over gNS(x, x′) has a sensible inductive bias, but is still

capable of responding to any type of non-stationarity in the data. Notice that

Eq. (4.31) is an example of a Gaussian process regression network (chapter 3)!

Indeed the GPRN induces a process over kernels, and if the node functions use

spectral mixture kernels, as in Eq. (4.32), then the induced process over kernels is

extremely flexible.

The non-stationary model in Equation (4.27) assumes the data D are sampled

from a Gaussian process y(x)|w(x), θ with kernel kNS(x, x′)|w(x), θ, conditioned

on the spectral mixture hyperparameters θ, and w(x), an amplitude modulating

function. w(x) is deterministically related to the Gaussian process z(x) through

w(x) = log[1 + exp(z(x))], as in Eq. (4.29).

The process posterior y(x∗)|D, evaluated at test input(s) x = x∗, and conditioned
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Figure 4.8: Non-stationary covariance matrices. All elements of the N ×N covariance
matrices of the random functions shown in Figure 4.7, labelled with the colour of each
corresponding function (here N = 101 and τ = 0, 1, . . . , 100). For comparison, panel e)
shows an N ×N stationary SE covariance matrix, with a length-scale of 100, the mean
length-scale of the Gamma distribution used as a prior over length-scales in Equation
(4.15).

only on data D (and x∗), is given by

p(y(x∗)|D) =

∫
p(y(x∗)|z(x), θ,D)p(z(x), θ|D) , (4.33)

= lim
J→∞

1

J

J∑
i=1

p(y(x∗)|z(x),D, θi) , θi ∼ p(z(x), θ|D) , (4.34)

where p(y(x∗)|z(x),D, θi) is the predictive distribution for a Gaussian process, as

in Eq. (2.27), with covariance kernel kNS(x, x′)|w(x), θ given in Eq. (4.28). Since

p(y(x∗)|D) is an infinite scale-location mixture of Gaussians, as in Eq. (4.34), the

posterior process y(x)|D can be highly non-Gaussian. If we do not condition on

data D in (4.34), we see the prior process p(y(x)) is also an infinite scale-location

mixture of Gaussians.
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The posterior process over non-stationary kernels p(kNS|D), with process prior

p(kNS) defined by Eq. (4.28), is given by

p(kNS|D) =

∫
p(kNS|θ, z(x))p(θ, z(x)|D)dθdz(x) , (4.35)

= lim
J→∞

1

J

J∑
i=1

p(kNS|θi, zi(x)) , θi, zi(x) ∼ p(θ, z(x)|D) . (4.36)

Therefore if we can sample from the joint distribution p(θ, z(x)|D), then we can

sample from the posteriors p(y(x∗)|D) and p(kNS|D) in Eqs. (4.34) and (4.36).

To sample from p(θ, z(x)|D) we follow a Gibbs sampling procedure (Geman and

Geman, 1984), where we initialize θ and z = {z(xi)}Ni=1, and, until convergence,

alternately sample from the conditional posteriors

p(θ|z,D) ∝ p(D|θ, z)p(θ) , (4.37)

p(z|θ,D) ∝ p(D|θ, z)p(z) . (4.38)

The Gaussian process predictive distribution p(z(x)|z), for any input x, is given

by Equation (2.27), where z(x) has the squared exponential kernel in Eq. (2.65).

p(D|θ, z) is equivalent to the marginal likelihood of a Gaussian process y(x)|w(x),

with N × N covariance matrix C = DKD, where D is a diagonal matrix with

Dii = w(xi), and Kij = kSM(xi, xj) as defined in Equation (4.7). To sample

from the posterior p(z|θ,D) in Eq. (4.38), we use elliptical slice sampling (Murray

et al., 2010), which was especially designed to sample from posteriors with corre-

lated Gaussian priors, such as p(z). We sample from the posterior over p(θ|z,D)

in Eq. (4.37) using slice sampling (Neal, 2003). One can also learn the hyper-

parameters θw of w(x) by adding an additional step to the Gibbs procedure in

Eqs. (4.37)-(4.38), to sample from p(θw|z(x)) ∝ p(z(x)|θw)p(θw).

Inference for the non-stationary model of Eq. (4.31) proceeds similarly. As an

alternative, the variational Bayes inference techniques used in chapter 3 would

apply with modification to the model in Eq. (4.31). One would need to account

for the non-linearity introduced by the link function w(z) = log(1 + ez).
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Figure 4.9: Extrapolating airline passenger numbers using a non-stationary process.
This airline passenger data has several types of non-stationarity. The linear-trend is
an example of one obvious non-stationarity (and we would likely expect the trend to
roughly asymptote), and the increasing magnitude of the peaks and troughs is another
non-stationarity. The proposed non-stationary process of Eq. (4.27), in magenta, is more
able to capture the latter non-stationarity (particularly the increasing peaks) than a GP
using a spectral mixture kernel (black). Training data are in blue, and testing data in
green. Alex Matthews provided assistance in creating this figure.

4.4.3 Application to Airline Passenger Data

We apply the non-stationary process over kernels in Equation (4.27), with the

inference described in section 4.4.2, to the airline dataset, with results shown in

Figure 4.9. In this example, we use log uniform priors on all spectral mixture

kernel hyperparameters. Notice that the airline dataset contains several types of

non-stationary behaviour. There is both a rising trend, and the magnitudes of

the peaks and troughs are increasing with the inputs. The latter type of non-

stationarity is especially well handled by the amplitude modulating function w(x).

We can see the peaks in the airline dataset are now properly extrapolated using

the proposed process over non-stationary kernels.1

1For the SM kernel results in Figure 4.9, hyperparameters were trained with marginal likeli-
hood optimization. A similar result is achieved with hyperparameter sampling.
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4.4.4 Fast Toeplitz Inference and Audio Modelling

In the future it would be interesting to apply the proposed non-stationary pro-

cesses over kernels to modelling audio data, which can often be fruitfully viewed

as stationary carrier patterns modulated by envelope functions (Turner, 2010).

Typically audio samples contain more than 105 training instances. Moreover, au-

dio data is typically on a regularly sampled grid, with one dimensional inputs

representing time. In this case, Toeplitz structure can be used to scale the pro-

posed processes over non-stationary kernels to large datasets, without any loss in

predictive accuracy.

We propose to perform elliptical slice sampling (Murray et al., 2010) inference on

the amplitude modulator(s) w(x). Elliptical slice sampling requires that one can

sample from the prior over w(x) and evaluate the likelihood of the model condi-

tioned on w(x). Likelihood evaluations, conditioned on w(x) and f(x), requires

O(N) storage and operations, where N is the number of training datapoints. Sam-

pling from the prior over w(x) at the N training locations of interest requires that

we sample from N(0, Kw), where the N ×N matrix [Kw]ij = kSE(xi, xj). Naively,

sampling w(x) involves: i) sampling white noise ν ∼ N(0, I) from built-in rou-

tines, an O(N) operation, ii) forming the product Lν, where ν ∼ N(0, I) and L

is the lower cholesky decomposition of Kw, such that LL> = Kw. This Cholesky

decomposition costs O(N2) storage and O(N3) operations.

We can sample from w(x) more efficiently if we exploit the Toeplitz structure in

Kw.1 First we embed Kw into a circulant matrix Cw, following Eq. (2.78). Letting

the DFT be the discrete Fourier transform of a vector, we compute ν̃ = DFT[ν]

and c̃ = DFT[c], where c is the first column of Cw. Now, a Gaussian variable with

a circulant covariance matrix in the time domain is a Gaussian variable with a

diagonal covariance matrix in the frequency domain. E.g.,

Cν = DFT−1[diag(c̃)DFT[ν]] . (4.39)

1section 2.6.3.1 introduces the basics of exploiting Toeplitz structure to speed up computa-
tions.
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And therefore a sample from N(0, Cw) can be obtained as

C1/2ν = DFT−1[c̃1/2ν̃] . (4.40)

Recalling that the Gaussian distribution has a marginalization property – exami-

nation of any set of Gaussian random variables does not change the distribution

of any subset – we can discard the additional N + 1 points added to the origi-

nal Kw to form a circulant embedding, and obtain a draw from N(0, Kw) with a

Toeplitz covariance matrix. This sampling procedure only requires O(N) memory

and O(N logN) computations: we only need to store the first column of an N×N
matrix and an N×1 vector, and the discrete Fourier transform (DFT) of an N×1

vector can be computed in O(N logN) using fast Fourier transforms (FFTs)!

We can also exploit Toeplitz structure to efficiently learn the spectral mixture

hyperparameters θ in the non-stationary model. Sampling from p(θ|z,D) involves

inverting the covariance matrix A = DKD, where D is a diagonal matrix with

Dii = w(xi), and Kij|θ = kSM(xi, xj). Since K is Toeplitz, this inversion can be

computed in O(N) memory and O(N logN) computations (section 2.6.3.1). Note

that even if A = DKD + σ2I, so as to incorporate noise, the inverse of A can be

written as

(DKD + σ2I)−1 = D−1(K + σ2D−2)−1D−1 , (4.41)

which again can be computed with O(N) memory and O(N logN) operations,

since K + σ2D−2 is Toeplitz and D is diagonal.

Finally, it would be useful to extend the proposed non-stationary models to mul-

tiple outputs, where a vector of basis functions f(x), representing Gaussian pro-

cesses with spectral mixture (SM) kernels, is modulated by a whole matrix W (x)

of Gaussian processes with squared exponential kernels. Such a model could be

used to fill in large missing segments of speech or music in channels of a stereo

recording.
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4.5 Alternate Kernels for Pattern Discovery

The spectral mixture (SM) kernel forms a powerful basis for all stationary kernels,

but variations on the SM kernel could be useful alternatives. In section 4.4.2 we

have explored variations on the SM kernel for modelling non-stationary data. One

could construct many useful variations on the spectral mixture kernel.

Consider, for instance, a 1 component spectral mixture (SM) kernel for inputs

x ∈ R1:

kSM-1(τ) = exp{−2π2τ 2σ2} cos(2πτµ) . (4.42)

Following the derivation of the rational quadratic (RQ) kernel in section 2.4.4, we

can integrate ∫ ∞
0

kSM-1(τ |σ2)p(σ2)dσ2 (4.43)

to derive a kernel based on a scale mixture of 1-component SM kernels, with

different length-scales (aka bandwidths σ2). If we let

g(γ|α, β) ∝ γα−1 exp(−αγ/β) , (4.44)

and we set γ = σ2 and replace p(σ2) with g(γ|α, β), and perform the integral in

Eq. (4.43), then we obtain

kSM-RQ-1 = (1 +
τ 2σ2

2α
)−α cos(2πτµ) , (4.45)

after rescaling. One could use the kernel in Eq. (4.45) as an alternative basis for

all stationary kernels. The result would be like a Gaussian mixture on the spectral

density, except the mixture components would generally have heavier tails than

Gaussians, with the tails controlled by the additional α hyperparameter. One

could replace the exponential part of the SM kernel with a Matérn kernel for a

similar effect.
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4.6 Initialisation

In the experiments presented in this thesis, we typically initialise weight parameters

as constants proportional to the standard deviation of the data, frequencies from

a uniform distribution from 0 to Nyquist frequency (half the sampling rate of the

data, or if the data are not regularly sampled, half the largest interval between

input points), and length-scales from a truncated Gaussian distribution with mean

proportional to the range of the inputs. In chapter 5, Figure 5.2, we show that

extraneous weights in the SM kernel will shrink towards zero, as a proxy for model

selection.

The SM kernel can be particularly sensitive to initialisation on small datasets,

particularly those datasets which behave like pure mixtures of trigonometric func-

tions, or contain obvious non-stationarities, like clear rising trends (including the

CO2 and airline data in sections 4.3.1 and 4.3.5). While the initialisation scheme

outlined in the previous paragraph can still typically produce good results, ini-

tialisation can be significantly improved. For example, one can sample frequencies

from the empirical spectral density, which is the Fourier transform of the empirical

autocorrelation function (equivalently, the Fourier transform of the squared data).

As an initialisation, one could also fit a mixture of Gaussians to the empirical

spectral density, since the spectral mixture kernel has a dual representation as a

mixture of Gaussians modelling a spectral density.

Note that the exponential terms in the SM kernel of Eq. (4.7) have an annealing

effect on the marginal likelihood. The marginal likelihood is multimodal, largely

because the longer the signal, the more various periodic components are able to fit

parts of the data extremely well, and miss other parts entirely, resulting in multiple

local optima. If the v
(p)
q terms in the exponential part of the SM kernel are not

initialized near zero, then these parameters effectively reduce the amount of data

initially available, annealing the likelihood surface – ironing out local optima.

Then, as the parameters are learned through marginal likelihood optimization,

the final setting of hyperparameters is nearer a desired global optimum. For a

description of a related simulated annealing method, see the end of section 3.9.1.
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As we will see in chapter 5, the SM kernel is particularly robust to initialisation in

the presence of large datasets. A demo of a GP with the SM kernel, with a variety

of example initialisations, can be found at http://mlg.eng.cam.ac.uk/andrew/

pattern.

4.7 Discussion

We have derived expressive closed form spectral mixture (SM) kernels and we

have shown that these kernels, when used with Gaussian processes, can discover

patterns in data and extrapolate over long ranges. The simplicity of these kernels

is one of their strongest properties: they can be used as drop-in replacements

for popular kernels such as the squared exponential kernel, with major benefits

in expressiveness and performance, while retaining simple training and inference

procedures.

Gaussian processes have proven themselves as powerful smoothing interpolators.

We believe that pattern discovery and extrapolation is an exciting new direction

for Gaussian processes. Bayesian nonparametric methods have the capacity to

reflect the great complexity in the real world, and could be used to explain how

biological intelligence is capable of making extraordinary generalisations from a

small number of examples. When the large nonparametric support of a Gaussian

process is combined with the ability to automatically discover patterns in data and

extrapolate, we are a small step closer to developing truly intelligent agents, with

applications in essentially any learning and prediction task.

In the future, one could compare human generalisation behaviour with modern

statistical algorithms, on a wide range of learning tasks. For example, we can get

an idea, in simple regression situations, of what a “human kernel” might look like,

by asking a large number of participants to extrapolate various patterns. Under-

standing the discrepancies between human and machine generalization behaviour

will help us continue to build more intelligent computational algorithms.

We would also like to further explore the non-stationary processes presented in

this chapter, and combine these processes with scalable inference. These processes
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will have wide range applicability, with immediate applicability for reconstructing

large missing segments of audio signals.

In the next chapter we further develop spectral mixure kernels for tractability with

multidimensional patterns and a large number of training instances, in a method

we refer to as GPatt. We exploit the kernels used with GPatt for scalable but

exact inference. We particularly use GPatt to extrapolate large missing regions of

images and videos.
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Chapter 5

GPatt: Fast Multidimensional
Pattern Extrapolation

Gaussian processes are typically used for smoothing and interpolation on small

datasets. In this brief chapter we introduce a new Bayesian nonparametric frame-

work – GPatt – enabling automatic pattern extrapolation with Gaussian processes

on large multidimensional datasets. GPatt unifies and extends highly expressive

spectral mixture (SM) kernels of the previous chapter with fast exact inference

techniques. In particular, we develop related spectral mixture product (SMP) ker-

nels, and exploit the structure in these kernels for fast and exact inference and

hyperparameter learning. Specifically, inference and learning requires O(PN
P+1
P )

operations and O(PN
2
P ) storage, for N training points and P dimensional inputs,

compared to the O(N3) operations and O(N2) storage for standard GP inference

and learning.

Without human intervention – no hand crafting of kernel features, and no so-

phisticated initialisation procedures – we show that GPatt can solve practically

important large scale pattern extrapolation, inpainting, video extrapolation, and

kernel discovery problems, including a problem with 383,400 training points. We

find that GPatt significantly outperforms popular alternative scalable Gaussian

process methods in speed and accuracy. Moreover, we discover profound differ-

ences between each of these methods, suggesting expressive kernels, nonparametric

representations, and the style are useful for modelling large scale multidimensional
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patterns. GPatt provides a fresh and highly general approach to multidimensional

pattern discovery, enabling largely new applications, such as video extrapolation,

which is difficult conventional methodology.

The material in this chapter and appendix D are closely based on the pre-print

Wilson et al. (2013). Appendix D was largely contributed by Elad Gilboa.

5.1 Introduction

Kernel machines like Gaussian processes are typically unable to scale to large

modern datasets. Methods to improve scalability usually involve simplifying as-

sumptions, such as finite basis function expansions (Lázaro-Gredilla et al., 2010; Le

et al., 2013; Rahimi and Recht, 2007; Williams and Seeger, 2001), or sparse approx-

imations using pseudo (aka inducing) inputs (Hensman et al., 2013; Naish-Guzman

and Holden, 2007; Quiñonero-Candela and Rasmussen, 2005; Seeger et al., 2003;

Snelson and Ghahramani, 2006). The assumptions of these methods are often suit-

able for scaling popular kernel functions, but we will see that these assumptions

are not as suitable for highly expressive kernels, particularly when a large num-

ber of training instances provide an opportunity to extract sophisticated structure

from the data.

Indeed popular covariance kernels used with Gaussian processes are not often

expressive enough to capture rich structure in data and perform extrapolation,

prompting MacKay (1998) to ask whether we had “thrown out the baby with the

bathwater”. In general, the choice of kernel profoundly affects the performance of

a Gaussian process – as much as the choice of architecture affects the performance

of a neural network. Typically, Gaussian processes are used either as flexible sta-

tistical tools, where a human manually discovers structure in data and then hard

codes that structure into a kernel, or with the popular Gaussian (squared exponen-

tial) or Matérn kernels. In either case, Gaussian processes are used as smoothing

interpolators, only able to discover limited covariance structure. Likewise, multiple

kernel learning (Gönen and Alpaydın, 2011) typically involves hand crafting com-

binations of Gaussian kernels for specialized applications, such as modelling low
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dimensional structure in high dimensional data, and is not intended for automatic

pattern discovery and extrapolation.

In this chapter we propose a scalable and expressive Gaussian process framework,

GPatt, for automatic pattern discovery and extrapolation on large multidimen-

sional datasets. We assume the reader is familiar with the material in chapter

2, an introduction to Gaussian processes. In section 5.2 we introduce expressive

interpretable kernels, which build off the spectral mixture kernels in chapter 4,

but are especially structured for multidimensional inputs and for the fast exact in-

ference and learning techniques we later introduce in section 5.3. These inference

techniques work by exploiting the existing structure in the kernels of section 5.2 –

and will also work with popular alternative kernels. These techniques relate to the

recent inference methods of Saatchi (2011), but relax the full grid assumption made

by these methods. This exact inference and learning costs O(PN
P+1
P ) computa-

tions and O(PN
2
P ) storage, for N datapoints and P input dimensions, compared to

the standard O(N3) computations and O(N2) storage associated with a Cholesky

decomposition.

In our experiments of section 5.4 we combine these fast inference techniques and

expressive kernels to form GPatt. Our experiments emphasize that, although

Gaussian processes are typically only used for smoothing and interpolation on

small datasets, Gaussian process models can in fact be developed to automatically

solve a variety of practically important large scale pattern extrapolation problems.

GPatt is able to discover the underlying structure of an image, and extrapolate that

structure across large distances, without human intervention – no hand crafting of

kernel features, no sophisticated initialisation, and no exposure to similar images.

We use GPatt to reconstruct large missing regions in pattern images, to restore

a stained image, to reconstruct a natural scene by removing obstructions, and to

discover a sophisticated 3D ground truth kernel from movie data. GPatt leverages

a large number of training instances (N > 105) in many of these examples.

We find that GPatt significantly outperforms popular alternative Gaussian process

methods on speed and accuracy stress tests. Furthermore, we discover profound

behavioural differences between each of these methods, suggesting that expressive
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kernels, nonparametric representations1, and exact inference are useful in combi-

nation for large scale multidimensional pattern extrapolation.

5.2 Spectral Mixture Product Kernel

The spectral mixture (SM) kernel (for 1D inputs) was derived in chapter 4 as

kSM(τ) =
A∑
a=1

w2
aexp{−2π2τ 2σ2

a} cos(2πτµa) , (5.1)

and applied solely to simple time series examples with a small number of dat-

apoints.2 In this chapter we extend this formulation for tractability with large

datasets and multidimensional inputs.

The squared exponential kernel for multidimensional inputs, for example, decom-

poses as a product across input dimensions. This decomposition helps with com-

putational tractability – limiting the number of hyperparameters in the model –

and like stationarity, provides a bias that can help with learning. For higher di-

mensional inputs, x ∈ RP , we propose to leverage this useful product assumption

for a spectral mixture product (SMP) kernel

kSMP(τ |θ) =
P∏
p=1

kSM(τp|θp) , (5.2)

where τp is the pth component of τ = x − x′ ∈ RP , θp are the hyperparameters

{µa, σ2
a, w

2
a}Aa=1 of the pth spectral mixture kernel in the product of Eq. (5.2), and

θ = {θp}Pp=1 are the hyperparameters of the SMP kernel. With enough compo-

nents A, the SMP kernel of Eq. (5.2) can model any stationary product kernel to

arbitrary precision, and is flexible even with a small number of components. We

use SMP-A as shorthand for an SMP kernel with A components in each dimension

(for a total of 3PA kernel hyperparameters and 1 noise hyperparameter).

1For a Gaussian process to be a Bayesian nonparametric model, its kernel must be derived
from an infinite basis function expansion. The information capacity of such models grows with
the data (Ghahramani, 2013).

2Here we parametrize weights as w2 instead of w, so that w is roughly on the scale of the
standard deviation of the data.
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A GP with an SMP kernel is not a finite basis function method, but instead corre-

sponds to a finite (PA component) mixture of infinite basis function expansions.

5.3 Fast Exact Inference

In this section we present algorithms which exploit the existing structure in the

SMP kernels of section 5.2, and many other popular kernels, for significant savings

in computation and memory, but with the same exact inference achieved with a

Cholesky decomposition.

Gaussian process inference and learning requires evaluating (K + σ2I)−1y and

log |K + σ2I|, for an N × N covariance matrix K, a vector of N datapoints y,

and noise variance σ2, as in Equations (2.27) and (2.37), respectively. For this

purpose, it is standard practice to take the Cholesky decomposition of (K + σ2I)

which requires O(N3) computations and O(N2) storage, for a dataset of size N .

However, nearly any kernel imposes significant structure on K that is ignored by

taking the Cholesky decomposition.

For example, we show how to exploit the structure of kernels that separate multi-

plicatively across P input dimensions,

k(xi, xj) =
P∏
p=1

kp(xpi , x
p
j) , (5.3)

to perform exact inference and hyperparameter learning in O(PN
2
P ) storage and

O(PN
P+1
P ) operations, compared to the standard O(N2) storage and O(N3) oper-

ations. We first assume the inputs x ∈ X are on a multidimensional grid (section

5.3.1), meaning X = X1 × · · · ×XP ⊂ RP , and then relax this grid assumption1 in

section 5.3.2, so that the training data no longer need to be on a grid.

1Note the grid does not need to be regularly spaced.
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5.3.1 Inputs on a Grid

Many real world applications are engineered for grid structure, including spatial

statistics, sensor arrays, image analysis, and time sampling.

For a multiplicative (aka product) kernel and inputs on a grid, we find1

1. K is a Kronecker product of P matrices (a Kronecker matrix ) which can

undergo eigendecomposition into QV Q> with only O(PN
2
P ) storage and

O(PN
3
P ) computations (Saatchi, 2011), where Q is an orthogonal matrix of

eigenvectors and V is a diagonal matrix of eigenvalues of K.2

2. The product of Kronecker matrices such as K, Q, or their inverses, with a

vector u, can be performed in O(PN
P+1
P ) operations.

Given the eigendecomposition of K as QV Q>, we can re-write (K + σ2I)−1y and

log |K + σ2I| in Eqs. (2.27) and (2.37) as

(K + σ2I)−1y = (QV Q> + σ2I)−1y (5.4)

= Q(V + σ2I)−1Q>y , (5.5)

and

log |K + σ2I| = log |QV Q> + σ2I| =
N∑
i=1

log(λi + σ2) , (5.6)

where λi are the eigenvalues of K, which can be computed in O(PN
3
P ).

Thus we can evaluate the predictive distribution and marginal likelihood in Eqs. (2.27)

and (2.37) to perform exact inference and hyperparameter learning, with O(PN
2
P )

storage and O(PN
P+1
P ) operations (assuming P > 1).

5.3.2 Missing Observations

Assuming we have a dataset of M observations which are not necessarily on a grid,

we can form a complete grid usingW imaginary observations, yW ∼ N(fW , ε
−1IW ),

1Details are in appendix D.
2The total number of datapoints N =

∏
p |Xp|, where |Xp| is the cardinality of Xp. For clarity

of presentation, we assume each |Xp| has equal cardinality N1/P .
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ε → 0. The total observation vector y = [yM ,yW ]> has N = M + W entries:

y = N(f , DN), where

DN =

[
DM 0

0 ε−1IW

]
, (5.7)

and DM = σ2IM .1 The imaginary observations yW have no corrupting effect on

inference: the moments of the resulting predictive distribution are exactly the same

as for the standard predictive distribution in Eq. (2.27). E.g., (KN + DN)−1y =

(KM +DM)−1yM .2

In order to compute the predictive distribution of the Gaussian process, we use pre-

conditioned conjugate gradients (PCG) (Atkinson, 2008) to compute (KN +DN)−1 y.

In particular, we use the preconditioning matrix C = D
−1/2
N to solve

C> (KN +DN)Cz = C>y . (5.8)

The preconditioning matrix C speeds up convergence by ignoring the imaginary

observations yW . Exploiting the fast multiplication of Kronecker matrices, PCG

takes O(JPN
P+1
P ) total operations (where the number of iterations J � N) to

compute (KN +DN)−1 y, which allows for exact inference. J is typically small for

convergence within machine precision, and is essentially independent of N , but is

more sensitive to the conditioning of C> (KN +DN).

For learning (hyperparameter training) we must evaluate the marginal likelihood

of Eq. (2.37). We cannot efficiently decompose KM+DM to compute the log |KM+

DM | complexity penalty in the marginal likelihood, because KM is not a Kronecker

matrix, since we have an incomplete grid. We approximate the complexity penalty

as

log |KM +DM | =
M∑
i=1

log(λMi + σ2) (5.9)

≈
M∑
i=1

log(λ̃Mi + σ2) , (5.10)

1We sometimes use subscripts on matrices to emphasize their dimensionality: e.g., DN , DM ,
and IW are respectively N ×N , M ×M , and W ×W matrices.

2See appendix D4 for a proof.

153



5.4 Experiments

where we approximate the eigenvalues λMi of KM using the eigenvalues of KN such

that λ̃Mi = M
N
λNi for i = 1, . . . ,M , which is a particularly good approximation for

large M (e.g. M > 1000) (Williams and Seeger, 2001). We emphasize that only the

log determinant (complexity penalty) term in the marginal likelihood undergoes a

small approximation, and inference remains exact.

All remaining terms in the marginal likelihood of Eq. (2.37) can be computed ex-

actly and efficiently using PCG. The total runtime cost of hyperparameter learning

and exact inference with an incomplete grid is thus O(PN
P+1
P ). In image problems,

for example, P = 2, and so the runtime complexity reduces to O(N1.5).

We emphasize that although the proposed inference can handle non-grid data,

this inference is most suited to inputs where there is some grid structure – im-

ages, video, spatial statistics, etc. If there is no such grid structure (e.g., none of

the training data fall onto a grid), then the computational expense necessary to

augment the data with imaginary grid observations is exponential in the number

of input dimensions and can be prohibitive for e.g., P > 5. If there is such grid

structure, however, the computational expense in handling N datapoints decreases

with P .

5.4 Experiments

In our experiments we combine the SMP kernel of Eq. (5.2) with the fast exact

inference and learning procedures of section 5.3, in a GP method we henceforth call

GPatt1, to perform extrapolation on a variety of sophisticated patterns embedded

in large datasets.

We contrast GPatt with many alternative Gaussian process kernel methods. In

particular, we compare to the recent sparse spectrum Gaussian process regression

(SSGP) (Lázaro-Gredilla et al., 2010) method, which provides fast and flexible

kernel learning. SSGP models the kernel spectrum (spectral density) as a sum of

point masses, such that SSGP is a finite basis function model, with as many basis

functions as there are spectral point masses. SSGP is similar to the recent models

1We write GPatt-A when GPatt uses an SMP-A kernel.
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of Le et al. (2013) and Rahimi and Recht (2007), except it learns the locations

of the point masses through marginal likelihood optimization. We use the SSGP

implementation provided by the authors at http://www.tsc.uc3m.es/~miguel/

downloads.php.

To further test the importance of the fast inference (section 5.3) used in GPatt,

we compare to a GP which uses the SMP kernel of section 5.2 but with the popu-

lar fast FITC (Naish-Guzman and Holden, 2007; Snelson and Ghahramani, 2006)

inference, implemented in GPML.1 We also compare to Gaussian processes with

the popular squared exponential (SE), rational quadratic (RQ) and Matérn (MA)

(with 3 degrees of freedom) kernels, catalogued in Rasmussen and Williams (2006),

respectively for smooth, multi-scale, and finitely differentiable functions. Since

Gaussian processes with these kernels cannot scale to the large datasets we con-

sider, we combine these kernels with the same fast inference techniques that we

use with GPatt, to enable a comparison.2

Moreover, we stress test each of these methods, in terms of speed and accuracy, as

a function of available data and extrapolation range, number of components, and

noise. Experiments were run on a 64bit PC, with 8GB RAM and a 2.8 GHz Intel

i7 processor.

In all experiments we assume Gaussian noise, so that we can express the likelihood

of the data p(y|θ) solely as a function of kernel hyperparameters θ. To learn θ

we optimize the marginal likelihood using BFGS. We use a simple initialisation

scheme: any frequencies {µa} are drawn from a uniform distribution from 0 to

the Nyquist frequency (1/2 the sampling rate), length-scales {1/σa} from a trun-

cated Gaussian distribution, with mean proportional to the range of the data, and

weights {wa} are initialised as the empirical standard deviation of the data di-

vided by the number of components used in the model. In general, we find GPatt

is robust to initialisation.

1http://www.gaussianprocess.org/gpml
2We also considered comparing to Duvenaud et al. (2013), but this model is intractable for

the datasets we considered and is not structured for the fast inference of section 5.3, having been
designed for a different purpose.

155

http://www.tsc.uc3m.es/~miguel/downloads.php
http://www.tsc.uc3m.es/~miguel/downloads.php
http://www.gaussianprocess.org/gpml


5.4 Experiments

This range of tests allows us to separately understand the effects of the SMP kernel

and proposed inference methods of section 5.3; we will show that both are required

for good performance.

5.4.1 Extrapolating a Metal Tread Plate Pattern

We extrapolate the missing region, shown in Figure 5.1a, on a real metal tread

plate texture. There are 12675 training instances (Figure 5.1a), and 4225 test

instances (Figure 5.1b). The inputs are pixel locations x ∈ R2 (P = 2), and the

outputs are pixel intensities. The full pattern is shown in Figure 5.1c. This texture

contains shadows and subtle irregularities, no two identical diagonal markings, and

patterns that have correlations across both input dimensions.

To reconstruct the missing region, as well as the training region, we use GPatt with

30 components for the SMP kernel of Eq. (5.2) in each dimension (GPatt-30). The

GPatt reconstruction shown in Figure 5.1d is as plausible as the true full pattern

shown in Figure 5.1c, and largely automatic. Without human intervention – no

hand crafting of kernel features to suit this image, no sophisticated initialisation,

and no exposure to similar images – GPatt has discovered the underlying structure

of this image and extrapolated that structure across a large missing region, even

though the structure of this pattern is not independent across the two spatial input

dimensions. Indeed the separability of the SMP kernel represents only a soft prior

assumption, and does not rule out posterior correlations between input dimensions.

In general, we have found the inductive bias of separability useful – both for the

kronecker structure it allows us to exploit, and for the learning rate of the method

– and strong posterior correlations between input dimensions can still easily be

discovered with the typical amount of data present in an image (N > 104).

The reconstruction in Figure 5.1e was produced with SSGP, using 500 basis func-

tions. In principle SSGP can model any spectral density (and thus any stationary

kernel) with infinitely many components (basis functions). However, for compu-

tational reasons the model can only accommodate finitely many components in

practice, and since these components are point masses (in frequency space), each
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component has highly limited expressive power. Moreover, with many compo-

nents SSGP experiences practical difficulties regarding initialisation, over-fitting,

and computation time (scaling quadratically with the number of basis functions).

Although SSGP does discover some interesting structure (a diagonal pattern), and

has equal training and test performance, it is unable to capture enough informa-

tion for a convincing reconstruction, and we did not find that more basis functions

improved performance. Likewise, FITC with an SMP-30 kernel and 500 pseudo-

inputs cannot capture the necessary information to interpolate or extrapolate. We

note FITC and SSGP-500 respectively took 2 days and 1 hour to run on this

example, compared to GPatt which took under 5 minutes.

GPs with SE, MA, and RQ kernels are all truly Bayesian nonparametric models

– these kernels are derived from infinite basis function expansions. Therefore, as

seen in Figure 5.1 g), h), i), these methods are completely able to capture the

information in the training region; however, these kernels do not have the proper

structure to reasonably extrapolate across the missing region – they simply act

as smoothing filters. We note that this comparison is only possible because these

GPs are using the fast exact inference techniques in section 5.3.

Overall, these results indicate that both expressive nonparametric kernels, such as

the SMP kernel, and the specific fast inference in section 5.3, are needed to be able

to extrapolate patterns in these images.

We note that the SMP-30 kernel used with GPatt has more components than

needed for this problem. However, as shown in Figure 5.2, if the model is over-

specified, the complexity penalty in the marginal likelihood shrinks the weights

({wa} in Eq. (5.1)) of extraneous components, as a proxy for model selection –

an effect similar to automatic relevance determination (MacKay, 1994). As per

Eq. (5.6), this complexity penalty can be written as a sum of log eigenvalues of a

covariance matrix K. Components which do not significantly contribute to model

fit will therefore be automatically pruned, as shrinking the weights decreases the

eigenvalues of K and thus minimizes the complexity penalty. This weight shrink-

ing helps both mitigate the effects of model overspecification and helps indicate
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a) Train                 b) Test             c) Full Pattern

d) GPatt               e) SSGP                f) FITC

g) GP-SE            h) GP-MA             i) GP-RQ

Figure 5.1: Extrapolation on a metal tread plate pattern. Missing data are shown
in black. a) Training region (12675 points), b) Testing region (4225 points), c) Full
tread plate pattern, d) GPatt-30, e) SSGP with 500 basis functions, f) FITC with 500
pseudo inputs, and the SMP-30 kernel, and GPs with the fast exact inference in section
5.3.1, and g) squared exponential (SE), h) Matérn (MA), and i) rational quadratic (RQ)
kernels.
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Figure 5.2: Automatic model selection in GPatt. Initial and learned weight and fre-
quency parameters of GPatt-30, for each input dimension (a dimension is represented in
each panel), on the metal tread plate pattern of Figure 5.1. GPatt-30 is overspecified for
this pattern. During training, weights of extraneous components automatically shrink
to zero, which helps indicate whether the model is overspecified, and helps mitigate the
effects of model overspecification. Of the 30 initial components in each dimension, 15
are near zero after training.

whether the model is overspecified. In the following stress tests we find that GPatt

scales efficiently with the number of components in its SMP kernel.

5.4.2 Stress Tests

We stress test GPatt and alternative methods in terms of speed and accuracy, with

varying datasizes, extrapolation ranges, basis functions, pseudo inputs, and com-

ponents. We assess accuracy using standardised mean square error (SMSE) and

mean standardized log loss (MSLL) (a scaled negative log likelihood), as defined

in Rasmussen and Williams (2006) on page 23. Using the empirical mean and

variance to fit the data would give an SMSE and MSLL of 1 and 0 respectively.

Smaller SMSE and more negative MSLL values correspond to better fits of the

data.

The runtime stress test in Figure 5.3a shows that the number of components used

in GPatt does not significantly affect runtime, and that GPatt is much faster

than FITC (using 500 pseudo inputs) and SSGP (using 90 or 500 basis functions),

even with 100 components (601 kernel hyperparameters). The slope of each curve

roughly indicates the asymptotic scaling of each method. In this experiment, the

standard GP (with SE kernel) has a slope of 2.9, which is close to the cubic

scaling we expect. All other curves have a slope of 1 ± 0.1, indicating linear

159



5.4 Experiments

a)                                                          b)

Figure 5.3: Stress tests. a) Runtime Stress Test. We show the runtimes in seconds,
as a function of training instances, for evaluating the log marginal likelihood, and any
relevant derivatives, for a standard GP with SE kernel (as implemented in GPML),
FITC with 500 pseudo-inputs and SMP-25 and SMP-5 kernels, SSGP with 90 and 500
basis functions, and GPatt-100, GPatt-25, and GPatt-5. Runtimes are for a 64bit PC,
with 8GB RAM and a 2.8 GHz Intel i7 processor, on the cone pattern (P = 2), shown
in Figure 5.4. The ratio of training inputs to the sum of imaginary and training inputs
for GPatt (section 5.3.2) is 0.4 and 0.6 for the smallest two training sizes, and 0.7 for all
other training sets. b) Accuracy Stress Test. MSLL as a function of holesize on the
metal pattern of Figure 5.1. The values on the horizontal axis represent the fraction of
missing (testing) data from the full pattern (for comparison Fig 5.1a has 25% missing
data). We compare GPatt-30 and GPatt-15 with GPs with SE, MA, and RQ kernels
(and the inference of section 5.3), and SSGP with 100 basis functions. The MSLL for
GPatt-15 at a holesize of 0.01 is −1.5886.

scaling with the number of training instances. However, FITC and SSGP are

used here with a fixed number of pseudo inputs and basis functions. More pseudo

inputs and basis functions should be used when there are more training instances

– and these methods scale quadratically with pseudo inputs and basis functions

for a fixed number of training instances. GPatt, on the other hand, can scale

linearly in runtime as a function of training size, without any deterioration in

performance. Furthermore, the big gaps between each curve – the fixed 1-2 orders

of magnitude GPatt outperforms alternatives – are as practically important as

asymptotic scaling.

The accuracy stress test in Figure 5.3b shows extrapolation (MSLL) performance

on the metal tread plate pattern of Figure 5.1c with varying holesizes, running

from 0% to 60% missing data for testing (for comparison the hole shown in Figure
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Table 5.1: We compare the test performance of GPatt-30 with SSGP (using 100
basis functions), and GPs using squared exponential (SE), Matérn (MA), and
rational quadratic (RQ) kernels, combined with the inference of section 5.4.2, on
patterns with a train test split as in the metal treadplate pattern of Figure 5.1.

GPatt SSGP SE MA RQ

Rubber mat (train = 12675, test = 4225)

SMSE 0.31 0.65 0.97 0.86 0.89
MSLL −0.57 −0.21 0.14 −0.069 0.039

Tread plate (train = 12675, test = 4225)

SMSE 0.45 1.06 0.895 0.881 0.896
MSLL −0.38 0.018 −0.101 −0.1 −0.101

Pores (train = 12675, test = 4225)

SMSE 0.0038 1.04 0.89 0.88 0.88
MSLL −2.8 −0.024 −0.021 −0.024 −0.048

Wood (train = 14259, test = 4941)

SMSE 0.015 0.19 0.64 0.43 0.077
MSLL −1.4 −0.80 1.6 1.6 0.77

Chain mail (train = 14101, test = 4779)

SMSE 0.79 1.1 1.1 0.99 0.97
MSLL −0.052 0.036 1.6 0.26 −0.0025

5.1a is for 25% missing data). GPs with SE, RQ, and MA kernels (and the fast

inference of section 5.3) all steadily increase in error as a function of holesize.

Conversely, SSGP does not increase in error as a function of holesize – with finite

basis functions SSGP cannot extract as much information from larger datasets as

the alternatives. GPatt performs well relative to the other methods, even with

a small number of components. GPatt is particularly able to exploit the extra

information in additional training instances: only when the holesize is so large

that over 60% of the data are missing does GPatt’s performance degrade to the

same level as alternative methods.
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In Table 5.1 we compare the test performance of GPatt with SSGP, and GPs using

SE, MA, and RQ kernels, for extrapolating five different patterns, with the same

train test split as for the tread plate pattern in Figure 5.1. All patterns for the

stress tests in this section are shown in large in Figure 5.4.

GPatt consistently has the lowest standardized mean squared error (SMSE), and

mean standardized log loss (MSLL). Note that many of these datasets are sophis-

ticated patterns, containing intricate details and subtleties which are not strictly

periodic, such as lighting irregularities, metal impurities, etc. Indeed SSGP has

a periodic kernel (unlike the SMP kernel which is not strictly periodic), and is

capable of modelling multiple periodic components, but does not perform as well

as GPatt on these examples.

(a) Rubber mat (b) Tread plate (c) Pores

(d) Wood (e) Chain mail

 

 

(f) Cone

Figure 5.4: Images used for stress tests. Figures a) through e) show the textures used
in the accuracy comparison of Table 5.1. Figure e) is the cone image which was used for
the runtime analysis shown in Figure 5.3a

We end this section with a particularly large example, where we use GPatt-10 to

perform learning and exact inference on the Pores pattern, with 383400 training

points, to extrapolate a large missing region with 96600 test points. The SMSE is
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Figure 5.5: GPatt extrapolation on a particularly large multidimensional dataset. a)
Training region (383400 points), b) GPatt-10 reconstruction of the missing region.

0.077, and the total runtime was 2800 seconds. Images of the successful extrapo-

lation are shown in Figure 5.5.

5.4.3 Wallpaper and Scene Reconstruction

Although GPatt is a general purpose regression method, it can also be used for

inpainting: image restoration, object removal, etc.

We first consider a wallpaper image stained by a black apple mark, shown in the

first row of Figure 5.6. To remove the stain, we apply a mask and then separate the

image into its three channels (red, green, and blue). This results in 15047 pixels in

each channel for training. In each channel we ran GPatt using SMP-30. We then

combined the results from each channel to restore the image without any stain,

which is particularly impressive given the subtleties in the pattern and lighting.

In our next example, we wish to reconstruct a natural scene obscured by a promi-

nent rooftop, shown in the second row of Figure 5.6. By applying a mask, and

following the same procedure as for the stain, this time with 32269 pixels in each

channel for training, GPatt reconstructs the scene without the rooftop. This re-

construction captures subtle details, such as waves in the ocean, even though only

one image was used for training.
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Figure 5.6: Image inpainting with GPatt. From left to right: A mask is applied to
the original image, GPatt extrapolates the mask region in each of the three (red, blue,
green) image channels, and the results are joined to produce the restored image. Top
row: Removing a stain (train: 15047× 3). Bottom row: Removing a rooftop to restore
a natural scene (train: 32269× 3). The coast is masked during training and we do not
attempt to extrapolate it in testing.

Inpainting is an active area of research in computer vision. There are several

distinct approaches to inpainting. The popular patch based methods (Criminisi

et al., 2004; Efros and Leung, 1999) recursively fill in pixels (or patches of pixels)

from the outside of a gap in the image. E.g., a known pixel (pixel α) is selected

to fill in a missing pixel on the boundary of the gap (pixel β), such that the

neighbourhoods of α and β are most similar. Markov texture models (Cross and

Jain, 1983; Derin and Elliott, 1987; Geman and Geman, 1984; Hassner and Sklan-

sky, 1980) are also popular. These models are based on Markov random fields

(MRF), which characterize a model based on statistical interactions within local

neighbourhoods. Portilla and Simoncelli (2000), for example, propose a paramet-

ric model with Markov statistical descriptors which are based on pairs of wavelet

coefficients at adjacent spatial locations, orientations, and scales. Although GPatt

is nonparametric, and is not a MRF, the discussion in Portilla and Simoncelli

(2000) leads us to believe that GPatt could be further improved, for the purpose

of texture modelling and inpainting, by extending the model to account for higher

order statistics.
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Many inpainting methods are highly application specific, involve significant hand

crafting of features and human intervention, and are focused on making the recon-

struction look good to a human. For example, Portilla and Simoncelli (2000) write

that the work of Julesz (1962) established validation of texture models through

“human perceptual comparison”. Similarly Hays and Efros (2008) maintain that

development and assessment of image models “relies on the studies of human visual

perception”.

Hays and Efros (2008) cite the rooftop problem (in the second panel of the lower

row of Figure 5.6) as a particularly challenging inpainting problem, which they

conjecture cannot be satisfactorly solved from the training data in that one im-

age alone. They propose an algorithm (similar to a patch based method) which

uses information from multiple similar images for inpainting on a particular im-

age. After exposing their algorithm to a repository of similar images – in this case,

various harbours – Hays and Efros (2008) provide a reconstruction of the image

in Figure 5.6 (bottom left) without the rooftop. The results highlight the stark

conceptual differences between GPatt and their algorithm. For example, Hays and

Efros (2008) placed boats into the water, after having removed the rooftop. But

there is nothing compelling in the original image to support boats being in the

water; and even if we were to think that boats would be there, we couldn’t possibly

know the structure, orientations, or locations of these boats. Such an algorithm

would therefore have poor performance in terms of squared loss or predictive like-

lihood. Indeed, general purpose regression algorithms, such as GPatt, simply aim

to make accurate predictions at test input locations from training data alone, and

this objective can even be at cross purposes with making the reconstruction look

good to a human.

5.4.4 Recovering Complex 3D Kernels and Video Extrap-
olation

With a relatively small number of components, GPatt is able to accurately recover

a wide range of product kernels. To test GPatt’s ability to recover ground truth

kernels, we simulate a 50×50×50 movie of data (e.g. two spatial input dimensions,
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one temporal) using a GP with kernel k = k1k2k3 (each component kernel in this

product operates on a different input dimension), where k1 = kSE + kSE × kPER,

k2 = kMA × kPER + kMA × kPER, and k3 = (kRQ + kPER)× kPER + kSE. (kPER(τ) =

exp[−2 sin2(π τ ω)/`2], τ = x−x′). We use 5 consecutive 50× 50 slices for testing,

leaving a large number N = 112500 of training points. In this case, the big

datasize is helpful: the more training instances, the more information to learn the

true generating kernels. Moreover, GPatt-20 is able to reconstruct these complex

out of class kernels in under 10 minutes. We compare the learned SMP-20 kernel

with the true generating kernels in Figure 5.8. In Figure 5.7, we show true and

predicted frames from the movie.

The predictions in Figure 5.7 are an example of video extrapolation – predicting a

sequence of frames that are entirely missing from the movie. GPatt can be directly

applied to such problems, as it is a model for general purpose pattern extrapolation,

rather than, for instance, a specialized inpainting algorithm. From the perspec-

tive of GPatt, video extrapolation and image inpainting are fundamentally the

same task, except video extrapolation has one additional input dimension, which

is easily included in GPatt’s kernel. The kernel can learn both the temporal and

spatial correlation structure. Moving to yet higher dimensional pattern extrapola-

tion problems would proceed similarly, even if each input dimension had different

correlation structures. For example, GPatt could be applied to extrapolating three

dimensional representations through time, a four dimensional problem.

On the other hand, conventional image inpainting algorithms, particularly patch

based methods, cannot be applied to video extrapolation, because they do not ac-

count for temporal correlations. There has been some work on special instances of

video extrapolation, for example, i) when there is a moving object on a stationary

background (Patwardhan et al., 2005), ii) relatively small missing patches from

frame(s) in a video rather than entirely missing frames (Granados et al., 2012)

(called video inpainting), and iii) simulating repetitive 2D patterns (in larger re-

gions than in video inpainting), such as a flickering candle or a waving flag (video

textures) (Schödl et al., 2000). Like inpainting methods, these methods tend to be

highly specialized to a given application. Overall, video extrapolation is thought

to be an exceptionally difficult and unresolved problem (Guillemot and Le Meur,
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2014; Moran, 2009). Indeed video restoration is presently performed by “pro-

fessionals in a manual fashion, which is not only painstaking and slow but also

rather expensive. Therefore any means of automation would certainly benefit

both commerical organizations and private individuals” (Moran, 2009). Moreover,

Guillemot and Le Meur (2014) writes that inpainting algorithms have “limited

direct applicability for video inpainting, which remains an open problem, despite

preliminary solutions making assumptions in terms of moving objects or camera

motion”.

In the future, it would be interesting to explore GPatt’s ability to solve video

extrapolation problems, and even higher dimensional pattern extrapolation prob-

lems. I believe the generality of this approach to pattern extrapolation could open

up entirely new application areas.

Figure 5.7: Using GPatt to recover 5 consecutive slices from a movie. All slices are
missing from training data (e.g., these are not 1 step ahead forecasts). Top row: true
slices take from the middle of the movie. Bottom row: inferred slices using GPatt-20.

5.5 Discussion

Gaussian processes are often used for smoothing and interpolation on small datasets.

However, we believe that Bayesian nonparametric models are naturally suited to
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Figure 5.8: Recovering sophisticated product kernels from video data using GPatt. A
product of three kernels (shown in green) was used to generate a movie of 112500 points
with P = 3 input variables. From this data, GPatt-20 reconstructs these component
kernels (the learned SMP-20 kernel is shown in blue). All kernels are a function of
τ = x− x′. For clarity of presentation, each kernel has been scaled by k(0).

pattern extrapolation on large multidimensional datasets, where extra training

instances can provide extra opportunities to learn additional structure in data.

The support and inductive biases of a Gaussian process are naturally encoded

in a covariance kernel. A covariance kernel must always have some structure to

reflect these inductive biases; and that structure can, in principle, be exploited

for scalable and exact inference, without the need for simplifying approximations.

Such models could play a role in a new era of machine learning, where models are

expressive and scalable, but also interpretable and manageable, with simple exact

learning and inference procedures.

We hope to make a small step in this direction with GPatt, a Gaussian process

based Bayesian nonparametric framework for automatic pattern discovery on large

multidimensional datasets, with scalable and exact inference procedures. Without

human intervention – no sophisticated initialisation, or hand crafting of kernel

features – GPatt has been used to accurately and quickly extrapolate large missing

regions on a variety of patterns.
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Chapter 6

Discussion

Pattern discovery and extrapolation is at the heart of probabilistic modelling.

This thesis shows that one can develop powerful Bayesian nonparametric Gaus-

sian process models which enable pattern discovery and extrapolation, and greatly

improve predictions, with expressive covariance kernels. This expressive power

does not necessarily come at an additional computational expense, as the struc-

ture in the proposed models can be exploited for fast and exact inference and

learning procedures. The high level ideas presented in this thesis make it easy

to develop new models with similar properties, which can learn structure in data

that was previously undiscoverable. I summarize some of these high-level ideas

and applications:

1. The ability for a model to discover structure in data, and extrapolate that

structure to new situations, is determined by its support and inductive biases.

2. One should always develop models with the largest support possible, and

distribute that support carefully for inductive biases that allow as much

information as possible to be extracted from the data.

3. Bayesian nonparametric models are able to accommodate priors with large

support and detailed inductive biases, and are thus naturally suited to pat-

tern discovery and extrapolation.

4. Although Bayesian nonparametric models are typically applied to small datasets,
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they are ideally suited to large datasets, because when there is more data,

there is typically more information available to learn detailed structure.

5. Gaussian processes are rich distributions over functions, which provide a

Bayesian nonparametric approach to smoothing and interpolation. The co-

variance kernel determines the support and inductive biases of a Gaussian

process. Expressive covariance kernels can be developed to enable pattern

discovery and extrapolation.

6. Spectral density modelling is an easy and intuitive recipe for constructing

new covariance kernels. Likewise, one can develop expressive kernels by

combining the nonparametric flexibility of Gaussian processes with certain

structural properties, e.g., adaptive basis functions, of neural networks. The

structure behind an adaptive network, for example, can be viewed as an

undirected graphical model between latent adaptive basis functions and out-

puts, where the connections in this model are themselves functions of the

inputs.

7. A model, or more specifically a covariance kernel, must always have some

structure to reflect inductive biases which allow a model to extract useful

information from data. In principle, this existing structure can be exploited

for scalable inference and learning techniques, without additional simplifying

assumptions.

The models in this thesis were applied to problems in econometrics, NMR spec-

troscopy, geo-statistics, and large-scale image inpainting, texture extrapolation,

video extrapolation, and kernel discovery. In these applications these models have

proven to be scalable and with greatly enhanced predictive performance over the

alternatives: the extra structure we are learning is an important part of real data.

I believe we will soon enter a new era of machine learning, where models are highly

expressive, but also interpretable and manageable, and are scalable through sim-

ple inference and learning procedures which exploit existing model structure. Such

models will help automate pattern discovery, learning, and decision making, with

applications in essentially any prediction task. I hope to contribute to this direc-

tion with the models in this thesis.
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Appendix A

Time Series

A1 Introduction

Time is a special input variable because it indicates the direction of causality.

In this dissertation, we introduce models that can easily take any arbitrary vari-

able as input, but we often compare with time series models in econometrics.

There are four types of time series: discrete time discrete space, discrete time

continuous space, continuous time discrete space, and continuous time continuous

space. Many popular time series models (AR, MA, ARMA, ARCH, . . . ) are in

the discrete time continuous space class. In this section we introduce some of

these models, after we have defined relevant terminology. This section is mostly

a condensed reference; for more detail, see Shumway and Stoffer (2006) or Tsay

(2002).

A time series is a stochastic process that describes the evolution of a random

variable over time. Equivalently,

Definition A1.1. A time series series model defines a joint probability distribution

over any collection of random variables x(t1), . . . , x(tk) indexed by time.

A time series x(t)1 is partly characterized by its mean function µ(t) = E[x(t)], and

autocovariance function k(s, t) = cov(x(s), x(t)) = E[(x(s)−µ(s))(x(t)−µ(t)]. The

1In our descriptions, we use the notation x(t) and xt interchangeably, to mean x evaluated
at (or indexed by) the input variable t.
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A1 Introduction

autocorrelation function (referred to as the ACF) is the normalised autocovariance

function, ρ(s, t) = k(s,t)√
k(s,s)k(t,t)

.

A strictly stationary time series is one for which the probability distribution of

every collection of values {x(t1), x(t2), . . . , x(tk)} is the same as {x(t1 + a), x(t2 +

a), . . . , x(tk+a)} for all feasible a. A weakly stationary time series x(t) has µ(t) = c

for all t, and k(s, t) = k(s + a, t + a) for all feasible a. In other words, the lag-l

autocovariance, γl = k(t, t−l), is only a function of l, not t. For a weakly stationary

series, the lag-l ACF is ρl = cov(x(t),x(t−l))√
Var(x(t))Var(x(t−l))

= γl
Var(x(t))

= γl
γ0

.

A white noise time series ε(t) has a zero mean function and constant variance. For

l 6= 0, the ACF of this series is zero: each random variable at time t is iid. Each

ε(ti) is called an error term or random shock.

In an autoregressive AR(1) model, the value of the variable x(t) deterministically

depends on the value of x(t− 1) plus white noise. For example, if the white noise

ε(t) has a Bernoulli distribution, such that ε(t) = 1 with probability 0.5, and

ε(t) = −1 with probability 0.5, then this AR(1) process is a symmetric random

walk. The general AR(p) process is

x(t) = a0 +

p∑
i=1

aix(t− i) + ε(t) , (A.1)

where ε(t) is a white noise series. If ε(t) is Gaussian, then Eq. (A.1) is an example

of a discrete time autoregressive Gaussian process. In chapter 4 we give an exam-

ple of such a a Gaussian process which has a covariance function with negative

covariances.

To choose the order of an AR model, one can use the partial autocorrelation func-

tion (PACF). Fitting the following AR models to data, using least squares,

xt = a0,1 + a1,1xt−1 + ε1t (A.2)

xt = a0,2 + a1,2xt−1 + a2,2xt−2 + ε2t (A.3)

xt = a0,3 + a1,3xt−1 + a2,3xt−2 + a3,3xt−3 + ε3t (A.4)

...
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A2 Heteroscedasticity

the least squares estimate âj,j is the lag-j PACF of x(t). It can be shown that âj,j

converges to zero for all j > p, for an AR(p) process.

The moving average MA(q) process is

x(t) = b0 +

q∑
i=1

biε(t− i) , (A.5)

where ε(t) is a white noise series. While the lag-l ACF of an AR series is never

zero, the lag-l ACF of an MA series is zero for l > q. For a given data set, the

empirical ACF may suggest that the MA model is superior to the AR model. And

sometimes it is advantageous to combine these two very different models into an

ARMA(p,q) process:

x(t) = a0 +

p∑
i=1

aix(t− i)−
q∑
i=1

biε(t− i) + ε(t) . (A.6)

Finally, the return of a series Pt at time t is defined as rt = log(Pt+1/Pt). In the

context of modelling heteroscedasticity, an important topic in this report, we often

refer to return series.

A2 Heteroscedasticity

Imagine measuring the position of a rocket as it leaves the earth. As the rocket gets

further away we are less certain about where it is, and so the variance increases

on our measurements. These measurements are an example of a heteroscedastic

sequence – a sequence of random variables with different variances. Here are some

more examples:

• As we get nearer to an election, the results from a polling station become

less variable.

• As one’s income increases, there is an increasing variability on money spent

on a given meal. A rich person may eat at a fancy restaurant, and then

later eat fast food. On the other hand, a poor person more consistently eats

inexpensive food.
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A2 Heteroscedasticity

• As a projectile approaches, we are more sure about its position.

• As a man ages from birth, there is fluctuation in our certainty about his

health, height, weight, strength, income, and so on. For example, most

teenagers earn minimum wage, most elderly are retired and earn very little,

and middle-aged adults have highly variable incomes.

We will see examples of heteroscedasticity throughout this dissertation. For exam-

ple, in chapter 3 we model input dependent signal and noise covariances between

multiple responses.

Reasoning optimally in the face of uncertainty is central to statistics. Ignoring het-

eroscedasticity (input dependent noise or variance) will cause one to make faulty

inferences when testing statistical hypotheses. Sometimes it is just the uncer-

tainty of a process that changes with time. The log returns on big equity indices

like NASDAQ, the S&P 500, the FTSE, and on foreign currency exchanges, are

often assumed to have a zero mean, but a time changing variance (Tsay, 2002).

Present developments address the need to predict uncertainty in financial mar-

kets, somewhat like the theory of thermodynamics initially developed to improve

the efficiency of steam engines. But heteroscedasticity is relevant beyond finance,

much like thermodynamics is relevant beyond steam engines!

The goal of these models is to predict the latent variance (or covariance matrix

in higher dimensions) drawn with observations. For example, suppose we have

data points sampled from N(0, t4), with variance growing with time t, as shown

in Figure A.1. A model of heteroscedasticity should take the information in panel

a), and then produce the picture in panel b). It does not fit the observations

themselves.

Until Robert Engle developed ARCH (Engle, 1982), for which he won the 2003

Nobel Prize in economics, models of heteroscedasticity were exceptionally limited.

The standard model was yt = εtxt−1, where yt is the observation at time t, εt

is a random variable with Var(εt) = σ2, and xt is an exogenous variable. The

variance of yt is then σ2x2
t−1, and so depends solely on the exogenous variable xt.

This method requires one to understand the cause of changing variance. Granger

and Andersen (1978) later introduced models that allow the conditional variance
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Figure A.1: Determining the latent variance function. In panel a) is a sequence of
observations with a time changing variance, and in b) is the latent variance function.
A model of heteroscedasticity should take the information in a) and reconstruct the
information in b).

to depend on past observations. A simple example is yt = εtyt−1, where the

conditional variance is Var(yt|yt−1) = σ2y2
t−1. However, the unconditional variance

is zero or infinity.

We now introduce ARCH (Engle, 1982), and its generalization GARCH (Boller-

slev, 1986). GARCH is arguably unsurpassed for predicting the volatility (stan-

dard deviation) of returns on equity indices and currency exchanges (Brownlees

et al., 2009; Hansen and Lunde, 2005; Poon and Granger, 2005). We then discuss

multivariate GARCH, and other models of heteroscedasticity. Consider Figure

A.2, which shows the daily returns on NASDAQ, the DOW Jones Composite, and

the FTSE, from January 2009 to February 2010. There is a visible relationship

between these markets: it is even difficult to tell that these are different plots!

Accounting for this relationship will improve volatility predictions for either indi-

vidual market; in other words, multivariate models can be better than univariate

ones at predicting univariate volatility. For a review of multivariate models, see

Silvennoinen and Teräsvirta (2009) and Asai et al. (2006).
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Figure A.2: Visible co-movement between daily returns on NASDAQ, the DOW Jones
Composite, and the FTSE.
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A2 Heteroscedasticity

A22 Univariate ARCH and GARCH

In financial markets, if a return yt deviates significantly from the mean, the next

return will probably do the same. Likewise with small deviations. This is called

volatility clustering. Since E[y2
t ] = σ2

t , ARCH captures this behaviour by letting

the variance at time t deterministically depend on the previous squared returns.

In the simplest ARCH model, ARCH(1), the variance depends only on the squared

return at the last time-step:

yt = σtεt (A.7)

σ2
t = a0 + a1y

2
t−1 (A.8)

εt ∼ N(0, 1). (A.9)

Let Ψt represent the information set available at time t. The conditional mean

E[yt|Ψt−1] is zero, and the conditional variance Var(yt|Ψt−1) is a0+a1y
2
t−1. Further,

there are no serial correlations in the yt series, and the unconditional mean is zero:

cov(yt+h, yt) = E[ytyt+h] = E[E[ytyt+h|Ψt+h−1]] = E[ytE[yt+h|Ψt+h−1]] = 0,
(A.10)

E[yt] = E[E[yt|Ψt−1]] = E[σtE[εt]] = 0.
(A.11)

It follows that the unconditional variance is constant:

Var(yt) = E[y2
t ] = E[E[a0 + a1y

2
t−1]] = a0 + a1E[y2

t−1] = a0 + a1Var(yt)

∴ Var(yt) =
a0

1− a1

. (A.12)

Therefore yt is a white noise series. And though the returns themselves are seri-

ally uncorrelated, the squared returns are correlated. In fact, we can rewrite the

ARCH(1) series as

y2
t = a0 + a1y

2
t−1 + σ2

t (ε
2
t − 1) , (A.13)

which is a non-Gaussian AR(1) model for the squared returns y2
t (an unbiased

estimator of σ2
t ), hence the name autoregressive conditional heteroscedasticity

(ARCH).
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A2 Heteroscedasticity

From (A.12), a0 must be greater than zero. Also, the unconditional kurtosis,

κ =
E[y4

t ]

E[y2
t ]

2
= 3

1− a2
1

1− 3a2
1

, (A.14)

is greater than or equal to three. This means that the marginal distribution

of the returns has heavier tails than the normal distribution, even though the

returns are conditionally normal; this is good since the actual returns on equity

indices and currency exchanges are thought to have heavy tails. However, for the

fourth moment E[y4
t ] to be positive, 0 ≤ a1 ≤ 1/3, which is quite restrictive. The

parameters a0, a1 can be learned by maximizing the likelihood,

p(yn, yn−1, . . . , y2|y1, a0, a1) =
n∏
t=2

p(yt|yt−1) , (A.15)

subject to constraints.

The general ARCH(p) model is

yt = σtεt , (A.16)

σ2
t = a0 +

p∑
i=1

aiy
2
t−i , (A.17)

εt ∼ N(0, 1) , (A.18)

and can be rewritten as

y2
t = a0 + a1y

2
t−1 + · · ·+ apy

2
t−p + σ2

t (ε
2
t − 1) . (A.19)

To test whether ARCH is an appropriate model, one can determine the empirical

autocorrelations for yt and y2
t : the return series should be uncorrelated, unlike the

squared return series. To then determine the appropriate order, one can use the

PACF. Unfortunately, a high order is often necessary for good predictions – e.g.

ARCH(9) for the S&P 500 (Tsay, 2002). To address this issue, Bollerslev (1986)

developed GARCH, generalised autoregressive conditional heteroscedasticity. The

GARCH(p,q) process is given by

yt = σtεt , (A.20)

σ2
t = a0 +

p∑
i=1

aiy
2
t−i +

q∑
j=1

bjσ
2
t−j , (A.21)

εt ∼ N(0, 1) . (A.22)
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A2 Heteroscedasticity

We can rewrite this as

y2
t = a0 +

max(p,q)∑
i=1

(ai + bi)y
2
t−i −

q∑
j=1

bjηt−j + ηt , (A.23)

ηt = y2
t − σ2

t . (A.24)

Since E[ηt] = 0 and cov(ηt, ηt−j) = 0, ηt is a martingale difference series, and so

(A.23) is a valid ARMA(max(p, q),q) form for y2
t . So ARCH applies an autore-

gressive model to y2
t , and GARCH generalizes this to an ARMA model. Analysis

of GARCH is similar to ARCH, and the two models share many properties: yt is

a weakly stationary series with a zero unconditional mean and constant uncon-

ditional variance, yt is serially uncorrelated but y2
t isn’t, and the kurtosis of yt is

greater than three. It is more difficult to determine the order of a GARCH model

in a principled way, but often GARCH(1,1) is appropriate, which makes it popular

over the high order ARCH models needed to make comparably accurate predic-

tions. GARCH is usually trained using a constrained maximum likelihood, where

an initial σ0 is somehow specified. ARCH and GARCH share many strengths and

weaknesses. They are strong in that they are both simple models, and empirically,

they are unsurpassed at predicting volatility in financial markets like the S&P 500.

But here are some weaknesses (Tsay, 2002):

• The parameters give no insight into the underlying source of volatility.

• Restrictions are very tight on parameters, e.g. for E[y4
t ] > 0.

• Both often overpredict volatility, as they respond slowly to large isolated

returns.

• Positive and negative returns have the same effect on volatility predictions.

It’s easy to modify GARCH. For example, the returns yt could have a different

conditional distribution; t-GARCH is a popular variant where the innovation εt

has a Student-t distribution. In this case the conditional and unconditional returns

have heavier tails. Further, we can remove the undesirable symmetry from GARCH

by adding separate terms for positive and negative returns, a+y
2
+ and a−y

2
−. Nelson
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A2 Heteroscedasticity

(1991) removes the symmetry with the exponential GARCH (EGARCH) model,

which has the innovation (noise model)

g(εt) = (θ + γ)εt − γE[|εt|] if εt ≥ 0 , (A.25)

g(εt) = (θ − γ)εt − γE[|εt|] if εt < 0 , (A.26)

where θ and γ are real constants, and, for example, εt ∼ N(0, 1). A different vari-

ant, the GARCH-M model, adds a deterministic volatility term to the expression

for the returns,

yt = µ+ cσ2
t + σtεt , (A.27)

σ2
t = a0 + a1y

2
t−1 + b1σ

2
t−1 , (A.28)

in addition to the usual σtεt term. Here εt ∼ N(0, 1) and µ and c are constants; c is

called the risk premium parameter. With this new term, the returns yt are serially

correlated. So when historical stock returns have serial correlations, there is said

to be risk premium. This is common with returns on securities (Tsay, 2002).

Although there are many variations, a simple GARCH(1,1) model is often unsur-

passed (Brownlees et al., 2009; Hansen and Lunde, 2005).

A22 Multivariate GARCH

The simplicity of univariate GARCH is arguably its most appealing feature. Un-

fortunately, with multivariate GARCH (MGARCH) models, the number of pa-

rameters increases rapidly with increases in dimension. These parameters become

difficult to interpret and estimate. It is also challenging to ensure that the con-

ditional covariance matrix is positive definite. Because of these difficulties, often

unrealistic assumptions are made for tractability. In this brief review of MGARCH,

we follow Silvennoinen and Teräsvirta (2009) and Tsay (2002).

Let yt be a D dimensional vector stochastic process, and E[yt] = 0. Further, let Ψt

be all information available up to and including time t, and let ηt be an iid vector

white noise process with E[ηtη
>
t ] = I. Then, in the general MGARCH framework,

yt = Σ
1/2
t ηt , (A.29)
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A2 Heteroscedasticity

where Σt is the covariance matrix of yt conditioned on Ψt−1.

The first MGARCH model, the VEC model of Bollerslev et al. (1988), specifies Σt

as

vech(Σt) = a0 +

q∑
i=1

Aivech(yt−iy
>
t−i) +

p∑
j=1

Bjvech(Σt−j) . (A.30)

Ai and Bj are D(D + 1)/2 × D(D + 1)/2 matrices of parameters, and a0 is a

D(D + 1)/2 × 1 vector of parameters. The vech operator stacks the columns of

the lower triangular part of a D×D matrix into a vector of size D(D + 1)/2× 1.

For example, vech(Σ) = (Σ11,Σ21, . . . ,ΣD1,Σ22, . . . ,ΣD2, . . . ,ΣDD)>. This model

is general, but difficult to use. There are (p + q)(D(D + 1)/2)2 + D(D + 1)/2

parameters! These parameters are hard to interpret, and there are no conditions

under which Σt is positive definite for all t. Gouriéroux (1997) discusses the

challenging (and sometimes impossible) problem of keeping Σt positive definite.

Training is done by a constrained maximum likelihood, where the log likelihood is

given by

L = a0 −
1

2

N∑
t=1

log |Σt| −
1

2

N∑
t=1

y>t Σ−1
t yt , (A.31)

supposing that ηt ∼ N(0, I), and that there are N training points.

Subsequent efforts have led to simpler but less general models. We can let Aj

and Bj be diagonal matrices. This model has notably fewer (though still (p+ q +

1)D(D + 1)/2) parameters, and there are conditions under which Σt is positive

definite for all t (Engle et al., 1994). But now there are no interactions between

the different conditional variances and covariances.

Factor models are another popular simplification. The idea is to find the few

factors that explain most of the variability in the returns yt. Often these factors

are chosen using principle component analysis (PCA) (Hotelling, 1933; Jolliffe,

2002; Pearson, 1901). This reduces the dimension of the modelling problem. Engle

et al. (1990) define a factor volatility model. As described by Silvennoinen and

Teräsvirta (2009), they assume Σt is generated from K < D factors fk,t:

Σt = A+
K∑
k=1

wkw
>
k fk,t , (A.32)
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where A is a D ×D positive semidefinite matrix, and each wk is a D × 1 vector

of factor weights. These factors have a GARCH(1,1) form

fk,t = ck + ak(v
>yt−1)2 + bkfk,t−1 , (A.33)

where ck, ak, bk are scalar constants, and v is a D × 1 vector of weights. For a

detailed review of multivariate GARCH models, see Silvennoinen and Teräsvirta

(2009).

A22 Stochastic Volatility Models

ARCH and GARCH let the volatility be a deterministic function of the past. A

popular alternative class of models, stochastic volatility models, let the volatility

be a stochastic process. For example,

yt = σtεt (A.34)

σt = exp(Mt) (A.35)

εt ∼ N(0, 1), (A.36)

where Mt is a stochastic model, like an AR process. For example, Wilson and

Ghahramani (2010a) develop a stochastic volatility model, Gaussian Process Cop-

ula Volatility (GCPV), where σt is transformed so that it is best modelled by a

Gaussian Process (chapter 2). An early stochastic volatility model by Harvey et al.

(1994) has

yt = σtεt , (A.37)

log(σ2
t ) = a0 + a1 log(σ2

t−1) + wt , (A.38)

where wt is Gaussian white noise with variance σ2
w. The log variance follows an

AR(1) process. Letting gt = log y2
t we can rewrite (A.37) as

gt = log(σ2
t ) + log(ε2t ). (A.39)

Together (A.38) and (A.39) would form a state-space model if ε2t had a log-normal

distribution. Usually, though, εt ∼ N(0, 1).
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There are multivariate extensions to stochastic volatility models. They suffer from

many of the same problems as multivariate GARCH – the number of parameters

scales badly with dimension, so many unrealistic assumptions are made, and it’s

difficult to keep the covariance matrices positive definite. For a review, see Asai

et al. (2006).
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Appendix B

Generalised Wishart Processes

We discuss properties of the GWP construction we introduced in section 3.8, in-

cluding support, moments, autocorrelations, and stationarity. We also interpret

its free parameters. We then introduce several alternate GWP constructions, with

benefits in expressivity and efficiency. As our discussion progresses the generalised

Wishart process class of models will become increasingly clear. Inference for the

GWP is discussed in Wilson and Ghahramani (2010b, 2011).

B1 Properties

Since the marginal distributions are Wishart – that is, Σ(x) has a Wishart distri-

bution for any x ∈ X – we know that at every x there is support for every positive

definite covariance matrix. We also know

E[Σ(x)] = νV , (B.1)

Var[Σij(x)] = ν(V 2
ij + ViiVjj) , (B.2)

and we can find simple expressions for the covariances between entries of Σ(x) and

Σ(x′).

Theorem B1.1. Assuming L is diagonal, and that Gaussian process uid in Eq. (3.20)
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has kernel kd for each dimension (d = 1, . . . , p),1 then for i 6= j 6= l 6= s,

cov[Σii(x),Σii(x
′)] = 2νL4

iiki(x, x
′)2 (B.3)

cov[Σij(x),Σji(x
′)] = cov(Σij(x),Σij(x

′)) = νL2
iiL

2
jjki(x, x

′)kj(x, x
′) (B.4)

cov[Σij(x),Σls(x
′)] = 0 . (B.5)

Proof B1.1. We can rewrite Σ(x) in (3.22) as a sum of ν i.i.d. matrices Aj:

Σ(x) =
∑ν

j=1 Aj(x). Let A = A1. Then cov[Σ(x),Σ(x′)] = νcov[A(x), A(x′)].

Further, cov[Aii(x), Aii(x
′)] = L4

iicov[uii(x)2, uii(x
′)2]. Since uii(x) and uii(x

′) are

each N(0, 1), and they are jointly Gaussian, we can write

uii(x
′) = ki(x, x

′)uii(x) +
√

1− ki(x, x′)2ε (B.6)

where ε is N(0, 1) and independent of both uii(x) and uii(x
′). Then, abbreviating

ki(x, x
′) as ki,

uii(x
′)2 = k2

i uii(x)2 + 2ki

√
1− k2

i εuii(x) + (1− k2
i )ε

2 . (B.7)

Therefore

E[uii(x)2uii(x
′)2] = E[k2

i uii(x)4 + 2ki

√
1− k2

i εuii(x)2 + (1− k2
i )ε

2uii(x)2] , (B.8)

= 3k2
i + (1− k2

i ) = 2k2
i + 1 , (B.9)

and so

cov[uii(x)2, uii(x
′)2] = E[uii(x)2uii(x

′)2]− E[uii(x)2]E[uii(x
′)2] (B.10)

= 2k2
i + 1− 1 = 2k2

i . (B.11)

We conclude

cov[Σii(x),Σii(x
′)] = 2νL4

iiki(x, x
′)2 . (B.12)

The derivations of equations (B.4) and (B.5) are similar.

Corollary B1.1. Since E[Σ(x)] = νV = constant, and the covariances are propor-

tional to the kernel function(s), the Generalised Wishart Process is weakly station-

ary if the kernel function(s) are stationary – that is, if k(x, x′) = k(x + a, x′ + a)

for all feasible constants a. This holds, for example, if k(x, x′) is a function of

||x− x′||.
1The idea of a new kernel function for each dimension is discussed further in section B2.
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B1 Properties

Corollary B1.2. If k(x, x′)→ 0 as ||x− x′|| → ∞ then

lim
||x−x′||→∞

cov[Σij(x),Σls(x
′)] = 0 , ∀ i, j, l, s ∈ {1, . . . , p} . (B.13)

We can also derive expressions for the covariances when L is full rank, and for when

there are different kernel functions for each degree of freedom. But the conclusions

are qualitatively the same: the covariances are directly proportional to the kernel

function(s), and Corollaries B1.1 and B1.2 remain unchanged.

To find the autocorrelations, one can normalise the covariances in (B.3)-(B.5).

Since k(x, x) = 1 for all x ∈ X, the autocorrelations take an especially simple

form. For example, assuming that the kernel is stationary (that is k(a + x, a) is

the same for all a ∈ X), then the lag-x autocorrelation function (ACF) is

ACFij(x) = corr(Σij(0),Σij(x)) =

{
ki(0, x)2 if i = j ,

ki(0, x)kj(0, x) if i 6= j .
(B.14)

This again makes clear the direct relationship between the kernel k(x, x′) (and

its parameters, like length-scale) and the dynamics of the matrix Σ(x). In fact

one way to set the values of parameters like length-scale is to use the empirical

autocorrelation function.

We conclude this section with a property that has a special meaning in finance.

Theorem B1.2. If Σ(x) ∼ GWP(V, ν, k) then A>Σ(x)A ∼ GWP(A>V A, ν, k).

Proof B1.2. From (3.22),

A>Σ(x)A =
ν∑
i=1

A>Lûi(x)û>i (x)L>A =
ν∑
i=1

wi(x)w>i (x) , (B.15)

where wi ∼ N(0, A>V A).

Suppose we have p assets with returns r(t), and a p × p matrix A, where each

column contains the proportion invested in each asset for a given portfolio. The

returns on the portfolios are A>r(t) and the volatility is A>Σ(t)A. Therefore if

asset return volatility follows a Wishart process GWP(ν, V, k) then the volatility of

the p portfolios also follows a Wishart process. This means that, unlike MGARCH

models, the Wishart process is invariant to portfolio allocation (Gouriéroux et al.,

2009).
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LL

LΣ

Lu

Lθ

Lυ

LD

Figure B.1: Graphical model of the generalised Wishart process. u is a vector of all
GP function values, θ are GP hyperparameters, L is the lower Cholesky decomposition
of the scale matrix (LL> = V ), ν are the degrees of freedom, and Σ is the covariance
matrix.

B2 Interpretation of Model Parameters

In Figure 3.4 we showed a draw of Σ(x) evolving with x (e.g. time). Considering

just one of these time steps or spatial locations, Figure B.1 shows the conditional

dependency relationships for all parameters in the construction of section 3.8.

The kernel function(s) k, and the free parameters L,θ, ν have clear and meaning-

ful roles. Ultimately we wish to infer the posterior p(Σ(x)|D) for all x, and in

equations (B.1) and (B.2) we see that L sets the prior expectation and variance

for Σ(x) at every x (recall that V = LL>). One can take L = chol(Σ̃/ν), where Σ̃

is the empirical covariance matrix for y at all observed x (e.g. not at the locations

x we wish to forecast). Sampling from the distribution p(L|D) is another option

discussed further in Wilson and Ghahramani (2011).

There is some redundancy between ν and L, like in equations (B.1) and (B.2) for

the mean and variance of Σ(x); for any ν we can scale L so that E[Σ(x)] = νLL>

is some constant matrix A, by letting L = A1/2/
√
ν. However, suppose we do scale

L in this way as ν grows. From (B.2), Var[Σij(x)] = 1
ν
(Aii + AiiAjj) which → 0

as ν → ∞. Equivalently, as ν increases, samples of Σ(x) become relatively close

to one another. So ν controls how broad our prior is on Σ(x) at each x. One can

sample from the posterior distribution over ν using slice sampling. This posterior

distribution tells us how much we ought to trust our prior over Σ(x). Alternatively,
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B3 Alternate Construction for Real Valued Degrees of Freedom

if we have little prior knowledge of Σ(x), then we might simply fix ν to a small

value. The smallest we can make ν is p + 1 in order for Σ(x) to stay positive

definite (however, one can use a factor representation and add to the diagonal of

the matrix, as in Eq. (3.19)). This is a drawback of the Wishart distribution. In

section B4 we introduce a t-GWP, which is more robust to the limitation ν > p.

The kernel function k(x, x′) is also of great importance1. As we saw in the pre-

vious section the kernel controls the autocorrelations. The kernel also determines

whether or not the dynamics of Σ(x) are Markovian, periodic, smooth, etc. The

parameters of the kernel function θ tell us about the underlying source of volatil-

ity. They address questions like: Is there periodicity? If so, what is the period?

How much past data is needed to make a good forecast? And how quickly do the

autocorrelations change over time? The last two questions are answered by the

length-scale parameter. Since the answers will sometimes be different for different

univariate time series, we may want different length-scales for each dimension of y

– meaning a new kernel function kd for each dimension (d = 1, . . . , p). This can be

easily handled in the model construction: we just let the Gaussian process uid(x)

have kernel kd. Quite often this is unnecessary, since the dimensions of y(t) will

be different time series with similar length-scales, like returns for NASDAQ, S&P

500, DJI, FTSE, etc.

Overall, the free parameters in the GWP have clear interpretations and, when

learned from data, provide fundamental insights about what we are modelling.

B3 Alternate Construction for Real Valued De-

grees of Freedom

We now introduce a new Generalised Wishart Process construction which is more

expressive than the previous construction, because it has real valued degrees of

freedom ν.2 Moreover, the number of necessary stochastic processes is independent

1Covariance kernels are described in detail in section 2.4.
2We thank John P. Cunningham for helpful conversations and for bringing the Bartlett (1933)

construction of the Wishart distribution to our attention.
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B3 Alternate Construction for Real Valued Degrees of Freedom

of ν (in the previous construction there were pν Gaussian processes). And it is

easier to estimate ν in this new formulation, where standard sampling techniques

can be applied, without the need for reversible jump MCMC, for example.

Like before, we start with a construction of the standard Wishart distribution,

and then show how to create a process from it. Let

A =


√
m11 0 0 · · · 0
u21

√
m22 0 · · · 0

u31 u32
√
m33 · · · 0

...
...

...
. . .

...
up1 up2 up3 · · · √mpp

 , (B.16)

where mii ∼ χ2(ν − i + 1) and uij ∼ N(0, 1). Then LAA>L> ∼ Wp(ν, LL
>)

(Bartlett, 1933). We can allow for real valued degrees of freedom by instead

letting mii ∼ Γ(ν−i+1
2

, 2). To turn this into a Wishart process, we replace A by

A(x), where

A(x) =



√
m11(x) 0 0 · · · 0

u21(x)
√
m22(x) 0 · · · 0

u31(x) u32(x)
√
m33(x) · · · 0

...
...

...
. . .

...

up1(x) up2(x) up3(x) · · ·
√
mpp(x)

 . (B.17)

The uij(x) ∼ GP(0, k), with k(x, x) = 1, and mii(x) are Gaussian Copula Processes
1 (Wilson and Ghahramani, 2010a) that are marginally Gamma(ν−i+1

2
, 2) at every

x. Specifically, for each x, mii(x) = G−1
i Φ(uii(x)), where uii ∼ GP(0, k) with

k(x, x) = 1, Φ is the standard univariate Gaussian cdf, and G−1
i is the inverse cdf

of the Gamma(ν−i+1
2

, 2) distribution. We then construct Σ(x) as

Σ(x) = LA(x)A(x)>L> , (B.18)

which has Wishart marginals Wp(ν, LL
>), with real valued degrees of freedom ν,

at every x.

1A Gaussian Copula Process has an underlying Gaussian process dependency structure, but
arbitrary marginal distributions. A copula process is used to specify a meaningful dependency
structure between arbitrarily many random variables with arbitrary marginal distributions. See
Wilson and Ghahramani (2010a) for more on copula processes.

189



B4 t-Wishart Process Construction

Notice that the number of Gaussian processes is p(p+ 1)/2 compared to the pν ≥
p(p + 1) in the previous construction. There are at least half as many GPs, and

the number of GPs is independent of the degrees of freedom. So this construction

can be more efficient than the construction in section 3.8; however, for small ν

(e.g. ν < 5) this is typically not the case, because the inverse Gamma cdf requires

some computation.

B4 t-Wishart Process Construction

We now develop a GWP construction with heavy tails. We again start by con-

structing a matrix variate distribution, and then formulate a process from it. This

time, however, the matrix variate distribution belongs to a more general class of

distributions which contains the standard Wishart distribution as a special case.

It is constructed from special multivariate Student-t random variables.1

A p-variate Student-t random variable z with m degrees of freedom typically has

the pdf

p(z) =
Γ((m+ p)/2)

(πm)p/2Γ(m/2)|V |1/2

[
1 +

1

m
(z − µ)>V −1(z − µ)

]−(m+p)/2

, (B.19)

where V = cov[z]. The joint pdf of ν independent such variables is p(z1, . . . ,zν) =

p(z1) · · · p(zν).

For dependent but uncorrelated multivariate t variables, Joarder and Ahmed

(1996) proposed

p(z1, . . . ,zν) =
Γ((m+ p)/2)

(πνm)p/2Γ(m/2)|V |1/2

[
1 +

1

m
(z − µ)>V −1(z − µ)

]−(m+νp)/2

.

(B.20)

The marginals zi are p-variate t as in (B.19) (Kotz and Nadarajah, 2004). Joarder

and Ali (1997) showed that (B.20) can be expressed as a scale mixture of multi-

1Kotz and Nadarajah (2004) contains a thorough discussion of multivariate t distributions.
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B4 t-Wishart Process Construction

variate Gaussians,

p(z1, . . . ,zν) =

∫ ∞
0

|τ 2V |−ν/2

2πνp/2
exp

[
−1

2

ν∑
i=1

(zi − µ)>(τ 2V )−1(zi − µ)

]
h(τ)dτ ,

(B.21)

where τ is inverse Gamma with pdf

h(τ) =
2τ−(1+m)

(2/m)m/2Γ(m/2)
exp[− m

2τ 2
] . (B.22)

Therefore zi|τ ∼ N(µ, τ 2V ). Zellner (1976) and Sutradhar and Ali (1986) used

(B.20) in financial applications, and Kelejian and Prucha (1985) showed that

(B.20) is better at capturing heavy tailed behaviour than the standard independent

t model.

In analogy with the construction of the Wishart distribution, we consider the ma-

trix A formed by taking a sum of outer products of zero mean zi (where zi, . . . ,zν

have the joint pdf in (B.20)):

A =
ν∑
i=1

ziz
>
i . (B.23)

Sutradhar and Ali (1989) derived the corresponding pdf

p(A) =
Γ((m+ 2)/2)

mp/2Γ(m/2)Γp(ν/2)
|V |−(ν−1)/2|A|−(ν−p−2)/2

[
m+ tr(V −1A)

]−(m+p(ν−1))/2
.

(B.24)

Γp is the p dimensional Gamma function and m > p + 1. The matrix variate

distribution in (B.24) converges to the standard Wishart distribution Wp(ν−1, V )

as the degrees of freedom m→∞. The expected value of A is

E[A] =
(ν − 1)

1− 2/m
V , (B.25)

and for fixed m, there is more probability mass assigned to positive definite

matrices “far away” from this expectation. We say that A is t-Wishart, A ∼
TW(ν,m, V ), with degrees of freedom ν and m.

We wish to construct a process over covariance matrices Σ(x) with t-Wishart

marginal distributions at every x ∈ X. In analogy with (3.22), we start with
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B4 t-Wishart Process Construction

ûi(x) = (ui1(x), . . . , uip(x))>, where i = 1, . . . , ν and uid(x) are independent

Gaussian processes, uid(x) ∼ GP(0, k) with k(t, t) = 1. So that we can form a

Wishart matrix like (B.23) at every x, we want to transform ûi(x) to ẑi(x) =

(zi1(x), . . . , zip(x))>. ẑi(x) must be p-variate t as in (B.19), with mean 0, covari-

ance matrix I, and degrees of freedom m. Further, ẑ1(x), . . . , ẑν(x) must have the

joint pdf in (B.20), with mean 0, νp × νp covariance matrix I, and m degrees of

freedom.

To form ẑi(x) from ûi(x) we rely on the scale mixture representation in (B.21).

ẑi(x) = τ(x)ûi(x), where τ(x) is an inverse Gamma random variable for every

x ∈ X. We then must specify τ(x). One possibility is to let τ(x) = G−1[Φ(w(x))]

for every x ∈ X, where w(x) ∼ GP(0, k), Φ is a Gaussian cdf, and G is the

Gamma cdf. This is another example of a Gaussian copula process (Wilson and

Ghahramani, 2010a). Now that we have ẑi(x) we can form the new process as in

Theorem B4.1.

Theorem B4.1. The process defined by

Σ(x) =
ν∑
i=1

Lẑi(x)ẑi(x)>L> (B.26)

has a t-Wishart marginal distribution TW(ν,m, LL>) at every x ∈ X.

Proof B4.1. This is an extension of (3.22) which follows from (B.23).
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Appendix C

Derivations for Spectral Mixture
Kernels

A stationary kernel k(x, x′) is the inverse Fourier transform of its spectral density

S(s),

k(τ) =

∫
S(s)e2πis>τds , (C.1)

where τ = x− x′. First suppose

S(s) =
1√

2πσ2
exp{− 1

2σ2
(s− µ)2} , (C.2)
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where s, µ, σ and τ = x− x′ are scalars. Substituting (C.2) into (C.1),

k(x, x′) =

∫
exp(2πis(x− x′)) 1√

2πσ2
exp(− 1

2σ2
(s− µ)2)ds (C.3)

let τ = x− x′

=
1√

2πσ2

∫
exp[2πisτ − 1

2σ2
(s2 − 2µs+ µ2)]ds (C.4)

=
1√

2πσ2

∫
exp[− 1

2σ2
s2 + (2πiτ +

µ

σ2
)s− µ2

2σ2
]ds (C.5)

let a =
1

2σ2
, b = 2πiτ +

µ

σ2
, c = − µ2

2σ2

=
1√

2πσ2

∫
exp(−a(s− b

2a
)2) exp(

b2

4a
+ c)ds (C.6)

= exp[(2πiτ +
µ

σ2
)2σ

2

2
− µ2

2σ2
] (C.7)

= exp[(−4π2τ 2 + 4πiτ
µ

σ2
+
µ2

σ4
)
σ2

2
− µ2

2σ2
] (C.8)

= exp[−2π2(x− x′)2σ2][cos(2π(x− x′)µ) + i sin(2π(x− x′)µ))] .
(C.9)

Noting that the spectral density S(s) must be symmetric about s = 0, we let

φ(s ;µ, σ2) =
1√

2πσ2
exp{− 1

2σ2
(s− µ)2}, and (C.10)

S(s) = [φ(s) + φ(−s)]/2 . (C.11)

Closely following the above derivation, substituting (C.11) into (C.1) gives

k(τ) = exp{−2π2τ 2σ2} cos(2πτµ) . (C.12)

If φ(s) is instead a mixture of Q Gaussians on RP , where the qth component has

mean vector µq = (µ
(1)
q , . . . , µ

(P )
q ) and covariance matrix V = diag(v

(1)
q , . . . , v

(P )
q ),

and τp is the pth component of the P dimensional vector τ = x− x′, then it simi-

larly follows that

k(τ) =

Q∑
q=1

wqcos(2πµ>q τ)
P∏
p=1

exp{−2π2τ 2
p v

(p)
q }. (C.13)
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Appendix D

GPatt

D1 Introduction

We provide further detail about the eigendecomposition of kronecker matrices, and

the runtime complexity of kronecker matrix vector products. Sections D3 and D4

were largely contributed by Elad Gilboa.

D2 Eigendecomposition of Kronecker Matrices

Assuming a product kernel,

k(xi, xj) =
P∏
p=1

kp(xpi , x
p
j) , (D.1)

and inputs x ∈ X on a multidimensional grid, X = X1 × · · · × XP ⊂ RP , then the

covariance matrix K decomposes into a Kronecker product of matrices over each

input dimension K = K1 ⊗ · · · ⊗KP (Saatchi, 2011). The eigendecomposition of

K into QV Q> similarly decomposes: Q = Q1 ⊗ · · · ⊗QP and V = V 1 ⊗ · · · ⊗ V P .

Each covariance matrix Kp in the Kronecker product has entries Kp
ij = kp(xpi , x

p
j)

and decomposes as Kp = QpV pQp>. Thus the N × N covariance matrix K can

be stored in O(PN
2
P ) and decomposed into QV Q> in O(PN

3
P ) operations, for N
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D3 Matrix-vector Product for Kronecker Matrices

datapoints and P input dimensions. 1

D3 Matrix-vector Product for Kronecker Matri-

ces

We first define a few operators from standard Kronecker literature. Let B be a

matrix of size p×q. The reshape(B, r, c) operator returns a r-by-c matrix (rc = pq)

whose elements are taken column-wise from B. The vec(·) operator stacks the

matrix columns onto a single vector, vec(B) = reshape(B, pq, 1), and the vec−1(·)
operator is defined as vec−1(vec(B)) = B. Finally, using the standard Kronecker

property (B ⊗ C)vec(X) = vec(CXB>), we note that for any N element vector

u ∈ RN we have

KNu =

(
P⊗
p=1

Kp

N1/P

)
u = vec

KP
N1/PU

(
P−1⊗
p=1

Kp

N1/P

)> , (D.2)

where U = reshape(u, N1/P , N
P−1
P ), and KN is an N×N Kronecker matrix. With

no change to Eq. (D.2) we can introduce the vec−1(vec(·)) operators to get

KNu = vec

( vec−1

(
vec

( (
P−1⊗
p=1

Kp

N1/P

)(
KP
N1/PU

)> )) )> .

(D.3)

The inner component of Eq. (D.3) can be written as

vec

((
P−1⊗
p=1

Kp

N1/P

)(
KP
N1/PU

)>
IN1/P

)
= IN1/P ⊗

(
P−1⊗
p=1

Kp

N1/P

)
vec
((

KP
N1/PU

)>)
.

(D.4)

Notice that Eq. (D.4) is in the same form as Eq. (D.2) (Kronecker matrix-vector
product). By repeating Eqs. (D.3-D.4) over all P dimensions, and noting that

1The total number of datapoints N =
∏
p |Xp|, where |Xp| is the cardinality of Xp. For clarity

of presentation, we assume each |Xp| has equal cardinality N1/P .
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(⊗P
p=1 IN1/P

)
u = u, we see that the original matrix-vector product can be written

as  P⊗
p=1

Kp

N1/P

u = vec
([

K1
N1/P , . . .

[
KP−1
N1/P ,

[
KP
N1/P ,U

]]])
(D.5)

def
= kron mvprod

(
K1
N1/P ,K

2
N1/P , . . . ,K

P
N1/P ,u

)
(D.6)

where the bracket notation denotes matrix product, transpose then reshape, i.e.,[
Kp

N1/P ,U
]

= reshape
((

Kp

N1/PU
)>
, N1/P , N

P−1
P

)
. (D.7)

Iteratively solving the kron mvprod operator in Eq. (D.6) requires PN
P+1
P opera-

tions, because each of the P bracket operations requires O(N
P+1
P ).

D4 Inference with Missing Observations

The predictive mean of a Gaussian process at L test points, given N training

points, is given by

µL = KLN

(
KN + σ2IN

)−1
y , (D.8)

where KLN is an L×N matrix of cross covariances between the test and training

points. We wish to show that when we have M observations which are not on a

grid that the desired predictive mean

µL = KLM

(
KM + σ2IM

)−1
yM = KLN (KN + DN)−1 y , (D.9)

where y = [yM ,yW ]> includes imaginary observations yW , and DN is as defined

in section 4. as

DN =

[
DM 0

0 ε−1IW

]
, (D.10)

where we set DM = σ2IM .

Starting with the right hand side of Eq. (D.9),

µL =

[
KLM

KLW

] [
KM + DM KMW

K>MW KW + ε−1IW

]−1 [
yM
yW

]
. (D.11)
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D4 Inference with Missing Observations

Using the block matrix inversion theorem, we get[
A B
C E

]−1

=

[
(A−BE−1C)−1 −A−1B(I − E−1CA−1B)−1E−1

−E−1C(A−BE−1C)−1 (I − E−1CA−1B)−1E−1

]
,

(D.12)

where A = KM + DM , B = KMW , C = K>MW , and E = KW + ε−1IW . If we take

the limit of E−1 = ε(εKW + IW )−1 ε→0−→ 0, and solve for the other components,

Eq. (D.11) becomes

µL =

[
KLM

KLW

] [
(KM + DM)−1 0

0 0

] [
yM
yW

]
= KLM(KM + DM)−1yM (D.13)

which is the exact GP result. In other words, performing inference given obser-

vations y will give the same result as directly using observations yM . The proof

that the predictive covariances remain unchanged proceeds similarly.
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Hörmander, L. (1990). The Analysis of Linear Partial Differential Operators I,

Distribution Theory and Fourier Analysis. Springer-Verlag. 115

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal

components. Journal of Educational Psychology, 24(6):417–441. 181

Hutton, W. C., Bretthorst, G. L., Garbow, J. R., and Ackerman, J. J. (2009).

High dynamic-range magnetic resonance spectroscopy (mrs) time-domain signal

analysis. Magnetic Resonance in Medicine, 62(4):1026–1035. 104

205



REFERENCES

Hyndman, R. (2005). Time series data library. http://www-personal.buseco.

monash.edu.au/~hyndman/TSDL/. 129

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E. (1991). Adaptive

mixtures of local experts. Neural computation, 3(1):79–87. 102

Joarder, A. and Ahmed, S. (1996). Estimation of the characteristic roots of the

scale matrix. Metrika, 44(1):259–267. 190

Joarder, A. and Ali, M. (1997). Estimation of the scale matrix of a multivariate

t-model under entropy loss. Metrika, 46(1):21–32. 190

Jolliffe, I. (2002). Principal component analysis. Springer verlag. 181

Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. (1999). An introduction

to variational methods for graphical models. Machine learning, 37(2):183–233.

81

Journel, A. and Huijbregts, C. (1978). Mining geostatistics. Academic Press

(London and New York). 74, 79, 86

Julesz, B. (1962). Visual pattern discrimination. Information Theory, IRE Trans-

actions on, 8(2):84–92. 165

Kass, R. E. and Greenhouse, J. B. (1989). Investigating therapies of potentially

great benefit. comment: A bayesian perspective. Statistical Science, pages 310–

317. 16

Kass, R. E. and Raftery, A. E. (1995). Bayes factors. Journal of the American

statistical association, 90(430):773–795. 16

Keeling, C. D. and Whorf, T. P. (2004). Atmospheric CO2 records from sites in the

SIO air sampling network. Trends: A Compendium of Data on Global Change.

Carbon Dioxide Information Analysis Center. 118

Kelejian, H. and Prucha, I. (1985). Independent or uncorrelated disturbances in

linear regression: An illustration of the difference. Economics Letters, 19(1):35–

38. 191

206

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/


REFERENCES

Kersting, K., Plagemann, C., Pfaff, P., and Burgard, W. (2007). Most likely

heteroscedastic Gaussian process regression. In ICML. 65, 73

Kirkpatrick, S., Gelatt, D., and Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220(4598):671–680. 107

Kostantinos, N. (2000). Gaussian mixtures and their applications to signal pro-

cessing. Advanced Signal Processing Handbook: Theory and Implementation for

Radar, Sonar, and Medical Imaging Real Time Systems. 115

Kotz, S. and Nadarajah, S. (2004). Multivariate t distributions and their applica-

tions. Cambridge University Press. 190

Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Imagenet classification with

deep convolutional neural networks. In Advances in Neural Information Pro-

cessing Systems. 2

Kühne, R., Schaffhauser, T., Wokaun, A., and Ernst, R. (1969). Study of transient

chemical reactions by NMR fast stopped-flow Fourier transform experiments.

Journal of Magnetic Resonance, 35(1):39–67. 103

Lawrence, N., Seeger, M., Herbrich, R., et al. (2003). Fast sparse gaussian process

methods: The informative vector machine. Advances in neural information

processing systems, pages 625–632. 87
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