
Classification in Very High Dimensional

Problems with Handfuls of Examples

Mark Palatucci and Tom M. Mitchell

School of Computer Science
Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

[mpalatuc,tom.mitchell]@cs.cmu.edu

Abstract. Modern classification techniques perform well when the num-
ber of training examples exceed the number of features. If, however, the
number of features greatly exceed the number of training examples, then
these same techniques can fail. To address this problem, we present a
hierarchical Bayesian framework that shares information between fea-
tures by modeling similarities between their parameters. We believe this
approach is applicable to many sparse, high dimensional problems and
especially relevant to those with both spatial and temporal components.
One such problem is fMRI time series, and we present a case study that
shows how we can successfully classify in this domain with 80,000 original
features and only 2 training examples per class.

1 Introduction

There are many interesting domains that have high dimensionality. Some exam-
ples include the stream of images produced from a video camera, the output of a
sensor network with many nodes, or the time series of functional magnetic reso-
nance images (fMRI) of the brain. Often we want use this high dimensional data
as part of a classification task. For instance, we may want our sensor network to
classify intruders from authorized personnel, or we may want to analyze a series
of fMR images to determine the cognitive state of a human subject.

Unfortunately, for many of these high dimensional classification tasks, the
number of available training examples is far fewer than the number of dimensions.
Using regularization can certainly help, and classifiers like logistic regression with
L 1 penalized weights have been shown to scale to many thousands of dimensions.
There are other techniques like PCA, ICA, and manifold learning that explicitly
try to reduce the data dimension. These methods, however, are unlikely to help
when the amount of training data is only a few examples per class.

For many of these sparse, high dimensional problems the features are not
truly independent. This is easy to imagine for time series data as features may
not change much from one time point to the next. If we assumed that our data
were temporally continuous, we could imagine smoothing each feature by other
features nearby in time. This smoothing could remove noise and improve our
estimate of the feature.



2

Any assumption that we make a priori introduces inductive bias into our
learning task. If the assumption is accurate then the bias will help the learning
task when the number of training examples is very limited. Thus, to build a
classifier that will perform well with small numbers of examples, we desire a
way to incorporate any inductive biases (i.e. domain knowledge) we might have
about the relationships between features.

We present such a classifier based on a hierarchical Bayesian model. Our
model is both parametric and generative, and allows us to encode assumptions
about the features a priori. We demonstrate this classifier on fMRI time series
data and show that it scales tractably (even with 80,000 features). The classifier
is robust to noise and extraneous features, and can classify with only 2 examples
per class as compared to a standard Gaussian Naive Bayes classifier that fails
completely on the same data.

1.1 Case Study: Cognitive State Classification using Functional

Magnetic Resonance Images

Recent work has shown that it is possible to classify cognitive states from fMRI
data. For example, researchers have been able to determine the category of words
that a person is reading (e.g. fruits, buildings, tools, etc.) [10] by analyzing fMR
images of their neural activity. Others have shown that is is possible to classify
between drug addicted persons and non-drug using controls [15]. One study even
used fMRI data to classify whether participants were lying or telling the truth
[4].

Classification in this domain is tricky. The data are very high dimensional
and noisy, and training examples are sparse. A typical experiment takes a 3D
volumetric image of the brain every second. Each image has roughly 5,000 vox-
els1, each of which measures the neural activity at a specific location in the
brain2.

The experiments considered here are often divided into trials, with each last-
ing approximately 60 seconds. A trial is repeated several times within an ex-
periment to collect multiple samples of the subject’s neural response to some
stimulus. A classifier may treat each voxel-timepoint as a feature, and each trial
would be one example of that voxel-timepoint. Thus, an experiment with V vox-
els, T images per trial, and N trials would have V ∗ T features, with only N
examples per feature. A typical experiment may have V = 5, 000, T = 60, and
N = 20, yielding 300,000 features with only 20 training examples per feature
(per class). With this much data and such few examples, it is amazing that clas-
sification is even possible.

Why reducing the number of examples for fMRI experiments is important

Although others have shown classification methods that work for this domain,

1 The total number of voxels depends on the fMR scanner and particular subject.
2 fMRI technically measures blood oxygenation level which is believed to be correlated

with underlying neural activity.



3

even these methods fail as we further reduce the number of training examples (to
say 2-3 examples per class). Human subjects can get fatigued after long periods
in the fMR scanner, and any movements they make reduce the usability of their
data. Reducing the number of trials needed for an experiment would improve
participant comfort, and would allow the testing of more varied stimuli within
a given allotment of time.

1.2 Related Work

Hierarchical Bayesian methods have been used for quite some time within the
statistics community for combining data from similar experiments. A good in-
troduction is given in [6]. In general, these methods fall under “shrinkage” es-
timators. If we want to estimate several quantities that we believe are related,
then in the absence of large sample sizes for the individual quantities, these
methods shrink (smooth) the estimate toward some statistic of the combined
quantities. For example, if we want to compute the mean for each of several
random variables, we could shrink the sample mean for each variable toward
the sample mean over all the variables. If the samples sizes are small and the
variables related, this can provide a better estimate of the individual means.

Shrinkage estimators are very similar in spirit to multi-task learning algo-
rithms within the machine learning community. With multi-task[3] or “lifelong”
learning, the goal is to leverage “related” information from similar tasks to help
the current learning task [14]. The overall goal in both these communities is to
learn concepts with fewer data. A good example of using hierarchical Bayes in
a multi-task learning application is [7]. There has also been some interesting
theoretical work to explain why these methods are beneficial [2, 1].

Hierarchical Bayesian methods have been applied successfully within the
fMRI domain to the task of multiple subject classification. [13] demonstrates
a hierarchical model that improves classification of a single human subject by
combining data from multiple subjects within the same study. Our model, by
contrast, focuses on sharing information between features of a single subject.

The most similar work to ours within the fMRI domain is [11, 12]. This
work demonstrates that sharing parameters between voxels can lead to more
accurate models of the fMRI data. Our work by comparison, does not directly
couple the parameters of shared features, but rather shares information through
hyperparameters.

2 Models

2.1 Gaussian Naive Bayes

The hierarchical model we describe below is based on the Gaussian Naive Bayes
(GNB) classifier. The classifier is popular for fMRI classification tasks because
it scales to thousands of features, and is robust to noise and irrelevant features.
The model is based on Bayes rule:

P (Y |X) ∝ P (X|Y )P (Y )



4

where X ∈ ℜJ represents the example and Y ∈ {0, 1} is the class label. We
treat each component Xj of the vector X as a feature in the classifier where
1 ≤ j ≤ J . The classifier makes the assumption that the Xj are independent
given the class variable Y . We can then model the likelihood of the ith example
for a feature j using a normal Gaussian:

Xij |Y = c ∼ N(θ
(c)
j , σ

2(c)
j ) i = 1 . . . N

where N is the total number of examples. The joint likelihood then becomes the
product over all the features:

P (X|Y = c) =

J∏

j=1

P (Xj |Y = c)

The classification rule is therefore:

Predicted Class = argmax
c

P (Y = c)

J∏

j=1

P (Xj |Y = c)

= argmax
c

P (Y = c)

J∏

j=1

N(θ̂
(c)
j , σ̂

2(c)
j ) (1)

Here, θ̂
(c)
j and σ̂

2(c)
j are just the sample mean and variance for each feature j and

class c, and the prior P (Y = c) is given simply by the relative class frequencies
in the training data. Here δ(·) is the indicator function:

θ̂
(c)
j =

1
∑N

i=1 δ(Yi = c)

N∑

i=1

δ(Yi = c)Xij

σ̂
2(c)
j =

1
∑N

i=1 δ(Yi = c)

N∑

i=1

δ(Yi = c)(Xij − θ̂
(c)
j )2

P (Y = c) =
1

N

N∑

i=1

δ(Yi = c)

2.2 Standard Hierarchical Bayesian Model

If we believe that the individual θj are related by some distribution, then we can
incorporate that belief using a hierarchical model. For example, if we thought
that the θj were all drawn from a common normal distribution, then we could
model that as:

Xij |θj ∼ N(θj , σ
2)

θj ∼ N(µ, τ2)



5

Here µ and τ2 are called hyperparameters for the model. (Note that for notational
simplicity, we’ll leave out mention of the class c until we return to the subject
of classification.) Now in this hierarchical model, we want to know the posterior
distribution of θj |µ, τ2,X. Intuitively, we want to know our best estimate of θj

given not only the data, but also our prior belief about its distribution. If we
assume for the moment the sampling variance is common across features, that
is ∀j, σ2

j = σ2, then we can obtain the MAP estimate of θj as:

θ̂j =
N
σ2 X̄•j + 1

τ2 µ
N
σ2 + 1

τ2

(2)

Equation (2) is surprisingly intuitive. It is just the weighted average of the sample

mean X̄•j = 1
N

∑N

i=1 Xij and the hypermean µ, where N is the sample size. The
weights are given by the inverse of the respective variances since σ2/N is the
variance of the sample mean. If the number of samples N is large, then we
see more weight being placed on the sample mean. Similarly, if the number of
samples is small, the variance of the sample mean may be larger than that of
the hypermean. More weight would be placed on the hypermean. The beauty of
this estimator is that it automatically balances the estimate with the number of
available samples. As N grows large, the weight on the hypermean grows smaller.

Of course there are a few difficulties that we must address. One problem
is that usually we do not know the variance σ2. This quantity must somehow
be estimated from the data. Another problem is how to choose the hyperpa-
rameters µ and τ2. We could perform a fully Bayesian approach and apply a
non-informative hyperprior distribution to µ and τ2. This would then require
simulation to calculate the posterior for θj . Another, more tractable approach is
to estimate the hyperparameters directly from the data. This technique is often
called empirical Bayes[9] and uses point estimates for the hyperparameters:

µ̂ =
1

J

J∑

j=1

X̄•j τ̂2 =
1

J

J∑

j=1

(X̄•j − µ̂)2

Here we are just taking the sample mean and variance for all the individual sam-
ple means. We use a similar empirical approach in the method we now describe.

2.3 Feature Sharing Empirical Bayesian Model

One problem with the standard hierarchical model is the assumption that all
the parameters θj are drawn from the same distribution. To demonstrate this,
consider two variables that are perfectly correlated while the parameters that
characterize their distributions are wildly different. Assuming the parameters
for these two variables are drawn from a common normal distribution would
lead to poor estimates of the hyperparameters µ and τ2 and subsequently the
smoothed parameter θj . Nonetheless, the variables certainly contain information
about each other that we want to leverage when making an estimate about either
one.



6

We address this problem by allowing each θj to be drawn from a different
distribution. We propose an approach that uses the parameters of other related
variables, say θk and θi, to estimate the hyperparameters of the distribution for
θj . We define this formally as follows: assume we have two random variables, X
and Y , parameterized by θX and θY . Let mX→Y (θX) be a parameter transfor-

mation function that maps parameters of variable X to those of variable Y . Let
G j be the index set of all other variables that we believe contain information
about variable j. Let Gj = |G j | be the number of variables in that set.

We define a new smoothing estimator based on the normal model in Equation
(2). Rather than assume all θj come from a common distribution, we assume
that each θj has its own variance and hyperparameters µj and τj .

θ̂j =

Nbσ2
j

X̄•j + 1bτ2
j

µ̂j

Nbσ2
j

+ 1bτ2
j

(3)

These hyperparameters are calculated by point estimates of the transformed
parameters of the variables in G j :

µ̂j =
1

Gj

Gj∑

g=1

mg→j(X̄•g) (4)

τ̂2
j =

1

Gj

Gj∑

g=1

(
mg→j(X̄•g) − µ̂j

)2

(5)

Intuitively, we first compute estimates of the variable j’s parameters from the
other variables, and use these to estimate the hyperparameter µj . We then
smooth the sample mean using this hypermean as before.

Note that we still need estimates for the variances σ2
j . Let m′

g→i(·) be the
parameter transformation function for the variance parameters. We could take
the mean of these transformed parameters as before:

σ̂2
j =

1

Gj

Gj∑

g=1

m′

g→j(S
2
g) (6)

where S2
g is sample variance for feature g. Empirically, we have found that pool-

ing the variance parameters together m′

g→i(σ
2
g) = σ2

g and taking the median (vs.
mean) gives a estimator that is robust to extremely noisy variables:

∀j, σ̂2
j = median{S2

1 , S2
2 , . . . , S2

Gj
} (7)

Given sets of sharing groups and parameter transformation functions, we can
define a feature sharing classifier using the new estimators defined in Equations
(3),(4),(5), and (7). The classifier is still based on the Gaussian Naive Bayes rule
defined in Equation (1). Only now, for each class c we replace the estimate for

θ̂j with that from Equation (3) and σ̂2
j with either Equation (6) or Equation (7).



7

3 Case Study of Feature Sharing with fMRI Data

We now demonstrate this feature sharing model on a real fMRI classification
task. We first show how to formulate the problem into the feature sharing frame-
work described above, and then compare the feature sharing classifier against a
standard Gaussian Naive Bayes classifier for the same task.

3.1 Notation

Since fMRI data are a time series we consider each voxel-timepoint as a feature.
We index a particular example for a feature as Xivt where i is the trial(example),
v is the voxel, and t is the timepoint. The sample mean for a particular feature
would then be X̄•vt = 1

N

∑N

i=1 Xivt (where N is the number of trials) and the

sample variance would be S2
vt = 1

N−1

∑N

i=1 (Xivt − X̄•vt)
2 .

3.2 Feature Sharing Empirical Bayesian Model for fMRI

There are two important questions we need to answer to formulate this problem
into the feature sharing framework:

1. Which of the features are related? Specifically, for a feature j, what is
the index set G j of features that share information (parameters)?

2. How are the features related? Specifically, what are the parameter trans-

formation functions mk→j(·) that map the parameters from feature k to
feature j?

To answer these questions for the fMRI domain we consider a key observation
made in [11]: the time courses for neighboring voxels are often similar up to a

scaling factor. We can see this effect by observing several correlated neighbor-
hoods (4-5 voxels) in Figure 1. We use this domain knowledge to define a feature
sharing scheme for fMRI:

1. For feature j, let the index set of shared features G j be the immediate spatial
neighbors of a voxel. Since a voxel is indexed by integer {x,y,z} locations,
there can be a maximum of 26 neighbors per voxel.

2. We define mk→j(·) to be the mean parameter transformation function from
feature k to feature j. We define the function as a linear scaling factor
mk→j(X̄•k) = βk→jX̄•k. We must remember, however, that each voxel-
timepoint is a feature. To simplify, we’ll assume that the parameter trans-
formation function is the same for each pair of voxels, regardless of the time-
point. Therefore, for voxels j and k at any time t we have mkt→jt(X̄•kt) =
βk→jX̄•kt. We also define the variance parameter transformation m′

kt→jt(·)

to be the median pooling estimator described in Equation (7)3.

3 We have found empirically that for the variance parameter it is advantageous to
share over all the voxel-timepoints rather than just the immediate neighbors



8

Fig. 1. Time series of the voxels in the visual cortex averaged over all trials. We see
that several local neighborhoods (4-5 voxels) are similar but have different amplitudes.

We can solve for the βk→j constants by assuming a linear regression model:

X̄•jt = βk→jX̄•kt + ǫ

̂̄X•jt = β̂k→jX̄•kt

This allows us to find estimates β̂k→j using the usual method of least squares:

β̂k→j = min
β

T∑

t=1

(X̄•jt − βX̄•kt)
2

which is given by:

β̂k→j =

∑T

t=1 X̄•jtX̄•kt∑T

t=1 X̄2
•kt

(8)

Now that we have our sharing groups and parameter transformation functions
we can define a hierarchical model for fMRI:

Xivt|θvt ∼ N(θvt, σ
2)

θvt ∼ N(µvt, τ
2
vt)

Combining all these equations together, we can now define a feature sharing
classifier for fMRI:



9

A Feature Sharing Classifier for fMRI:

For each class c, compute:

1. σ̂2(c) = median(S
2(c)
11 , . . . , S

2(c)
1T , S

2(c)
21 , . . . , S

2(c)
2T , . . . , S

2(c)
V T )

2. β̂
(c)
k→j =

∑T

t=1 X̄
(c)
•jtX̄

(c)
•kt

∑T

t=1 X̄
2(c)
•kt

For any pairs of voxels j, k that share features

3. µ̂
(c)
vt =

1

Gvt

Gvt∑

j=1

β̂
(c)
j→vX̄

(c)
•jt τ̂

2(c)
vt =

1

Gvt

Gvt∑

j=1

(β̂
(c)
j→vX̄

(c)
•jt − µ̂

(c)
vt )2

4. θ̂
(c)
vt =

N(c)bσ2(c) X̄
(c)
•vt + 1bτ2(c)

vt

µ̂
(c)
vt

N(c)bσ2(c) + 1bτ2(c)
vt

The predicted class is then:

argmax
c

P (Y = c)

V∏

v=1

T∏

t=1

N(θ̂
(c)
vt , σ̂2(c))

3.3 Experimental Results

Classification Task

We consider the task of classifying whether a subject in an fMRI experiment
is “viewing a picture” or “reading a sentence”. In this fMRI dataset4, func-
tional images of the brain were taken every 500ms (for 8 seconds). Each image
recorded the neural activity at approximately 5,000 different locations (voxels)
in the brain. We consider each voxel-timepoint as a feature, thus there were ap-
proximately 5, 000 ∗ 16 = 80, 000 features per trial. There were 20 “viewing a
picture” trials and 20 “reading a sentence” trials. This experiment was repeated
for 13 different human subjects.

Test Method

We performed the following testing method to estimate the error of the classi-
fiers:

1. Split the dataset randomly in half. One half is used for training and one
half is used for testing. We enforce an equal number of examples per class.
Therefore, our training and test sets each have 20 examples total (10 per
class).

2. Sample, at random, 2 examples per class from the training set. These are
the training examples for this round.

3. Train on the sampled training examples in (2) and test on all examples in
the test set.

4. Repeat 1-3 ten times and report the average error.

4 The dataset used is available at: http://www.cs.cmu.edu/afs/cs/project/theo-
73/www/index.html



10

Discussion

In Figure 2, we show the results of the Feature Sharing classifier compared to
a standard Gaussian Naive Bayes classifier for the 13 human subjects available
in this study. In this experiment we used all available voxels in the brain (≈
5, 000 per subject) yielding ≈80, 000 features. Notice that there were only two

training examples per class. The standard Gaussian Naive Bayes (GNB) classifier
performed with near random accuracy for all subjects. The Feature Sharing
classifier we described above shows considerable improvement, demonstrating
that it is possible to classify even with an extremely small number of training
examples.

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
All Voxels

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

Subject

 

 
Standard GNB
Feature Sharing

Fig. 2. Accuracies of the standard Gaussian Naive Bayes classifier and the Feature
Sharing classifier for 13 human subjects with two training examples per class. The
classifier uses all voxels in the brain. Since there are two classes, random accuracy is
0.5.

In Figure 3, we show the results of the same experiment, except now we use
only the voxels located in the visual cortex of the brain (≈300 per subject).
These voxels are known to contain highly discriminating signal for this partic-
ular classification task. The interesting thing to note here is that the standard
GNB classifier still fails with random accuracy on all subjects. The Feature Shar-
ing classifier, however, is able to capitalize on the extra signal in these voxels,
showing dramatic improvements for many subjects.

In the Feature Sharing classifier, we achieved the best results by sharing both
the mean and variance parameters between features. We have found empirically,



11

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Voxels in Visual Cortex (CALC)

Subject

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

 

 
Standard GNB
Feature Sharing

Fig. 3. Accuracies of the standard Gaussian Naive Bayes classifier and the Feature
Sharing classifier for 13 human subjects with two training examples per class. The
classifier uses only voxels in the Visual Cortex (CALC).

however, that sharing the variance parameter plays the larger role in improving
overall classification accuracy. While this might seem surprising at first, some
interesting theoretical work [5] shows that in the bias/variance decomposition
under 0/1 loss, the variance dominates the bias. This may suggest why sharing
the variance parameters caused the larger increase in performance.

4 Conclusion and Future Work

We have shown a feature sharing framework for classifying in very high dimen-
sional problems with only a small number of training examples. This classifier is
based on empirical Bayes and allows us to model relationships between features
by assuming each class conditional parameter has its own hyperdistribution. The
parameters for these hyperdistributions are estimated by sharing information be-
tween related groups of features.

We demonstrated this model on a fMRI classification task and showed how
we can successfully classify in a problem with 80,000 spatially and temporally
related features and only two training examples per class. We used domain knowl-
edge of fMRI to specify feature sharing over local neighborhoods with a linear
scaling factor.

An interesting future direction would be to automatically determine groups
of features that share information rather than defining each group by the set



12

of immediate neighbors. We could imagine learning a metric between features
directly from the data, and then using that metric to define the parameter trans-
formation functions.

5 Acknowledgements

We would like to thank Indra Rustandi and Francisco Pereira for useful discus-
sions.

Mark Palatucci is supported by a NSF Graduate Research Fellowship and by a
grant from the W.M. Keck Foundation.

References

1. J. Baxter. A bayesian/information theoretic model of learning to learn via multiple
task sampling. Machine Learning, 28:7–39, 1997.

2. S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learn-
ing. In Sixteenth Annual Conference on Learning Theory COLT, 2003.

3. R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.
4. C. Davatzikos and et al. Classifying spatial patterns of brain activity with machine

learning methods: application to lie detection. Neuroimage, 28(1):663–668, 2005.
5. J. H. Friedman. On bias, variance, 0/1 loss, and the curse-of-dimensionality. Data

Mining and Knowledge Discovery, 1(1):55–77, 1997.
6. A. Gelman, J. Carlin, H. Stern, and D. Rubin. Bayesian Data Analysis. Chapman

and Hall/CRC Press, Boca Raton, NY, Second Edition/2003.
7. T. Heskes. Solving a huge number of similar tasks: a combination of multi-task

learning and a hierarchical bayesian approach. In International Conference of

Machine Learning ICML, 1998.
8. R. A. Hutchinson, T. M. Mitchell, and I. Rustandi. Hidden process models. In

International Conference of Machine Learning ICML, 2006.
9. P. M. Lee. Bayesian Statistics. Hodder Arnold, London, UK, Third Edition/2004.

10. T. M. Mitchell, R. Hutchinson, R. S. Niculescu, F. Pereira, X. Wang, M. Just,
and S. Newman. Learning to decode cognitive states from brain images. Machine

Learning, 57(1-2):145–175, 2004.
11. R. S. Niculescu. Exploiting Parameter Domain Knowledge for Learning in Bayesian

Networks. Carnegie Mellon Thesis: CMU-CS-05-147, Pittsburgh, PA, 2005.
12. R. S. Niculescu and T. M. Mitchell. Bayesian network learning with parameter

constraints. Journal of Machine Learning Research, 7:1357–1383, 2006.
13. I. Rustandi. Hierarchical gaussian naive bayes classifier for multiple-subject fmri

data. In NIPS Workshop: New Directions on Decoding Mental States from fMRI

Data, 2006.
14. S. Thrun. Learning to learn: Introduction. In Learning To Learn, 1996.
15. L. Zhang, D. Samaras, D. Tomasi, N. Alia-Klein, L. C. A. Leskovjan, N. Volkow,

and R. Goldstein. Exploiting temporal information in functional magnetic reso-
nance imaging brain data. In MICCAI Conference Proceedings, pages 679–687,
2005.


