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Saatchi et al. (2010) and Osborne (2010), for instance, have introduced Gaussian
process models for change points. In this note, we discuss how the Gaussian
process regression network (Wilson et al., 2012, 2011), and minor adaptations
to the GPRN, can also provide a framework for change point modelling.

The GPRN is designed to model a p dimensional function y(x), with signal and
noise correlations that vary with x ∈ X , an arbitrary input space (although we
are typically interested in x ∈ RM ).

A GPRN models y(x) as

y(x) = W (x)[f(x) + σfε] + σyz , (1)

where ε = ε(x) and z = z(x) are respectively N (0, Iq) and N (0, Ip) white noise
processes. Iq and Ip are q×q and p×p dimensional identity matrices. W (x) is a
p× q matrix of independent Gaussian processes such that W (x)ij ∼ GP(0, kw),
and f(x) = (f1(x), . . . , fq(x))> is a q×1 vector of independent GPs with fi(x) ∼
GP(0, kfi). The GPRN prior on y(x) is induced through GP priors in W (x)
and f(x), and the noise model is induced through ε and z.

We represent the GPRN in Figure 1.

The latent node functions f̂(x) are connected together to form the outputs
y(x). The strengths of the connections change as a function of x; the weights
themselves – the entries of W (x) – are functions. Old connections can break
and new connections can form. Indeed the high level idea behind the GPRN –
a graphical model with connections which vary with the inputs – only depends
on the nodes and weights being functions of x (they do not need to be GPs).
This is an adaptive network, where the signal and noise correlations between
the components of y(x) vary with x.

We label the length-scale hyperparameters for the kernels kw and kfi as θw
and θf respectively. We often assume that all the weight GPs share the same
covariance kernel kw, including hyperparameters. Roughly speaking, sharing
length-scale hyperparameters amongst the weights means that, a priori, the
strengths of the connections in Figure 1 vary with x at roughly the same rate.

Underlying the GPRN is a non-stationary kernel which can be learned from the
data. Conditioned on the weights W (x), each of the outputs yi(x), i = 1, . . . , p,
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Figure 1: Structure of the Gaussian process regression network. Latent random
variables and observables are respectively labelled with circles and squares, except
for the weight functions in a). a) This neural network style diagram shows the q
components of the vector f̂ (GPs with additive noise), and the p components of the
vector y. The links in the graph, four of which are labelled, are latent random weight
functions. Every quantity in this graph depends on the input x. This graph emphasises
the adaptive nature of this network: links can change strength or even disappear as x
changes. b) A directed graphical model showing the generative procedure with relevant
variables. Hyperparameters are labelled with dots.
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is a Gaussian process with kernel

kyi
(xa, xw) =

q∑
j=1

Wij(xa)kf̂j (xa, xw)Wij(xw) + δawσ
2
y , , (2)

where f̂i(x) = fi(x) + σf ε ∼ GP(0, kf̂i). Notice: 1) the amplitude of the

covariance function,
∑q

j=1Wij(x)Wij(x
′), is non-stationary (input dependent);

2) even if each of the kernels kfj has different stationary length-scales, the
mixture of the kernels kfj is input dependent and so the effective overall length-
scale is non-stationary; 3) the kernels kfj may be entirely different: some may
be periodic, others squared exponential, others Brownian motion, and so on.
Therefore the overall covariance kernel may be continuously switching between
regions of entirely different covariance structures.

We now further explore this property of changing covariance structures, assum-
ing for clarity that y(x) ∈ R1. In an adaptive network, a univariate output
variable y(x) is an input dependent mixture of functions:

y(x) = w1(x)f1(x) + w2(x)f2(x) + · · ·+ wq(x)fq(x) . (3)

If the node functions f1(x), . . . , fq(x) have different covariance functions – or
covariance functions with different hyperparameters – then y(x) will switch be-
tween different covariance regimes. We can imagine if f1 has a squared ex-
ponential (SE) kernel, f2 has an Ornstein-Uhlenbeck (OU) kernel, and f3 has
a periodic kernel, y(x) could switch between regions with smooth, OU, and
periodic covariance structure, or some mixtures of these structures.

The changes in covariance structure can be made more discrete by warping the
weight functions through sigmoid functions:

y(x) = σ(w1(x))f1(x) + · · ·+ σ(wq(x))fq(x) . (4)

If we consider two node functions, and wish σ to act as a switch between the
two functions, we can adapt the model to

y(x) = σ(w(x))f1(x) + σ(−w(x))f2(x) . (5)

If w(x), f1(x), f2(x) are all Gaussian processes (GPs), we can imagine the model
accounting for arbitrarily many change-points between f1 and f2. Conditioned
on w(x), y(x) is a Gaussian process with kernel

k(x, x′) = σ(w(x))k1(x, x′)σ(w(x′)) + σ(−w(x))k2(x, x′)σ(−w(x′)) , (6)

where k1 and k2 are the kernels of f1 and f2. A simple special case of the kernel
in Eq. (6) can be obtained when w(x) = ax>x+ b, a simple linear function.

Inference and predictions, as well as learning the hyperparameters of w(x), can
be performed using variational methods as in Wilson et al. (2012), or following
the more recent Nguyen and Bonilla (2013) which specifically focuses on efficient
variational methods for Gaussian process regression networks.
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