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Pattern Recognition
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Pattern Recognition
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Gaussian processes

Definition
A Gaussian process (GP) is a collection of random variables, any finite number of
which have a joint Gaussian distribution.

Nonparametric Regression Model

I Prior: f (x) ∼ GP(m(x), k(x, x′)), meaning (f (x1), . . . , f (xN)) ∼ N (µ,K),
with µi = m(xi) and Kij = cov(f (xi), f (xj)) = k(xi, xj).

GP posterior︷ ︸︸ ︷
p(f (x)|D) ∝

Likelihood︷ ︸︸ ︷
p(D|f (x))

GP prior︷ ︸︸ ︷
p(f (x))
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Gaussian Process Covariance Kernels

Let τ = x− x′:

kSE(τ) = exp(−0.5τ 2/`2) (1)

kMA(τ) = a(1 +

√
3τ
`

) exp(−
√

3τ
`

) (2)

kRQ(τ) = (1 +
τ 2

2α `2 )
−α (3)

kPE(τ) = exp(−2 sin2(π τ ω)/`2) (4)
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CO2 Extrapolation with Standard Kernels
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Gaussian processes

“How can Gaussian processes possibly
replace neural networks? Did we throw the
baby out with the bathwater?”

David MacKay, 1998.
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More Expressive Covariance Functions

f̂i(x)

f̂1(x)

f̂q(x)

y1(x)

yj(x)

W11
(x)

W
pq (x)

W
1
q(x

)
W

p
1 (x

)

yp(x)

...

... ...

...

x

Gaussian Process Regression Networks. Wilson et. al, ICML 2012.
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Gaussian Process Regression Network
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Expressive Covariance Functions

I GPs in Bayesian neural network like architectures. (Salakhutdinov and Hinton,
2008; Wilson et. al, 2012; Damianou and Lawrence, 2012).
Task specific, difficult inference, no closed form kernels.

I Compositions of kernels. (Archambeau and Bach, 2011; Durrande et. al, 2011;
Rasmussen and Williams, 2006).
In the general case, difficult to interpret, difficult inference, struggle with
over-fitting.

Can learn almost nothing about the covariance function of a stochastic process from a
single realization, if we assume that the covariance function could be any positive
definite function. Most commonly one assumes a restriction to stationary kernels,
meaning that covariances are invariant to translations in the input space.
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Bochner’s Theorem

Theorem
(Bochner) A complex-valued function k on RP is the covariance function of a weakly
stationary mean square continuous complex-valued random process on RP if and
only if it can be represented as

k(τ) =
∫
RP

e2πisTτψ(ds) , (5)

where ψ is a positive finite measure.

If ψ has a density S(s), then S is called the spectral density or power spectrum of k,
and k and S are Fourier duals:

k(τ) =
∫

S(s)e2πisTτds , (6)

S(s) =
∫

k(τ)e−2πisTτdτ . (7)

12 / 21



Idea

k and S are Fourier duals:

k(τ) =
∫

S(s)e2πisTτds , (8)

S(s) =
∫

k(τ)e−2πisTτdτ . (9)

I If we can approximate S(s) to arbitrary accuracy, then we can approximate any
stationary kernel to arbitrary accuracy.

I We can model S(s) to arbitrary accuracy, since scale-location mixtures of
Gaussians can approximate any distribution to arbitrary accuracy.

I A scale-location mixture of Gaussians can flexibly model many distributions,
and thus many covariance kernels, even with a small number of components.
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Kernels for Pattern Discovery

Let τ = x− x′ ∈ RP. From Bochner’s Theorem,

k(τ) =
∫
RP

S(s)e2πisTτds (10)

For simplicity, assume τ ∈ R1 and let

S(s) = [N (s;µ, σ2) +N (−s;µ, σ2)]/2 . (11)

Then

k(τ) = exp{−2π2τ 2σ2} cos(2πτµ) . (12)

More generally, if S(s) is a symmetrized mixture of diagonal covariance Gaussians
on Rp, with covariance matrix Mq = diag(v(1)

q , . . . , v(P)
q ), then

k(τ) =
Q∑

q=1

wq

P∏
p=1

exp{−2π2τ 2
p v(p)

q } cos(2πτpµ
(p)
q ). (13)
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Results, CO2
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Results, Reconstructing Standard Covariances
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Results, Negative Covariances
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Results, Sinc Pattern
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Results, Airline Passengers
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Gaussian Process Kernels for Automatic Pattern Discovery

I Gaussian processes are rich distributions over functions, which provide a
Bayesian nonparametric approach to smoothing and interpolation.

I We introduce new, simple, closed form kernels, which can be used with
Gaussian processes to enable automatic pattern discovery and extrapolation.
Code available at: http://mlg.eng.cam.ac.uk/andrew

I These kernels form a basis for all stationary covariance functions.

I These kernels can be used with non-Bayesian methods.

I In the future, it would be interesting to reverse engineer covariance functions
that are induced by expressive architectures, like deep neural networks, to
develop powerful interpretable models with simple inference procedures and
closed form kernels.
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Results

Table: We compare the test performance of the proposed spectral mixture (SM)
kernel with squared exponential (SE), Matérn (MA), rational quadratic (RQ), and
periodic (PE) kernels. The SM kernel consistently has the lowest mean squared error
(MSE) and highest log likelihood (L).

SM SE MA RQ PE

CO2

MSE 9.5 1200 1200 980 1200
L 170 −320 −240 −100 −1800

NEG COV

MSE 62 210 210 210 210
L −25 −70 −70 −70 −70

SINC

MSE 0.000045 0.16 0.10 0.11 0.05
L 3900 2000 1600 2000 600

AIRLINE

MSE 460 43000 37000 4200 46000
L −190 −260 −240 −280 −370
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