
Gaussian Process Regression Networks Supplementary Material

Andrew Gordon Wilson, David A. Knowles, Zoubin Ghahramani
University of Cambridge

agw38@cam.ac.uk, dak33@cam.ac.uk, zoubin@eng.cam.ac.uk

In this supplementary material, we discuss some further details of our ESS and VB inference (Sections 1
and 2), the computational complexity of our inference procedures (Section 3), and the correlation structure
induced by the GPRN model (Section 4). We also discuss multimodality in the GPRN posterior (Section
5), SVLMC, and some background information and notation for Gaussian process regression (Section 7).
Figure 1 shows the network structure of GPRN learned on the JURA dataset.

1 Elliptical Slice Sampling

To sample from p(u|D,γ), we could use a Gibbs sampling scheme which would have conjugate posterior
updates, alternately conditioning on weight and node functions. However, this Gibbs cycle would mix
poorly because of the correlations between the weight and node functions in the posterior p(u|D,γ).
In general, MCMC samples from p(u|D,γ) mix poorly because of the strong correlations in the prior
p(u|σf ,θf ,θw) imposed by CB . The sampling process is also often slowed by costly matrix inversions in
the likelihood.

We use Elliptical Slice Sampling (Murray et al., 2010), a recent MCMC technique specifically designed
to sample from posteriors with tightly correlated Gaussian priors. It does joint updates and has no free
parameters. Since there are no costly or numerically unstable matrix inversions in the likelihood of we
also find sampling to be efficient.

With a sample from p(u|D,γ), we can sample from the predictive p(W (x∗),f(x∗)|u, σf ,D). Let
W i
∗,f

i
∗ be the ith such joint sample. Using our generative GPRN model we can then construct samples of

f2(x)

f1(x)

W11(x)

W12(x)

W21(x)

W22(x)

W31(x)

W32(x)

y1(x)

y2(x)

y3(x)

Figure 1: Network structure for the Jura dataset learnt by GPRN. The spatially varying node and weight functions
are shown, along with the predictive means for the observations. The three output dimensions are cadmium, nickel
and zinc concentrations respectively.

1

p(y(x∗)|W i
∗,f

i
∗, σf , σy), from which we can construct the predictive distribution

p(y(x∗)|D) = lim
J→∞

1

J

J∑
i=1

p(y(x∗)|W i
∗,f

i
∗, σf , σy) . (1)

We see that even with a Gaussian observation model, the predictive distribution in (1) is an infinite
mixture of Gaussians, and will generally be heavy tailed. Since mixtures of Gaussians are dense in the set
of probability distributions, the predictive distribution for GPRN is highly flexible.

Mixing was assessed by looking at trace plots of samples, and the likelihoods of these samples. Specific
information about how long it takes to sample a solution for a given problem is in the experiments section.

2 Variational Bayes

We perform variational EM (Jordan et al., 1999) to fit an approximate posterior q to the true posterior p,
by minimising the Kullback-Leibler divergence KL(q||p) = −H[q(v)]−

∫
q(v) log p(v)dv, where H[q(v)] =

−
∫
q(v) log q(v)dv is the entropy and v = {f ,W, σ2

f , σ
2
y, aj}.

E-step. We use Variational Message Passing (Winn and Bishop, 2006) under the Infer.NET frame-
work (Minka et al., 2010) to estimate the posterior over v = {f ,W, σ2

f , σ
2
y, aj}, where the {aj} are signal

variance hyperparameters for each node function j, so that kf̂j → ajkf̂j .

We specify inverse Gamma priors on {σ2
f , σ

2
y, aj}:

σ2
fj ∼ IG(ασ2

f
, βσ2

f
), σ2

y ∼ IG(ασ2
y
, βσ2

y
), aj ∼ IG(αa, βa).

We use a variational posterior of the following form:

q(v) = qσ2
y
(σ2
y)

Q∏
j=1

qfj (fj)qσ2
fj

(σ2
fj)qaj (aj)

P∏
i=1

qWij (Wij)qf̂nj
(f̂nj)

where qσ2
y
, qσ2

fj
and qaj are inverse Gamma distributions; qf ′

nj
, qf̂nj

are univariate normal distributions; and

qfj and qWij are multivariate normal distributions. The lengthscales {θf , θw} do not appear here because
they are optimised in the M-step below (we could equivalently consider a point mass “distribution” on the
lengthscales).

For mathematical and computational convenience we introduce the following variables which are de-
terministic functions of the existing variables in the model:

wnij := Wij(xn), f ′nj := fj(xn) (2)

tnij := wnij f̂nj , sin :=
∑
j

tnij (3)

We refer to these as “derived” variables. Note that the observations yi(xn) ∼ N (sin, σ
2
y) and that f̂nj ∼

N (f ′nj , σ
2
fj

). These derived variables are all given univariate normal “pseudo-marginals” which Variational
message passing uses as conduits to pass appropriate moments, resulting in the same updates as standard

2

VB (see Winn and Bishop (2006) for details). Using the derived variables the full model can be written as

p(v) ∝ IG(σ2
y;ασ2

y
, βσ2

y
)

Q∏
j=1

(
N (fj ; 0, ajKfj)

IG(σ2
fj ;ασ2

f
, βσ2

f
)IG(aj ;αa, βa)

P∏
i=1

[
N (Wij ; 0,Kw)

N∏
n=1

δ(wnij −Wij(xn))δ(f ′nj − f̂j(xn))N (f̂nj ; f
′
nj , σ

2
fj)

δ(tnij − wnij f̂nj)δ(sin −
∑
j

tnij)N (yi(xn); sin, σ
2
y)

])

The updates for f ,W, σ2
f , σ

2
y are standard VB updates and are available in Infer.NET. The update for

the ARD parameters aj however required specific implementation. The factor itself is

logN (fj ;0, ajKf)
c
= −1

2
log |ajKj | −

1

2
fTj (ajKf)−1fj

= −N
2

log aj −
1

2
log |Kj | −

1

2
a−1
j fTj K

−1
f fj (4)

where
c
= denotes equality up to an additive constant. Taking expectations with respect to f under q we

obtain the VMP message to aj as IG
(
aj ;

N
2 − 1, 1

2 〈f
T
j K

−1
f fj〉

)
. Since the variational posterior on f is

multivariate normal the expectation 〈fTj K
−1
f fj〉 is straightforward to calculate.

M-step. In the M-step we optimise the variational lower bound with respect to the log length scale
parameters {θf , θw}, using gradient descent with line search. When optimising θf we only need to consider
the contribution to the lower bound of the factor N (fj ; 0, ajKfj) (see (4)), which is straightforward to
evaluate and differentiate. From (4) we have:

〈logN (fj ; 0, ajKfj)〉q
c
= −N

2
log aj −

1

2
log |Kfj | −

1

2
〈a−1
j 〉〈f

T
j K

−1
fj

fj〉

We will need the gradient with respect to θf :

∂〈logN (fj ; 0, ajKfj)〉
∂θf

= −1

2
tr

(
K−1
fj

∂Kfj

∂θf

)
− 1

2
〈a−1
j 〉〈f

T
j K

−1
fj

∂Kfj

∂θf
K−1
fj

fj〉

The expectations here are straightforward to compute analytically since fj has multivariate normal varia-
tional posterior. Analogously for θw we consider the contribution of N (Wpq; 0,KW).

VB predictive distribution. The predictive distribution for the output y∗(x) at a new input location
x is calculated as

p(y∗(x)|D) =

∫
p(y∗(x)|W (x), f(x))p(W (x), f(x)|D)dWdf (5)

VB fits the approximation p(W (x), f(x)|D) = q(W)q(f), so the approximate predictive is

p(y∗(x)|D) =

∫
p(y∗(x)|W (x), f̂(x))q(W)q(f̂)dWdf̂ (6)

3

We can calculate the mean and covariance of this distribution analytically:

ȳ∗(x)i =
∑
k

E(W ∗ik)E[f̂∗k] (7)

cov(y∗(x))ij =
∑
k

[E(W ∗ik)E(W ∗jk)var(f̂∗k) + δijvar(W ∗ik)E(f̂∗2k)] + δijE[σ2
y] (8)

where δij = I[i = j] is the Kronecker delta function, W ∗ik = Wik(x) and f̂∗k = f̂k(x). The moments of

W ∗ik and f̂∗k under q are straightforward to obtain from q(W) and q(f) respectively using the standard
GP prediction equations (see Rasmussen and Williams (2006)). It is also of interest to calculate the noise
covariance. Recall our model can be written as

y(x) = W (x)f(x)︸ ︷︷ ︸
signal

+σfW (x)ε+ σyz︸ ︷︷ ︸
noise

(9)

Let n(x) = σfW (x)ε+ σyz be the noise component. The covariance of n(x) under q is then

cov(n(x))ij =
∑
k

[E[σ2
fk

]E(W ∗ik)E(W ∗jk) + δijvar(W ∗jk)] + δijE[σ2
y] (10)

3 Computational Considerations

The computational complexity of a Markov chain Monte Carlo GPRN approach is mainly limited by taking
the Cholesky decomposition of the block diagonal CB , an Nq(p + 1) × Nq(p + 1) matrix in the prior on
GP function values. But pq of these blocks are the same N × N covariance matrix Kw for the weight
functions, and q of these blocks are the covariance matrices Kf̂i

associated with the node functions, and

chol(blkdiag(A,B, . . .)) = blkdiag(chol(A), chol(B), . . .). Therefore assuming the node functions share
the same covariance function (which they do in our experiments), the complexity of this operation is only
O(N3), the same as for regular Gaussian process regression. At worst it is O(qN3), assuming different
covariance functions for each node.

Sampling also requires likelihood evaluations. Since there are input dependent noise correlations be-
tween the elements of the p dimensional observations y(xi), multivariate volatility models would normally
require inverting1 a p×p covariance matrix N times, like MGARCH (Bollerslev et al., 1988) or multivariate
stochastic volatility models (Harvey et al., 1994). This would lead to a complexity of O(Nqp+Np3) per

likelihood evaluation. However, by working directly with the noisy f̂ instead of the noise free f , evaluat-
ing the likelihood requires no costly or numerically unstable inversions, and thus has a complexity of only
O(Nqp).

The computational complexity of variational Bayes is dominated by the O(N3) inversions required to
calculate the covariance of the node and weight functions in the E-step. Naively q and qp such inversions
are required per iteration for the node and weight functions respectively, giving a total complexity of
O(qpN3). However, under VB the covariances of the weight functions for the same p are all equal,
reducing the complexity to O(qN3). If p is large the O(pqN2) cost of calculating the weight function
means may become significant. Although the per iteration cost of VB is actually higher than for MCMC,
far fewer iterations are typically required to reach convergence.

We see that when fixing q and p, the computational complexity of GPRN scales cubically with the
number of data points, like standard Gaussian process regression. On modern computers, this limits GPRN
to datasets with fewer than about N = 30000 points. However, one could adopt a sparse representation of
GPRN, for example following the DTC, (Csató and Opper, 2001; Seeger et al., 2003; Quiñonero-Candela
and Rasmussen, 2005; Rasmussen and Williams, 2006), PITC (Quiñonero-Candela and Rasmussen, 2005),
or FITC (Snelson and Ghahramani, 2006) approximations, which would lead to O(M2N) scaling where

1In this context, “inverting” means decomposing (e.g. a Cholesky decomposition of) the matrix Σ(x) in question, for
instance to take the the determinant of Σ−1(x), or the matrix vector product y>(x)Σ−1(x)y(x).

4

M � N . If the input space X is on a full (but not necessarily equispaced) grid, in that it can be expressed
as a cartesian product of the input locations for each dimension, then the complexity in N reduces to
O(N logN).

Fixing q and N , the per iteration (for MCMC or VB) computational complexity of GPRN scales linearly
with p. Overall, the computational demands of GPRN compare favourably to most multi-task GP models,
which commonly have a complexity of O(p3N3) (e.g. SLFM, LMC, and CMOGP in the experiments) and
do not account for either input dependent signal or noise correlations. Moreover, multivariate volatility
models, which account for input dependent noise correlations, are commonly intractable for p > 5 (Engle,
2002; Gouriéroux et al., 2009). The 1000 dimensional gene expression experiment is tractable for GPRN,
but intractable for the alternative multi-task models used on the 50 dimensional gene expression set, and
the multivariate volatility models.

Using either MCMC or VB with GPRN, the memory requirement is O(N2) if all covariance kernels
share the same hyperparameters, is O(qN2) is the node functions have different kernel hyperparameters,
and O(pq2N2) if all GPs have different kernel hyperparameters. This memory requirement comes from
storing the information in the block diagonal CB in the prior p(u|σf ,θf ,θw).

4 Covariance structure

In this section we derive the covariance structure induced by the GPRN of Section 2 in the main text,
explicitly in terms of the kernel functions kw and kf for the weight and node functions. We assume that
the weight functions share a kernel kw and the node functions share a kernel kf .

In the GPRN specification of Section 2 in the main text, a priori, at a particular location x,

E[y(x)] = 0 , (11)

cov(y(x)) = (1 + σ2
f + σ2

y)I , (12)

because W (x) and f(x) are comprised of independent mean zero Gaussian processes. One can always
preprocess data so that (11) and (12) accord with prior beliefs. The modelling power of standard Gaussian
process regression comes primarily through the covariance kernel and its hyperparameters, which allow for
a flexible covariance structure between data points at different locations. Likewise, the modelling power
of GPRN comes from the induced process over Σ(x∗) = cov[y(x∗)|x∗] and how its covariance structure
directly relates to the Gaussian process covariance kernels kw and kf used in the weight and node functions.
Given the weight and node functions, the covariance matrix Σ(x∗) = cov[y(x∗)|x∗] is

Σ(x∗) = W (x∗)f(x∗)f(x∗)
>W (x∗)

>︸ ︷︷ ︸
signal

+σ2
fW (x∗)W (x∗)

> + σ2
yI︸ ︷︷ ︸

noise

. (13)

Theorem 4.1 gives the covariance structure for the induced process in (13). The covariances induced by
the signal and noise models are separately labelled.

Theorem 4.1. Abbreviating the kernels kf (x, x′) and kw(x, x′) as kf and kw, for i 6= j 6= l 6= s, and
locations x and x′,

cov[Σii(x),Σii(x
′)] = 2q2k2

wk
2
f + 2q(k2

w + k2
v)︸ ︷︷ ︸

signal

+ 2qσ4
fk

2
w + σ4

y︸ ︷︷ ︸
noise

. (14)

cov[Σij(x),Σji(x
′)] = cov(Σij(x),Σij(x

′)) = 0.5(3q + q2)k2
wk

2
f + qk2

w︸ ︷︷ ︸
signal

+σ4
fk

2
w + σ4

y︸ ︷︷ ︸
noise

. (15)

cov[Σij(x),Σls(x
′)] = 0 . (16)

Proof 4.1. Wij(x) ∼ GP(0, kw) and fi(x) ∼ GP(0, kf). We first consider the contribution from the signal,
A(x) = W (x)f(x)f(x)>W (x)>. The entry A11(x) =

∑q
i=1W1i(x)fi(x)

∑q
j=1W1j(x)fj(x). We will focus

5

on this entry, since all the diagonal entries are i.i.d., and cov(A11(x), A11(x′)) = cov(Aii(x), Aii(x
′)). Ab-

breviating W11(x′),W12(x′),f1(x′),f2(x′) respectively as W ′11,W
′
12,f

′
1,f
′
2, and W11(x),W12(x),f1(x),f2(x)

as W11,W12,f1,f2, and given that the node and weight functions are independent,

cov(A11(x), A11(x′)) = qcov(W 2
11f

2
1 ,W

′2
11f
′2
1) + 2q(q − 1)cov(W11f1W12f2,W

′
11f
′
1W
′
12f
′
2) . (17)

cov(W11W12f1f2,W
′
11W

′
12f
′
1f
′
2) = E[W11W12f1f2W

′
11W

′
12f
′
1f
′
2]− E[W11W12f1f2]E[W ′11W

′
12f
′
1f
′
2] , (18)

= E[W11W12f1f2W
′
11W

′
12f
′
1f
′
2] . (19)

Since W11 and W ′11 are jointly Gaussian and marginally N (0, 1) random variables, we can write

W ′11 = kwW11 +
√

1− k2
wγ1 , (20)

where γ1 is N (0, 1) and independent from W11 and W ′11. Substitutions similar to (20) can be made for
W ′12,f

′
1,f
′
2, so that

E[W11W12f1f2W
′
11W

′
12f
′
1f
′
2] = k2

wk
2
f . (21)

Likewise,

cov(W11(x)2f1(x)2,W11(x′)2f1(x′)2) = 2(k2
wk

2
f + k2

w + k2
v), (22)

using E[a4] = 3 if a ∼ N (0, 1). Therefore

cov(Aii(x), Aii(x
′)) = 2q(k2

wk
2
f + k2

w + k2
f) + 2q(q − 1)k2

wk
2
f = 2q2k2

wk
2
f + 2q(k2

w + k2
f) . (23)

Equations (14)-(16) follow similarly.

Corollary 4.1. Since E[Σ(x)] = I = constant, and the covariances are proportional to the kernel func-
tions(s), the induced process on Σ(x) is weakly stationary if the kernel function(s) are stationary – that
is, if k(x, x′) = k(x + a, x′ + a) for all feasible constants a and all kernels k. This holds, for example, if
k(x, x′) is a function of ||x− x′||.

Corollary 4.2. If k(x, x′)→ 0 as ||x− x′|| → ∞ then

lim
||x−x′||→∞

cov[Σij(x),Σls(x
′)] = 0 , ∀ i, j, l, s . (24)

Theorem 5.1 and its corollaries clarify the importance of the kernels kw and kf and their hyperparam-
eters (particularly length-scales): through kw and kf we can explicitly specify the desired prior covariance
structure of the GPRN model.

5 Multimodality in the GPRN posterior

It is possible to reduce the number of modes in the posterior by constraining the weights W or nodes f
to be positive. For MCMC it is straightforward to do this by exponentiating the weights, as in Adams
and Stegle (2008) and Adams et al. (2010). For VB it is more straightforward to explicitly constrain the
weights to be positive using a truncated Gaussian representation. We found that these extensions did
not significantly improve empirical performance, although exponentiating the weights sometimes improved
numerical stability for MCMC on the multivariate volatility experiments. For Adams and Stegle (2008)
exponentiating the weights will have been more valuable because they use Expectation Propagation, which
in their case would centre probability mass between symmetric modes. MCMC and VB approaches are
more robust to this problem. MCMC can explore these symmetric modes, and VB will concentrate on one
of these modes without losing the expressivity of the GPRN prior.

6

6 SVLMC

In the main text, we compared to 8 multiple output GP methods: CMOGP, SLFM, ICM, co-kriging, LMC,
CMOFITC, CMODTC, CMOPITC. We also tested SVLMC, but found that it was not tractable on the
gene expression or jura datasets, and since it does not account for input dependent noise correlations, it is
not applicable to the multivariate volatility datasets. In this section, we briefly present some of the results
that we did find. The SVLMC does not incorporate hyperparameters, and we found performance on these
datasets to be sensitive to covariance kernel hyperparameters, particularly length-scales. So we introduced
covariance kernel hyperparameters (like length-scales) into the SVLMC. We found the covariogram (based
on the ACFs), which is typically used in geostatistics, too crude to set these hyperparameters, so we used
the GPRN to learn hyperparameters. We ran an instance of SVLMC on the p = 50 gene expression dataset.
After having taken 5×107 samples (taking 20 hours on a 2.3 GHz i5 Intel Duo Core processor), the SMSE
was 4.94, compared to an SMSE of 0.32 and 0.34 with GPRN (ESS) and GPRN (VB) respectively. For
GPRN (ESS) we took 6000 samples, which took 40 seconds. GPRN (VB) took 12 seconds to converge.

7 Gaussian processes

We briefly review Gaussian process regression, some notation, and expand on some of the points in the
introduction. For more detail see Rasmussen and Williams (2006).

A Gaussian process is a collection of random variables, any finite number of which have a joint Gaussian
distribution. Using a Gaussian process, we can define a distribution over functions w(x):

w(x) ∼ GP(m(x), k(x, x′)), (25)

where w is the output variable, x is an arbitrary (potentially vector valued) input variable, and the mean
m(x) and covariance function (or kernel) k(x, x′) are respectively defined as

m(x) = E[w(x)] , (26)

k(x, x′) = cov[w(x), w(x′)] . (27)

This means that any collection of function values has a joint Gaussian distribution:

(w(x1), w(x2), . . . , w(xN))> ∼ N (µ,K) , (28)

where the N×N covariance matrix K has entries Kij = k(xi, xj), and the mean µ has entries µi = m(xi).
The properties of these functions (smoothness, periodicity, etc.) are determined by the kernel function.
The squared exponential kernel is popular:

kSE(x, x′) = A exp(−0.5||x− x′||2/l2) . (29)

Functions drawn from a Gaussian process with this kernel function are smooth, and can display long
range trends. The length-scale hyperparameter l is easy to interpret: it determines how much the function
values w(x) and w(x + a) depend on one another, for some constant a ∈ X . When the length-scale is
learned from data, it is useful for determining how far into the past one should look in order to make good
forecasts. A ∈ R is the amplitude coefficient, which determines the marginal variance of w(x) in the prior,
Var[w(x)] = A, and the magnitude of covariances between w(x) at different inputs x.

The Ornstein-Uhlenbeck kernel is also widely applied:

kOU(x, x′) = exp(−||x− x′||/l) . (30)

In one dimension it is the covariance function of an Ornstein-Uhlenbeck process (Uhlenback and Ornstein,
1930), which was introduced to model the velocity of a particle undergoing Brownian motion. With this
kernel, the corresponding GP is a continuous time AR(1) process with Markovian dynamics: w(x + a) is

7

independent of w(x− a) given w(x) for any constant a. Indeed the OU kernel belongs to a more general
class of Matérn kernels,

kMatérn(x, x′) =
21−α

Γ(α)
(

√
2α||x− x′||

l
)αKα(

√
2α||x− x′||

l
) , (31)

where Kα is a modified Bessel function (Abramowitz and Stegun, 1964). In one dimension the correspond-
ing GP is a continuous time AR(p) process, where p = α + 1/2.2 The OU kernel is recovered by setting
α = 1/2.

There are many other useful kernels, like the periodic kernel (with a period that can be learned from
data), or the Gibbs kernel (Gibbs, 1997) which allows for input dependent length-scales. Kernels can
be combined together, e.g. k = a1k1 + a2k2 + a3k3, and the relative importance of each kernel can be
determined from data (e.g. from estimating a1, a2, a3). Rasmussen and Williams (2006) and Bishop (2006)
have a discussion about how to create and combine kernels.

Suppose we are doing a regression using points {y(x1), . . . , y(xN)} from a noisy function y = w(x) + ε,
where ε is additive i.i.d Gaussian noise, such that ε ∼ N (0, σ2

n). Letting y = (y(x1), . . . , y(xN))>, and
w = (w(x1), . . . , w(xN)>, we have p(y|w) = N (w, σ2

nI) and p(w) = N (µ,K) as above. For notational
simplicity, we assume µ = 0. For a test point w(x∗), the joint distribution p(w(x∗),y) is Gaussian:[

w(x∗)
w

]
∼ N (0,

[
k(x∗, x∗) k>∗

k∗ K + σ2
nI

]
) , (32)

where K is defined as above, and (k∗)i = k(x∗, xi) with i = 1, . . . , N . We can therefore condition on y to
find p(w(x∗)|y) = N (µ∗, v∗) where

µ∗ = k>∗ (K + σ2
nI)−1y , (33)

v∗ = k(x∗, x∗)− k>∗ (K + σ2
nI)−1k∗ . (34)

We can find this more laboriously by noting that p(w|y) and p(w(x∗)|w) are Gaussian and integrating,
since p(w(x∗)|y) =

∫
p(w(x∗)|w)p(w|y)dw.

We see that (34) doesn’t depend on the data y, just on how far away the test point x∗ is from the
training inputs {x1, . . . , xN}.

In regards to the introduction, we also see that for this standard Gaussian process regression, the
observation model p(y|w) is Gaussian, the predictive distribution in (33) and (34) is Gaussian, the marginals
in the prior (from marginalising equation (28)) are Gaussian, the noise is constant, and in the popular
covariance functions given, the amplitude and length-scale are constant. A brief discussion of multiple
outputs, noise models with dependencies, and non-Gaussian observation models can be found in sections
9.1, 9.2 and 9.3 on pages 190-191 of Rasmussen and Williams (2006), available free online at the book
website www.gaussianprocess.org/gpml. An example of an input dependent length-scale is in section
4.2 on page 43.

References

Abramowitz, M. and Stegun, I. (1964). Handbook of mathematical functions with formulas, graphs, and
mathematical tables. Dover publications.

Adams, R. and Stegle, O. (2008). Gaussian process product models for nonparametric nonstationarity. In
ICML.

Adams, R. P., Dahl, G. E., and Murray, I. (2010). Incorporating side information into probabilistic matrix
factorization using Gaussian processes. In Grünwald, P. and Spirtes, P., editors, Proceedings of the 26th
Conference on Uncertainty in Artificial Intelligence, pages 1–9.

2Discrete time autoregressive processes such as w(t+ 1) = w(t) + ε(t), where ε(t) ∼ N (0, 1), are widely used in time series
modelling and are a particularly simple special case of Gaussian processes.

8

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Bollerslev, T., Engle, R. F., and Wooldridge, J. M. (1988). A capital asset pricing model with time-varying
covariances. The Journal of Political Economy, 96(1):116–131.

Csató, L. and Opper, M. (2001). Sparse representation for gaussian process models. In Advances in neural
information processing systems 13: proceedings of the 2000 conference, volume 13, page 444. The MIT
Press.

Engle, R. (2002). New frontiers for ARCH models. Journal of Applied Econometrics, 17(5):425–446.

Gibbs, M. (1997). Bayesian Gaussian Process for Regression and Classification. PhD thesis, Dept. of
Physics, University of Cambridge.

Gouriéroux, C., Jasiak, J., and Sufana, R. (2009). The Wishart autoregressive process of multivariate
stochastic volatility. Journal of Econometrics, 150(2):167–181.

Harvey, A., Ruiz, E., and Shephard, N. (1994). Multivariate stochastic variance models. The Review of
Economic Studies, 61(2):247–264.

Jordan, M., Ghahramani, Z., Jaakkola, T., and Saul, L. (1999). An introduction to variational methods
for graphical models. Machine learning, 37(2):183–233.

Minka, T. P., Winn, J. M., Guiver, J. P., and Knowles, D. A. (2010). Infer.NET 2.4. Microsoft Research
Cambridge. http://research.microsoft.com/infernet.

Murray, I., Adams, R. P., and MacKay, D. J. (2010). Elliptical Slice Sampling. JMLR: W&CP, 9:541–548.

Quiñonero-Candela, J. and Rasmussen, C. (2005). A unifying view of sparse approximate gaussian process
regression. The Journal of Machine Learning Research, 6:1939–1959.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for Machine Learning. The MIT Press.

Seeger, M., Williams, C., and Lawrence, N. (2003). Fast forward selection to speed up sparse gaussian
process regression. In Workshop on AI and Statistics, volume 9, page 2003.

Snelson, E. and Ghahramani, Z. (2006). Sparse gaussian processes using pseudo-inputs. Advances in neural
information processing systems, 18:1257.

Uhlenback, G. and Ornstein, L. (1930). On the theory of brownian motion. Phys. Rev., 36:823–841.

Winn, J. and Bishop, C. M. (2006). Variational message passing. Journal of Machine Learning Research,
6(1):661.

9

