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Abstract

In this work, we present the Smoothed Dirich-
let (SD) distribution, as an alternative distri-
bution to the multinomial and the more recent
Dirichlet-Compound-Multinomial (DCM) distri-
butions as a basic building block for generative
topical models for text. We show that this dis-
tribution is as simple to estimate as the multi-
nomial and as effective in capturing term occur-
rence statistics as the DCM, thus combining the
most desirable properties of these two distribu-
tions into one unit. We also argue that the par-
ticular form of KL-divergence ranking function
used successfully in information retrieval per-
forms well for the simple reason that it corre-
sponds to log-likelihood w.r.t. the Smoothed-
Dirichlet distribution, a better generative model
of text. We compared various generative distri-
butions for text on the task of text classifica-
tion and found that besides outperforming the
multinomial, SD is also significantly better than
the DCM and ordinary Dirichlet distributions.
Therefore it deserves serious consideration as a
new building block in generative models for text.

1. Introduction

Generative topical models for classification or cluster-
ing of textual data rely on a base distribution to gen-
erate text. Choosing the right distribution that fits
empirical data distribution accurately is critical for op-
timal performance of these models. In the past, several
distributions such as Multiple-Bernoulli (Robertson &
Jones, 1976) and mixture of Poissons (Robertson et al.,
1981) were considered as potential generators of text.

In the recent past, the multinomial distribution has
become the de facto distribution for generative mod-
els of text since it is not only effective, but is also very
simple and easy to estimate and draw inference about.
Models ranging from the simple naive-Bayes classifier
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(McCallum & Nigam, 1998) to the more complex topi-
cal mixture models such as the LDA (Blei et al., 2002)
use the multinomial distribution, shown below as the
basic building block to generate documents:
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where L = Z]- f; is the document length, f =
{f1,---, fv} is the counts-vector representation of the

document and f; is the raw-count of occurrence of the
j** word in the document, V is the vocabulary size
and 0 is the parameter vector of the multinomial. The
generative process of the multinomial consists of L re-
peated i.i.d. samplings of words from the distribution

to obtain the vector f as shown in figure 1(a).

Recent work has found that the multinomial hugely
under-predicts the heavy tail or burstiness behavior!
of term occurrence (Teevan & Karger, 2003; Rennie
et al., 2003). To mitigate this problem, (Madsen et al.,
2005) proposed the Dirichlet Compound Multinomial
(DCM) distribution for text and showed that it models
word burstiness better than the multinomial distribu-
tion. They also achieved improvements over the multi-
nomial in the text classification task. The DCM dis-
tribution uses the same counts-vector representation
f for documents but its generative process consists of
sampling a multinomial distribution from a Dirichlet
prior from which the document is sampled as shown in
figure 1(b). Given the parameters @ of the prior, the
probability of the counts-vector f is given by:

Pr(f|a) = / Pr(£|6) Pr(d]6)dd
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where T' is the Gamma function. Despite impressive
gains in performance compared to the multinomial, the

(2)

!words are much more likely to occur in a text once they
have occurred once
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downside of DCM is the non-availability of a closed-
form solution. It requires computationally expensive
iterative techniques to estimate its parameters (Minka,
2003) and as a result may not be very attractive for
many information retrieval related tasks where quick
response to the user is of utmost importance.

One of the main motivations of the current work is to
identify a distribution that is at least as effective as
the DCM in capturing term occurrence statistics but
as simple as the multinomial in estimation and infer-
ence. The rest of the paper is organized as follows.
In section 2 we describe the new SD distribution and
its approximation and show that its estimation corre-
sponds to a simple geometric averaging of term statis-
tics and inference is equivalent to the standard form of
KL-divergence used in IR. In section 3, we empirically
demonstrate that the SD fits data much better than
the multinomial and as well as the DCM. In section 4,
we argue that SD distribution justifies KL-divergence
by virtue of it being a better model of text. Our ex-
periments in text classification reported in section 5,
show that SD is an effective replacement for the multi-
nomial and DCM distributions. We end the paper in
section 6 with a discussion on future work.

2. Smoothed Dirichlet distribution

We here describe the generative process of the
Smoothed Dirichlet distribution. The rationale for this
process is discussed below in sub-section 2.1. As shown
in figure 1(c), we first generate a smoothed proportions
vector p°, from the SD distribution and unsmooth it
to get the raw proportions p* as follows:

p* L (p* = (1-)p%F)) 3)

where p&¥ is the proportions of words in general En-
glish and 0 < A < 1 is a smoothing parameter. The
unsmoothed proportions p* are then converted into a
bag of words f given the document length L, using the
relation f = int(Lp*) where int() is a function that
returns the nearest integer-vector to its real-vector ar-
gument. Only the generation of p® is probabilistic
and its conversion to unsmoothed proportions p* and
then to bag of words f is completely deterministic.
Hence the probability of generating a counts vector f
under SD distribution is same as that of generating
the smoothed proportions vector p*® given by:

v
1 a;—1
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Pr(flp®", A, L,a) = Pr(p®la) = ZST(a‘)j:l_[lp;

(4)
where & is the parameter vector of the smoothed-
Dirichlet distribution and Z5P is the SD-normalizer
that guarantees the probabilities add up to 1. From an
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Figure 1. Graphical representation of the distributions
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inference perspective, given a counts-vector represen-
tation f of a document, estimating its probability un-
der SD is follows: we first get a raw proportions repre-
sentation of the document using the relation p* = f/L
and then get a smoothed proportions representation
using the inverse of relation (3), i.e.,

p’ = Ap" + (1 - \)p%” (5)

and then compute its probability under the SD distri-
bution as given by (4). Thus, p* corresponds to raw-
counts in a document normalized by document length
L and p® corresponds to a mixture of p* and general
English proportions pZ with A as the mixing weight.

2.1. Rationale

The reason we generate the smoothed document repre-
sentation p® and not the raw-proportions p* directly is
to avoid assigning zero probability to any document:
the raw-proportions p* of a document is typically a
sparse vector with many zeros in it and as such, if
we replace p° with p* in (4), we end up with a zero
probability for almost all documents.

Notice that the functional form of the SD distribu-
tion defined in (4) is same as the ordinary Dirichlet
distribution (Minka, 2003). One may argue that we
could use the ordinary Dirichlet distribution to gen-
erate the smoothed proportions p® instead of defining
a new distribution. However, the Dirichlet distribu-
tion is incorrect for smoothed proportions because it
assigns probability mass to the entire simplex A =
{p | V;p; > 0; Zj p; = 1} while smoothed propor-
tions occupy only a subset A® of the simplex. To illus-
trate this phenomenon, we generated 1000 documents
of varying lengths uniformly at random using a vocab-
ulary of size 3, converted them to raw-proportions p“,
smoothed them with p®% estimated from the entire
document set, and plotted the smoothed-proportions
p? vectors in figure 2. The leftmost plot represents
the unsmoothed proportion vectors p* corresponding
to A = 1. As shown in the plot, the documents cover
the whole simplex A when not smoothed. But as we
increase the degree of smoothing, the new domain A?®
spanned by the smoothed documents gets compressed
towards the centroid. The compressed domain A? in
figure 2 corresponds to the set of all feasible values of
p?® that guarantee that the corresponding p“’s as de-
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Figure 2. Domain of smoothed proportions A® for various
degrees of smoothing: dots are smoothed-proportions vec-
tors p* and the triangular boundary is the 3-D simplex.

fined in (3) lie in the simplex A. Hence, the Dirichlet
normalizer, that considers the whole simplex A as its
domain, shown in (6), is clearly incorrect given our
smoothed document representation.

N
/ H dp_H(z(a,; (6)

Despite this flaw, D1r1ch1et can still be considered as
an approximate distribution for smoothed proportions
and we do compare its performance with SD in the
following sections. The SD distribution rectifies this
flaw in the Dirichlet distribution by defining a nor-
malizer that assigns the probability mass only to the
new compressed domain AS.

2.2. SD normalizer and its approximator

When we use smoothed representation for documents,
the integral in (6) should span only over the com-
pressed domain A® that contains all the smoothed doc-
uments, as given by the following expression:

A*={p*} ={dp"+ (1-Np%? [p €A} (7)

The above equation is a transform for p® from its do-
main A? into A. FExploiting this mapping, we can
define the exact analytical form of the normalizer for
smoothed documents Z3D in A as:

- [ e w
/ H{Ap] P} Adp"(8)
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For fixed values of A and p can be trans-
formed to an incomplete integral of the multi-variate
Beta function. However, this has no straight-forward
analytic solution. In the reminder of this subsection,
we will focus on developing a theoretically motivated
approximation Z5P for the SD normalizer of (8).

Figure 3(a) compares Z5? with the Dirichlet normal-
izer Z of (6) for a simple case where the vocabulary

size V is 2, ie, & = {o1,02}. We imposed the
condition that oy + as = 1 and used A\ = 0.2 and
{pF¥,p§F¥} = {0.5,0.5}. The plot shows the value
of Z5P for various values of a; computed using the
incomplete two-variate Beta function implementation
of Matlab. Notice that Z5P tends to finite values at
the boundaries while Z, the Dirichlet normalizer is un-
bounded. We would like to define Z>P, an approxi-
mation to Z5P such that it not only shows similar
behavior to Z5P, but is also analytically tractable.
Taking cue from the functional form of the Dirichlet
normalizer Z in (6) we define Z50 a

Z50( H To(aj) Z a;)) 9)
where T,(a) is an approximation to JI‘(oz). Now all
that remains is to choose a functional form for T';(«)
such that Z5P closely approximates the SD normalizer
ZSP of (8). We turn to the Stirling’s approximation
of the Gamma function (Abramowitz & Stegun, 1972),
shown in (10) for guidance.
1 1

2

(@) m e 2Van(l+ -+ 0(=5))  (10)

Figure 3(b) plots the I" function and its Stirling ap-
proximation which shows that I'(a) — oo in the limit
as o — 0. Inspecting (6), it is apparent that this
behavior of the ' function is responsible for the un-
boundedness of Dirichlet normalizer at small values
of a. Since our exact computation in low dimensions
shows that the Smoothed Dirichlet normalizer Z5P is
bounded as a — 0, we need a bounded approximator
of I. An easy way to define this approximation is to
ignore the terms in Stirling’s approximation that make
it unbounded and redefine it as:

() def gmage (11)
While there are several ways to define a bounded ap-
proximation, we chose an approximation that is not
only mathematically simple, but also yields a closed
form solution to maximum likelihood estimation as we
will show later. The approximate function I, is com-
pared to the exact function I' again in figure 3(b). Note
that the approximate function yields bounded values
at low values of a but closely mimics the exact function
at larger values. Combining (9) and (11), we have:

;e a5 [1; o5

BTSN

where S =}, a;. The approximation in (12) is inde-

Z5P(a) = (12)

pendent of A and p®F which is clearly an oversimpli-
fication of the exact SD normalizer Z°P in (8). How-
ever our plot of the approximate SD normalizer Z5C in
figure 3(a) shows that it behaves very similar to Z5P.
Our new approximate Smoothed Dirichlet distribution
can now be defined as:



The Smoothed-Dirichlet distribution: A new building block for generative topic models

50

45

40

35

30

imimim Z (Dirichlet)
s 750 (Smoothed-Dirichlet)

S0
mmmm 227 (Approx. Smoothed-Dirichlet

[
'
'
'

20 =

0
n
1
1
'
'
'
'
'
'
'
'
'
'
'
N
'
N
0
2
»
¥
.

-

1

— ()

111111 T (@) - Stirling's approximation

25F = = mm (@)~ SD approximation
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Henceforth, we will refer to the approximate SD (dis?
tribution as the SD distribution for convenience. The
subscript in Pr, helps remind us that it is an approx-
imate probability density function.

2.3. Estimation

Given a set of N documents {pj,---,p% } where each
p{ is a smoothed-proportion vector representation
of the i** document, the maximum likelihood esti-
mates (MLE) of the SD parameter vector & are given
by the values that maximize the Smoothed-Dirichlet
likelihood-function shown in (13). Differentiating the
log-likelihood function for N documents with respect
to each o; with an additional Lagrange multiplier term
with the constraint that )" a; = S and equating to
zero gives us the following closed-form solution for &

N
a={[[p}*/2
Here, Z is a normalizer ‘That ensures Soa; =8 We
consider S a free parameter that scales individual o;;’s
proportionately. It is easy to verify that the second
derivative of the log-likelihood function is always less
than zero guaranteeing convexity of the log-likelihood
function and thereby the global optimality of the MLE
solution. Thus, the SD distribution provides a closed
form solution for training where our estimates of & are
simply normalized geometric averages of the smoothed
proportions of words in training documents.

(14)

2.4. Inference

In a multi-class classification task, inference consists
of finding the best class Ches; for a given test docu-
ment D = p®. The best class is decided using the
Bayes’ rule as shown in table 1, where step (2) follows
from (13) and in step (3) we assume that all classes
have the same value for S and a uniform prior 7g.
It is interesting to note that our inference mechanism
chooses the class C whose parameter vector a< is clos-
est to the document’s feature vector p® in terms of the
KL-divergence, which is a distance metric between two
probability distributions. In our case, the parameter
vector & can be considered a probability distribution
over the vocabulary in the special case when S = 1.

3. Data analysis

We used a Porter-stemmed but not stopped version
of Reuters-21578 corpus for our experiments. Similar
to the work of Madsen et al (Madsen et al., 2005),we
sorted words based on their frequency of occurrence in
the collection and grouped them into three categories,
W}, the high-frequency words, comprising the top 1%
of the vocabulary and about 70% of the word occur-
rences, W,,,, medium-frequency words, comprising the
next 4% of the vocabulary and accounting for 20% of
the occurrences and W, consisting of the remaining
95% low-frequency words comprising only 10% of oc-
currences. We pooled within-document counts f of all
words from each category in the entire collection and
computed category-specific empirical distributions of
proportions Pr(f|W4), Pr(f|Wy,) and Pr(f|W;).

We did maximum likelihood estimation of the parame-
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Chest = argmaxg log Pr,(C|D,a%) = argmaxc log Pr,(D]a%, C)nc
= argmaxc{SlogS — Ej{a]c loga](-" - (aJG —1)logpj} +logmc} step (2)
= argmaxc{— Y af log(a¥ /pf)} = arg maxc{-K L(a“||p®)}

step (1)

step (3)

Table 1. Inference in SD: & are the parameters of SD distribution of class C, 7¢ is the prior probability of class C.

ters of Multinomial, DCM, Dirichlet and SD distribu-
tions using the entire collection. For Dirichlet and SD,
we fixed the value of the smoothing parameter A at 0.9.
To train the Dirichlet and DCM distributions, we used
iterative techniques to estimate the mean, keeping the
precision S at constant, as described in (Minka, 2003)
using the fastfit? toolkit.

In case of multinomial and DCM distributions, the
probability that a word w; occurs at count f in a
document of length L, Pr(f|L,6,) is given by their
marginals, which are the binomial and the beta-
binomial respectively. To compute the probability that
it occurs at count f in any document, Pr(f|6;), we
marginalize the distribution over the document length
using the relation Pr(f|6;) = >, Pr(f|0;,L)P(L)
where we estimated Pr(L) from the corpus.

The Dirichlet marginal for a single variable is a Beta
distribution. We assume that the marginal of the SD
distribution has the same parametric form:

SS
a?j (S — o)

P'ra(pj|(j) = T (pj)aj_l(l _p;)S—aj—l
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For these distributions, the probability that a worcg w])
occurs at count f is given by Pr(fla;) = > ; Pr(p* =
f/L|ej, L)Pr(L). Next, for each distribution, we eval-
uated the category-specific probabilities by averaging
word probabilities in each set and normalizing them
over different values of f. We also tuned the value of
the free-parameter S in DCM, Dirichlet and SD dis-
tributions until their plots were as close a visual-fit
as possible to the empirical distributions. We cau-
tion that since we did not use any objective function
to optimize the plots, they are only for illustration
purposes. Figure 4 compares the predictions of each
distribution with the empirical distributions for each
category. The data plots corresponding to empirical
distribution exhibit a heavy tail on all three categories
Wh,, W, and W, as noticed by earlier researchers (Ren-
nie et al., 2003; Madsen et al., 2005). The multino-
mial distribution predicts the high frequency words
well while grossly under-predicting the medium and
low frequency words. The Dirichlet and SD distribu-
tions fit the data much better than the multinomial
on all three sets, validating our choice of the particu-
lar functional form to model text. The plots also show
that the DCM distribution is a good a fit to data as
shown by Madsen et al (Madsen et al., 2005). While it

®http:/ /research.microsoft.com /~minka/software/fastfit

is unclear which of SD and DCM is a better fit, the ad-
vantage of SD lies in its simplicity in estimation while
achieving a good fit at the same time.

4. Relation to IR ranking functions
Language models for information retrieval use the
multinomial distribution to model topics, but they dif-
fer from the typical multinomial models used in text
classification mainly in the way the ranking function
is defined. Given an estimate of the query’s multi-
nomial distribution A9, a natural ranking function
would be the document’s log-likelihood w.r.t. the
query, log Pr(f|6%, L) as defined in (1), which can be
shown proportional to —C E(p®||#%) where p® is the
smoothed-proportions representation of the document.
However, language models employ its assymetric coun-
terpart, namely —C E(f°9||p®) as the ranking function
(Lafferty & Zhai, 2001), which is proportional to the
query’s log-likelihood with respect to the document’s
multinomial model p°. There is empirical evidence
that ranking functions of the form —CE(6%||p*) per-
form better than the form —CE(p?||#?), using the
same values of parameters (Lavrenko, 2004), but no
theoretical justification has been offered.

Notice that log-likelihood of a document w.r.t. the SD
distribution given a query’s parameters a? is propor-
tional to —K L(a®||p®) as shown in step (3) of table
1. This is rank-equivalent to —CE(a%||p?) 3, which is
equivalent to the ranking function of language models.
Thus our work offers an explanation why —C E(69||p*)
performs better than —CE(p®||#?): the latter cor-
responds to an underlying multinomial distribution,
while the former corresponds to SD distribution, a bet-
ter fit to textual data, as shown in section 3. Language
models, although based on multinomial distribution,
manage state-of-the-art performance by simply using a
ranking function based on a better modeler of text. In
this work, we have removed this inconsistency by un-
covering the underlying distribution that corresponds
to the successful cross-entropy ranking function.

5. Text Classification

We used the 20 Newsgroups, Reuters-21578 and

Industry-Sector corpora. All three collections used

in our experiments were stopped and stemmed using

Porter stemmer. For any of the collections or models,
K L(a%||p*) = —H(a®%)+CE(a®||p*) and the entropy

term H(a¥) is independent of documents
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Figure 4. Comparison of predicted and empirical distributions

we did not do any feature selection, as we consider it
a separate problem altogether. We indexed the collec-
tion using Lemur? toolkit, version 3.0. We performed
all our experiments on Matlab using the document-
term matrix obtained from Lemur’s output.

The version of the 20 Newsgroups collection we used
has 18,828 documents and 20 classes. The Industry-
sector corpus has 9569 documents and 104 classes.
Since documents in this collection are web pages, we
used the HTML parser of Lemur to pre-process the
documents. We randomly split documents in each
class into train-test subsets at a ratio of 80:20 on both
of these collections. We repeated this process 25 times
to obtain as many versions of train-test splits to ex-
periment on. We used the Mod-Apte (Apte et al.,
1994) split of the Reuters-21578 collection that con-
sists of 12,902 documents and a predefined train-test
split. We used only 10 most popular classes for our
experiments as done in (McCallum & Nigam, 1998).

Additionally, to facilitate learning the values of free
parameters, for each of the three collections, we ran-
domly picked one of the training sets (it is unique in
case of Reuters) and further randomly split them class-
wise, in the same ratio as the corresponding train-test
split, into sub-training and validation sets.

In case of Industry Sector and 20 Newsgroups data,
documents are uniquely labeled. Hence we built multi-
way classifiers and used the standard classification ac-
curacy as evaluation metric, which is defined as the
percentage of test documents that are correctly la-

*http://www.lemurproject.org

beled. In case of the Reuters collection, documents can
belong to multiple classes. Following several other au-
thors(McCallum & Nigam, 1998; Madsen et al., 2005;
Rennie et al., 2003), we built one-versus-all classifiers
for all classes. For each of these classes C, we then
ranked all the test documents in the decreasing order
of posterior log-odds ratio and Macro-averaged Break
Even Precision (BEP) as our evaluation measure.

5.1. Experiments

Maximum likelihood parameter estimates (MLE) of
any model are typically smoothed to avoid zeros that
may result when there are words in the test set that
are never seen in the training set. For the multinomial,
we used two kinds of smoothing as shown below:

. Yiec fii +0
Laplacian: 6 = s (16)
T Yiee 2 i+ Ve
Jelinek-Mercer: 65 = X\OMEF + (1 — \)p§H(17)

where GJC is the multinomial parameter of the j-th word
in class C, A and § are free parameters. p§” is esti-
mated as follows:

GE >ifii+8

P i fi tVB
where the index i ranges only over the entire set of
training documents and (3 is another free parameter.
Laplacian smoothing shown in (16) is more common in
text classification research while Jelinek-Mercer (JM)
smoothing shown in (17) is popular in IR and is shown
to boost performance (Zhai & Lafferty, 2004). For the
DCM model, smoothing is done as follows:

aMLE 4§

c j
% Zja;‘“E-l-Vé

(18)

(19)
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For the Dirichlet and SD distributions, we already use
smoothed document proportions as shown in (5), so
we do not expect any zeros in our parameter estimates.
For DCM and Dirichlet, we consider S as a free param-
eter. In SD, the value of S does not influence inference
or learning. Hence we fix S = 1, allowing us to treat
the SD parameter vector & as a probability distribu-
tion over the vocabulary.

To learn the optimal values of the free parameters of
the models, we did maximum-likelihood training on
the sub-training set first and then performed a simple
hill-climbing on the domain of the free parameters un-
til the evaluation criterion is optimized on the valida-
tion set. We then performed regular maximum likeli-
hood training and testing on all train-test splits, fixing
the free parameters at these optimal values. On Indus-
try sector and 20 Newsgroups corpora, we performed
statistical significance tests using two-tailed paired T-
test at a confidence level of 95%.

We also tested a variant of the SD inference formula of
table 1, which we call SD-CE, as described below. We
noted in section 4 that KL(a‘||p®) and CE(a‘||p®)
are equivalent in a setting where documents are ranked
w.r.t. one class, as in the Reuters collection in our
experiments. However in case of choosing the best
class for each document as in the 20 Newsgroups and
Industry-sector data sets, they are no longer equiva-
lent. In such cases, KL-divergence minimization as in
step (3) of table 1 amounts to maximizing the entropy
H (a®) besides minimizing the cross entropy H(a&||p?).
We believe maximization of entropy of the model is
a consequence of our modeling assumptions that is
not necessarily desirable in a labeling setting. Hence
in SD-CE, we considered only the cross-entropy term
CE(a®||p®) for inference, rest being the same as SD.

Additionally, we tested a linear SVM as a stan-
dard discriminative baseline using a one-versus-all
SVM!ight toolkit for Reuters and SVM™uiticlass too]kit
for the other two data-sets (Joachims, 1999). As fea-
tures, we used normalized TF-IDF weights defined by
tfx log((N +1)/(n+0.5)) where tf is the raw count of a
term in a document, N is the total number of training
documents and n is the number of training documents
the term occurs in. We used the parameter C' that
represents trade-off between margin maximization and
training error as a free parameter during training.

Table 2 presents the results of our experiments on all
three datasets. Our experiments show that SD outper-
forms the Laplace smoothed multinomial, the DCM
and ordinary Dirichlet on all collections. On the two
collections on which we could do significance tests, the
difference with the nearest model is found to be statis-

tically significant. However, the JM smoothed multi-
nomial improves on the Laplace smoothed one, as ob-
served in IR experiments (Zhai & Lafferty, 2004), in
two of the three collections. On Industry-Sector cor-
pus, the improvement is remarkable and it outperforms
the SD distribution by a statistically significant mar-
gin too. These results are in line with those of (Mc-
Callum et al., 1998) wherein the authors performed a
similar smoothing in a hierarchical classification set-
ting which they called shrinkage. Note that our ap-
proximation to the SD inference, SD-CE outperforms
all distributions including JM smoothed Multinomial
and on all collections justifying our intuition behind
the modified inference formula in SD-CE. It also illus-
trates the subtle differences between ranking and la-
beling and suggests treating the problems differently.
The results also show that the SD distribution per-
forms better than the linear SVM baseline on 2 of the
3 datasets confirming its effectiveness as a classifier.
We hasten to add that it is possible to further boost
the performance of SVMs by defining better features or
by doing good feature selection. The main aim of our
experiments is not to outperform the best classifier but
to demonstrate the effectiveness of the SD distribution
as an elegant and effective distribution for text. We
would also like to emphasize that besides performance,
another attractive property of the SD distribution is
its relatively quick training owing to its closed form
MLE solution: SD takes at least an order of magni-
tude less computational time than DCM and Dirichlet
and the SVM models and almost the same time as the
multinomial, while performing at least as well as any
of these models.

Comparing with results from other work, we note that
our multinomial results agree quite closely with the re-
sults in (McCallum & Nigam, 1998) on all three collec-
tions. Our SVM results on 20 Newsgroups agree very
well with the SVM baseline in (Rennie et al., 2003).
Our results are slightly lower on Industry sector (our
88.20% vs. their 93.4%) while higher on Reuters (our
79.24% vs. their 69.4%). The difference in Reuters is
primarily because we used top 10 classes while they
used 90 classes. Our SVM results on Reuters are
slightly lower than those reported in (Joachims, 1998)
(our 76.21% vs. their 82.51% in Macro-BEP). For
SVM features, we computed IDF values from only the
training documents to make for a fair comparison with
the generative distributions that used smoothing only
with the training documents. It is not clear how IDF
is computed in (Rennie et al., 2003) and (Joachims,
1998). Further, our preprocessing and indexing re-
sulted in significantly higher number of unique tokens
on all collections than in (Joachims, 1998), making
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# | Dataset — 20 Newsgroups Industry Sector Reuters
Model (para.) | | Opt. Para. | % Accur. | Opt. Para. | % Accur. | Opt. Para. [ % BEP

1 [ Mult-L (9) 103 87.02;47 | 10 ° 73.92; 102 71.42
2 | Mult-JM (\,8) | 102,103 86.41 10-3,1073 84.91; 34 | 0.7,1073 72.78
3 | DCM (S,9) 900,10—* 88.04; 57 | 1200,1073 71.01 1500,0.1 72.38
4 | Dir (S, \,58) 400,0.1,102 | 86.54 1800,10 1,10 2 | 76.971 3 3000,0.2,10 3 | 74.87
5 | SD (\,5) 107%,0.1 89.724_¢ | 1073,1073 80.82134 | 10721 79.24
6 | SD-CE (), B) 105,10 ° | 90564 |10 °10° 86.224_7 | 10 2,1 79.24
7 | SVM (C) 1.0 86.48 1.0 88204 | 20 76.21

Table 2. Performance comparison on the three data sets: Mult-L and Mult-JM correspond to Multinomial with Laplace
and Jelinek-Mercer smoothing respectively and Dir is Dirichlet, while the rest have their usual meaning. The symbols
in the parentheses in column 2 indicate the free parameters of each distribution. For reproducibility of our experiments,
we present the respective optimal parameter settings in each data set in columns titled “Opt. Para.”. A subscript ; on
an entry in columns 4 and 6 represents that the corresponding model is significantly better than the model whose serial
number is 7 according to a paired 2-tailed T-test at 95% C.I. on the 25 random train-test splits. The notation 4 in the
subscript implies the model is significantly better than all other models, while 4_; indicates the model is better than all
but the model numbered ¢. Bold-face number indicates the best performing model on the corresponding data set.

comparison difficult. However, the trends are quite
similar in that, SVM outperforms multinomial distri-
bution (the 20 Newsgroups data being an exception
in our case). The work that is most related to ours
is that of Madsen et al (Madsen et al., 2005). Their
results on Reuters are not exactly comparable because
they used 90 classes with at least one training and one
test document while we used only top 10 classes. On
other collections, they used precision as the evaluation
metric while we used the more popular classification
accuracy. But our results are consistent with theirs in
that, in general, DCM is shown to be better perform-
ing than the Laplace smoothed multinomial.

6. Future work

Considering the attractive properties of the SD dis-
tribution such as better modeling of term-occurrence
characteristics and simple closed-form estimation, we
hope it will be widely used by researchers in place of
multinomial as a basic building block in more com-
plex generative mixture models of text. We would like
to emphasize that text classification is just an exam-
ple application, chosen because it provides a clean and
simple test of our new distribution. The effectiveness
of the SD distribution, as demonstrated in this appli-
cation, suggests its utility in other IR tasks, particu-
larly in time critical tasks such as filtering and ad-hoc
retrieval where quick training and inference are of ut-
most importance. As part of future work, we intend
to do more experiments with the SD distribution on
the IR tasks mentioned above, particularly in a semi-
supervised setting, through the EM algorithm.
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