CMU-CS-85-106

On the Axiomatic Treatment of Concurrency

Stephen D. Brookes
Carnegie-Mellon University
Department of Computer Science
Schenley Park
Pittsburgh
PA 15213
USA

To appear in: Proc. 1984 NSF-SERC Seminar on Concurrency, Springer LNCS (1985).

The research reported in this paper was supported in part by funds from the Computer
Science Department of Carnegie-Mellon University, and by the Defense Advanced Research
Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force Avionics
Laboratory under Contract F33615-81-K-1539. The views and conclusions contained in it
are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency or the US
Government.






ON THE AXIOMATIC TREATMENT OF CONCURRENCY

Stephen D. Brookes
Carnegie-Mellon University
Department of Computer Science
Schenley Park
Pittsburgh

0. Abstract.

This paper describes a semantically-based axiomatic treatment of a simple parallel
programming language. We consider an imperative language with shared variable concur-
rency and a critical region construct. After giving a structural operational semantics for
the language we use the semantic structure to suggest a class of assertions for expressing
semantic properties of commands. The structure of the assertions reflects the structure of
the semantic representation of a command. We then define syntactic operations on asser-
tions which correspond preciscly to the corresponding syntactic constructs of the program-
ming language; in particular, we define sequential and parallel composition of assertions.
This enables us to design a truly compositional proof system for program properties. Our
proof system is sound and relatively complete. We examine the relationship between our
proof system and the Owicki-Gries proof system for the same language, and we see how
Owicki’s parallel proof rule can be reformulated in our setting. Our assertions are more
expressive than Owicki’s, and her proof outlines correspond roughly to a special subset of
our assertion language. Owicki’s parallel rule can be thought of as being based on a slightly
different form of parallel composition of assertions; our form does not require interference-
freedom, and our proof system is relatively complete without the need for auxiliary vari-
ables. Connections with the “Generalized Hoare Logic” of Lamport and Schneider, and
with the Transition Logic of Gerth, are discussed briefly, and we indicate how to extend
our ideas to include some more programming constructs, including conditional commands,
conditional critical regions, and loops.

1. Introduction.

It is widely accepted that formal reasoning about program properties is desirable.
Hoare’s paper [12] has led to attempts to give axiomatic treatments for a wide variety of
programming languages. Hoare’s paper treated partial correctness properties of commands

2



in a sequential programming language, using simple assertions based on pre- and post-
conditions; the axiom system given in that paper is sound and relatively complete [8]. The
proof systcm was synlaz-directed, in that axioms or rules were given for each syntactic
construct. The assertions chosen by Hoare are admirably suited to the task: they are
concise in structure and have a clear correlation with a natural state transformation
semantics for the programming language; this means that fairly straightforward proofs
of the soundness and completeness of Hoare’s proof system can be given [1,8].

When we consider more complicated programming languages the picture is not so
simple. Many existing axiomatic treatments of programming languages have turned out to
be cither unsound or incomplete [25]. The task of establishing soundness and completeness
of proof systems for program properties can be complicated by an excessive amount of
detail used in the semantic description of the programming language. This point seems
to be quite well known, and is made, for instance in [1|. Similar problems can be caused
by the use of an excessively intricate or poorly structured assertion language, or by overly
complicated proof rules. Certainly for sequential languages with state-transformation
semantics the usual Hoare-style assertions with pre- and post-conditions are suitable. But
for more complicated languages which require more sophisticated semantic treatment we
believe that it is inappropriate to try to force assertions to fit into the pre- and post-
condition mould; such an attempt tends to lead to pre- and post-conditions with a rather
complex structure, when it could be simpler to use a class of assertions with a different
structure which more accurately corresponds to the semantics. The potential benefits of
basing an axiomatic treatment directly on a well chosen semantics has been argued, for
instance, in [7], where an axiomatic treatment of aliasing was given. Parallel programming
languages certainly require a more sophisticated semantic model than sequential languages,
and this paper attempts to construct a more sophisticated axiomatic treatment based on
the resumption model of Hennessy and Plotkin [22].

Proof systems for reasoning about various forms of parallelism have been proposed
by several authors, notably [2,3,4,11,15,16,17,18,19,20,21]. Owicki and Gries [20,21] gave
a Hoare-style axiom system for a simple parallel programming language in which parallel
commands can interact through their effects on shared variables. Their proof rule for
parallel composition involved a notion of interference-freedom and used proof outlines
for parallel processes, rather than the usual Hoare-style assertions. In order to obtain a
complete proof system Owicki found it necessary to use auriliary variables and to add
proof rules for dealing with them. These features have been the subject of considerable
discussion in the literature, such as [5,16]. Our approach is to begin with an appropriate
semantic model, chosen to allow compositional reasoning about program properties. We
use the structure of this model more directly than is usual in the design of an assertion
language for program properties, and this leads to proof rules with a very simple structure,
although (or rather, because) our assertions are more powerful than conventional Hoare-
style assertions; Owicki’s proof outlines emerge as special cases of our assertions. The

3



soundness and completeness of our proof system are arguably less diflicult to establish, as
the proof system is closcly based on the semantics and the semantics has been chosen to
embody as little complication as possible while still supporting formal reasoning about the
desired properties of programs.

The programming language discusscd here is a subset of the language considered by
Owicki [20,21], and by Hennessy and Plotkin [22]. Adopting the structural operational
semantics of [22,26] for this language, we design a class of assertions for expressing seman-
tic properties of commands. We then define syntactic operations en assertions which cor-
respond to the semaniics of the various syntactic constructs in the programming language;
in particular, we define sequential and parallel composition for assertions. This leads
naturally to compositionel, or syntax-directed, proof rules for the syntactic constructs. We
do not need an interference-freedom condition in our rule for parallel composition, in con-
trast to Owicki’s system. Similarly, we do not need an auxiliary variables rule in order to
obtain completeness. We show how to construct Owicki’s rule for parallel composition and
the need for her interference-freedom condition, using our methods. Essentially, Owicki’s
system uses a restricted subset of our assertions and a variant form of parallel composition
of assertions.

We compare our work brielly with that of some other authors in this field, discuss some
of its present limitations, and the paper ends with a few suggestions for further research
and some conclusions. In particular, we indicate that our ideas can be extended to cover
features omitted from the body of the paper, such as conditional critical regions, loops and
conditionals. We also believe that with a few modifications in the assertion language we
will be able to incorporate guarded commands [9,10], and with an appropriate definition
of parallel composition for assertions we will be able to treat CSP-like parallel composition
[13], in which processes do not share variables but instead interact solely by means of
synchronized communication.

2. A Parallel Programming Language.

We begin with a simple programming language containing assignment and sequential
composition, together with a simple form of parallel composition, and a “critical region”
construct. Parallel commands interact solely through their effects on shared variables.
For simplicity of presentation we omit conditionals and loops, at least for the present, as
we want to focus on the problems caused by parallelism. We will return briefly to these
features later. As usual for imperative languages, we distinguish the syntactic categories of
identifiers, expressions, and commands. The abstract syntax for expressions and identifiers
will be taken for granted.



Syntaz.

I € Ide identifiers,
I € Exp expressions,
I'e Com commands,
IFuo=skip | =E | T';I2 | [T1]||T2] | (T).

The notation is fairly standard. The command skip is an atomic action having no
effect on program variables. An assignment, denoted I:=F, is also an atomic action; it sets
the value of I to the (execution-time) value of ZZ. Sequential composition is represented by

I'y; To. A parallel composition [I'y || I'z] is executed by interleaving the atomic actions of
the component commands I'y and T'y. A command of the form (T') is a critical region; this
construct converts a command into an atomic action, and corresponds to a special case of

an awatt statement in [20], where the notation await true do I" would have been used.

In describing the semantics of this language, we will focus mainly on commands. The
set S of states consists simply of the (partial) functions from identifiers to values:

S = [Ide —, V],

where V' is some set of expression values (typically containing integers and truth values).
We use s to range over states, and we write s + [I — v] for the state which agrees with s
except that it gives identifier I the value v. As usual, the value denoted by an expression
may depend on the values of its free identifiers. Thus, we assume the existence of a semantic
function

£ :Exp — [S — V]

We specify the semantics of commands in the structural operational style [26], and our
presentation follows that of [22], where identical program constructs were considered. We
define first an abstract machine which specifies the computations of a command. The
abstract machine is given by a labelled transition system

(Conf, Lab, —),

where Conf is a set of configurations, Lab is a set of labels (ranged over by «, 3 and 7),
and — is a family

{5 |a€Lab}

of transition relations — C Conf X Conf indexed by elements of Lab. An atomic action
is either an assignment, or skip, or a critical region. We use labels for atomic actions, and
assume from now on that all atomic actions of a command have labels: in other words,
we deal with labelled commands. For precision, we give the following syntax for labelled

5



commands, in which « ranges over Lab:
[i= a:skip | a:I:'=E | I';;Ty | [[1||T2] | e:(T).
For convenience we introduce a term null to represent termination, and we specify (purely
for notational convenience) that
[null || T] = [I'|| null] =
null;I' = I\
We will use Com’ for the set containing all labelled commands and null. The set of
configurations is Conf = Com' X S. A counfiguration of the [orm (T, s) will represent
a stage in a computation at which the remaining command to be executed is I', and the
current state is s. A configuration of the form (null, s) represents termination in the given
state. A transition of the form
(T, 8)—=(I", &)
represents a step in a computation in which the state and remaining command change
as indicated, and in which the atomic action labelled a occurs. We write (I', s) — (I, s’)
when there is an « for which (T', s)—(I", s’). And we use the notation —* for the reflexive
transitive closure of this relation. Thus (T, s) —* (I'', s’} iff there is a sequence of atomic
actions from the first configuration to the second.

The transition relations are defined by the following syntax-directed transition rules;
the transition relations are to be the smallest satisfying these laws. This means that a
transition is possible if and only if it can be deduced from the rules.

Transition Rules

(e:skip, s)—(null, s) (A1)
(a:I:=E, s)—(null, s + [[ — E[E]s]) (A2)
(T1, s)——(T", ')

(T'y; T, s}ir(l'f"l; I'g, s')

(T, s)—(T%, &)
([Cy || T2], s)— ([F || T2, ) (A4)
(T2 ,s>§»< s') as)
([T ][ T2], s)— ([I‘1 || T4, s*)
(T, s) —* (null, s')
(a:(T), s)—(null, s')

6



From our definition of the transition system, we see that we have specified that a paral-
lel composition terminates only when both components have terminated. This is because of
our conventions about null: we have ([I'; || T'2], s)—(T's, s') whenever (I'(, s)—(null, s},
for instance. It is also clear from the definitions that all computations eventually terminate
in this transition system, and that no computation gets “stuck”: the only configurations
in which no further action is possible are the terminal configurations. These properties
would not hold if we add guarded commands or loops to the language. This point will be
mentioned again later; for now we will concentrate on the language as it stands.

Ezamples.

Ezample 1.  Let s be a state and let s; = s+ [z~ 1] for ¢ > 0. Let I" be the labelled
command °

[aizi=z+ 1| B:z:=z + 1].

Then we have
(T, so)—(B:z:=z + 1, sl)f;r{null, s2),

and a similar sequence in which the order of the two actions is reversed:
B so)i»(a c =1z + 1, 5 )—(null, so).

These are the only possible computations from this initial configuration. 1§

Ezample 2. Let I' be the command [a:z:=2 || (8:2:=1; v:z:=z + 1)|. Using the
s; notation of the previous example, we have:

(T, 8)—{B: z:=1; y: z:==2 + 1, sg)i»(q =z + 1, s1)——(null, s5),
(T, s)i»([o::n::=2 | v:zi=z + 1], 51)—(y:z:=2 + 1, 50)—(null, s3),

(T, s)—ﬁ—r([a cx:=2 || y:z:=x + 1], 5| ) {1 2:=2, 50)—>(null, s2).

This command sets z to 2 or 3, depending on the order in which its atomic actions are
executed. @

Ezample 8.  Let I be the command [a:z:=1 || 8:y:=1]. Then we have:

(=]

(T, s)—{(B:y:=1,5 + [z — 1])i>(null, s+ [z—1,y—1]),

a

(r, s)i»(a:yzzl, s+ [y — 1])—(null,s + [z — 1,y — 1]).

This command sets both z and y to 1. &



Semantics.

Using the transition system we may now extract a semantics. For a partial correctness
semantics, we should examine the (terminating) computations of a command and extract
the initial and final states. Of course, in the present language there is no need to distinguish
between total and partial correctness because all computations terminate, but this issue will
arise in trecatments of an extended language containing loops (for example). For uniformity,
we still refer to partial correctness, as the definition we give adapts even to the extended
language and does then correspond to partial correctness. |

Definition 1.  The semantic function M : Com — [S — P(S)] is

MT]s = {s'[(T,s) =" (null,s") }. &

Ezamples. We have already seen that
1. Mla:zi=z +1|| B:z:=z+ 1]s: = {sit2},
2. Mlewge=2 || (B @g=lqvai=n 4 1}l5 & {da,85}
3. Mla:z:=1|| f:y:==1]]s = {s+[z— L, y— 1]}

Reasoning about commands.

In conventional Hoare logics for sequential imperative programs, assertions of the form

{PIT{Q}

are used, with P and @ being called the pre- and post-condition. These conditions are
typically drawn from a simple first order language, and are interpreted as predicates of
the state. Given a satisfaction relation = on conditions and states, we say that { P }I'{Q}
is valid, written = { P}'{Q}, iff

Vs,s'[sEP & e M[T']s = s EQ).

In other words, a Hoare assertion of this type describes the relationship between an initial
state and the possible final states of a computation of a command. However, it is well
known [20,22,23] that in a language involving parallel composition it is not possible to
reason about partial correctness properties of a command in isolation: account must be
taken of the context in which the command is to be run. This is exemplified by the
commands

py==2 and r:=1; z:==z + 1,

which clearly have the same partial correctness properties in isolation, i.e.
Miz=2] = M[z=1; e==2+1],
8



but which exhibit different partial correctness properties in some programming language
conlextls; for instance, the commands

[z:=2 || z:==2] and [(z:=1; z:=x +1) || z:=2]

do not have the same partial correctness properties, as the latter command may set z
to 3. Thus, the M semantics does not always distinguish betwecn pairs of commands if
there is a program context in which they exhibit different partial correctness behaviour.
Technically, the relational semantics M fails to be fully absiract {22,23] with respect to
partial correctness; it makes too few distinctions between commands, and is therefore
“too abstract”. In order to reason about the correctness of a parallel combination of
commands in a manuer independent of the context in which the command appears, we
need to know more about the individual commands than simply their relational semantics
M. Similarly, we cannot axiomatize partial correctness of commands solely on the basis
of partial correctness properties of components: conventional pre- and post-condition
asscrtions are not going to suffice.

Hennessy and Plotkin [22] showed that the transition system above can be used to
define a semantics which will distinguish between terms if there is a context in which they
can exhibit different partial correctness properties. This semantics uses the notion of a
resumption. For our subset of the language, we may adapt these ideas slightly to define
the following semantics for labelled commands:

R :Com’ — R,
R = [S— P(Lab X R X 5)),
with the definition being
R[T]s = {{e, R[], ") | (T, s)—(T",s') }.

Justification for this use of a recursively defined domain R of resumptions can be given if
we interpret P as a powerdomain construct, and the interested reader should consult [22]
for details.

Note that according to this definition we have R[null]]s = 0 for all states s. Note also
that for any state s, R[[T'[]s will be a finite set. This can be represented as a tree structure
as follows, with a branch for each member of the set, labelled by the corresponding atomic
action label, with a son consisting of a resumption-state pair.

D




The tree structure suggests a class of assertions with components representing the
branch structure of trees. We thercfore introduce a class of assertions of the form

¢ u= P Zﬂ: a; P;¢i,

=1

where as before P and the P; are drawn from some condition language, and where the
a; are labels. This notation obviously corresponds with Milner’s linear notation for
synchronization trees [24]; in addition to labelling the arcs with action labels, we also
incorporate conditions at nodes. We make no distinction between assertions which differ
only in the order in which their branches are written. A tree represcntation of such a ¢
will often be prelerable to the linear notation; for example, the assertion P ) 7, o; P;i¢;
may be represented as:

We will feel free to use set braces to delimit conditions as an aid to the eye, and
we use NIL for the tree with no branches (this corresponds to termination, since in this
language inability to perform any action coincides with termination). Thus, an assertion
in which » = 0 will be written { P }NIL; we also introduce the special notation e to
stand for the assertion {true }NIL. Finally, it will be convenient to adopt the convention
that { P }a{ @} (which does not conform to the syntax above) abbreviates the assertion
{P}o{Q }{Q}INIL (which does).

Note that there is an obvious definition of the depth of an assertion ¢, and that all
assertions have finite depth. The terminal assertions are those with zero depth.

In order to express the property that a command I’ satisfies an assertion ¢ we write
I' sat ¢.

This type of formal property will be the subject of our proof system, and we will see later
that we have a generalization of conventional Hoare-style assertions.

10



When ¢ is the assertion P E?_ﬂ__l ;i P;¢; we interpret I' sat ¢ in the following way. If
the command is started in a state satislying P, then its initial action must be an «; drawn
from the sct of initial labels of the assertion, and these labels are precisely the initial
actions possible for the command. I the command starts with an «; action it reaches
a state where P; is true and where the remaining command satislies ¢;. Specifically, we
write

=T sat ¢

to indicate that I' satisfies ¢. This means that, with the above notation,
VsVa. (s P & (T,s)—(",s') = Fi<na=o &IEFP&IF¢), (1)
and, in addition, that
Vs.Vi.(sk=P = 3Ty, s;. (T, s)—5(Ty, 55)), (2)

so that all of the actions specified in ¢ are indeed possible for I' when the initial state
satisfies P. These definitions can be rephrased in terms of the semantic function R.

Note that we always have
= null sat s,

and indeed (non-trivial) terminal assertions can only be satisfied by null.
Ezamples..

Ezemple 1. The command [a:z:=2x + 1 || f:2z:=x + 1] satisfies the assertion

{e=0alz=1He=1}{e=2}
+8{z=1}{z=1}a{z=2}).

e
> ¢

X N
¢
= -
8 N
N
- =

P
m——— ey
R

11



Ezample 2. The command [a:2:=2 || (8:z:=1; y:z:=x + 1)] satisfies the assertion

true
N
=2 z=1
true x=1
: YN
x = =2 x=2
=1 x=2 =2
5| l
=2 =3 x=2

Ezample 3. The command [a:z:==1 || f:y:=1] satisfies the assertion

{true}a{z=1H{z=1}8{z=1&y=1}
+{y=1Hy=1}a{z=1&y=1})

Note also that the command does not satisfy the assertion

{true}J(a{z=1}{true}f{z=1&y=1}
+8{y =1}{truela{z=1&y=1}).

Ezample 4. The assertion
{z=0}a{z=1}Hz=1}B{z =2}
is satisfied by the labelled command
aroti=r+1;0;: zi=z41,

and so is the assertion

{z=0}a{z=1{z=99}B{z=100}. @

12



Let ¢ be the assertion P E:.t_,_l a; P;¢;. Tree structure suggests the use of the following
notation. Define the root and leaf conditions [or ¢ as follows:

root(¢) = P,
leaf(¢) = P if n =0,

= V leaf(¢;) otherwise.

i=1

The root condition characterizes the state at the root of a computation tree, and the leaf
condition characterizes the leaf nodes, i.e. the terminal states. This is just the disjunction
of the conditions at the leaves of the assertion. Using the conventional abbreviations
introduced earlier, we see for example that the assertion

{PoHa{Pi}+B{P}H{Ps}y{Ps})
Fa
Y
R R

has leaf condition P; VV P;. We also have

leaf({ P}e{@}) = @,
leaf({ P }a{ @ }s) = true.

Note that in the syntactic definition of the class of assertions, we have not required that
any logical connection exist between adjacent “intermediate” conditions inside an assertion.
Although in Example 4 the condition z = 1 appears as an intermediate condition, we do
not insist that the “following” condition z = 99 be a logical consequence. Assertions in
which this constraint is satisfied correspond very closely with computation trees and proof
outlines. There are good semantic reasons for not making this constraint on the syntax
of our assertion language, since assertions satisfying the constraint describe the behaviour
of a command in isolation and we know that in general this information is insufficient to
characterize the behaviour of a command in all parallel contexts.

13



Proof System.

Now that we have designed an assertion language for our programming language, let
us build a proof system. We will lind that we can give a set of syntax-directed proof
rules, by constructing syntactic operations on assertions to correspond to the syntactic
operations of the programming language. The important point is that we are going to use
the semantics directly to suggest how to design our rules.

Atomic assertions.

A terminal assertion { P }NIL represents termination. An atomic assertion has the
form { P }a{ @ }{ R }NIL, and the special abbreviated forms { P}a{Q } and { P }a{Q}e
are thus atomic. Atomic commands satisly atomic assertions, and the axioms expressing
this fact for skip and assignment are simple:

a:skipsat {P}a{P}e (B1)
a:l:=FEsat {[E\I|P}a{P}e. (B2)

We use the notation [E\I]P for the result of replacing every free occurrence of I in P by
£, with suitable name changes to avoid clashes.

A critical region also creates an atomic action out of a command. .In order to
axiomatize this construct we need to single out a class of assertions which state properties
of a command when run in isolation as an indivisible atomic action, since the effect of the
critical region construct is to run a command without allowing interruption. Define safe(¢)
for ¢ of the form P Y ", o;Pi¢; by

T

safe(¢) & ;\(P; = root(¢;)) & /\ safe(¢;).

=1 i=1

This is precisely the constraint mentioned earlier: at each node of the tree the post-
condition established by the previous atomic action is required to imply the root condition
of the remaining subtree. When n = 0 this is trivially true, and the two abbreviated forms
of atomic assertion { P }a{Q } and { P }a{ @ } e are always safe.

Intuitively, if I' satisfies ¢ and ¢ is safe, then ¢ describes a possible execution of
I' in which no non-trivial interruption is allowed or assumed. Thus, a safe assertion
gives information about the command’s behaviour in isolation. We can therefore use safe
assertions in the proof rule for critical regions:

I'sat ¢, safe(9)
a:(I') sat { root() }o{leaf(d) } o

The soundness of this rule is easy to establish.

14

(B3)



Parallel composition.

[t is possible to define a parallel composition for assertions. The definition is given
inductively. For the base case, when one of the assertions has zero depth, we specify that

{PINIL || Q) B;Q;4;] = {P&Q} . BiQsw,

and similarly when the two terms are exchanged. In particular, it follows that

[o ]l 4] = [¥] o] = ¥.

(Strictly speaking, these are logical equivalences rather than syntactic identities). The
inductive clause is an extension of the well known nterleaving operation on synchronization
trees [6,24,28] which handles the node conditions in an appropriate manner. For assertions
¢ and 1 of the form

¢ = P(D_ a;Pids),

i=1

¥ = QD 5iQibs),

i=1

we define

Bl 9] = {P&QID_ ciPilg: || ¥]+ D BiQsl |l ¥;5)-

i=1 j=1

Note that as far as the action sequences are concerned the operation corresponds to the
interleaving of trees.

For example, if ¢ and ¢ are the atomic assertions
{true}la{z=1}e, {true}f{y=1}s,

we get ‘
[¢ 1l 4] = {true}a{z =1}{true}B{y =1}
+8{y =1}{true}la{z =1}

)

In tree form, this is represented as follows:

15



'
g
J
:

X.:'-i 3: 1 = 1 3 =1
’ true

Leiie
|
y=1

K

®y —r0
3

g

In general, for the abbreviated form of atomic assertion we have:

{Pre{P'}|[{@Q}H{Q} = {P&RHAP H{P &Q}B{Q}
+A{QHP&Q Jo{P'})

I

[{Pla{P'}e|| {Q}B{Q }e] = {P&QHA{ P HQ}{Q}o

+8{Q H P} P'}e).
Of course, this composition is not guaranteed to produce safe assertions, even if the
component assertions are safe. Nevertheless, the following result shows that parallel
composition of assertions does indeed have the correct effect: if I'; satisfies ¢ and Iy

satisfies 7 then [['y || T'2] satisfies [¢ || 1]. This is true regardless of the structure of ¢ and
.

Theorem 1. If =T sat¢ and FTgsaty then = [y || T2]sat (¢ || ¥]. &
Thus we are led to the proof rule:

I'i sat ¢ 'y sat vy
[[1 || T2)sat [8 ]| ]

(B4)

As an example, we can show that the command [ : z:=1 || 8 : y:=1] satisfies the
assertion

{true H{a{z =1}{true}f{y =1} e +8{y = 1}{true}a{z =1}e),

by forming the parallel composition of the assertions

{true }a{z =1}, {true }8{y =1},
16



which are obviously satisfied by the component commands and can be proved by (32). Note
that so far we do not have a means of proving that this command satisfies the assertion

{true}{a{z=1Hz=1}p{z=1&y=1}
+tH{y=1Hy=1}o{z=1&y=1})

We will return to this point later.

Sequential composition.

We may also define a sequential composition for assertions. The definition is straightfor-
ward, again by induction on depth. The operation grafts 1) on to the leaf nodes of the tree
corresponding to ¢. In the base case, we put

({P}NIL); @ Z PiQivi = {P&Q} Zj Bi Qi)
j=1 =1
so that 9549 = 9. When ¢ is P(3_[_, @iPi¢;) and n > 0 we put

PZ% CHRY

i=1

Again we can show that the operation has the desired effect: if T'; satisfies ¢ and T
satisfies ¢ then I';; I's satisfies ¢; 1.

Theorem 2. If =T, sat ¢ and =T sat 1 then = (T'y;T2)sat (¢;¢). 1

This suggests the proof rule:

I' sat ¢ 'y saty
(I4; T2) sat (¢ ¢)

(BS)

As an example, we can now prove that the command a:z:=z+1;8:2:=2x + 1 satisfies
the assertion

{z=0}e{z=1}{z=99}8{z= 100},

by forming the sequential composition of the assertions

{z=0}a{z=1}, {z=99)}8{100}.

In summary, the rules so far introduced are:

17



PROOTI RULES

a:skipsat {P}a{P}e (B1)

a:I:=E sat {[E\I|P }a{P} (B2)

I'sat ¢ sale(¢)

a:(T') sat { rool(9) Jar{ Ical(d) ] © (B3)
T'ysat¢, Tysat s

[T1 || T2] sat [¢1 || ¢2] (B4)
I'isat ¢, Tysat B0 (B5)

(I'1; Tg) sat (¢4; ¢2)

The system presented above is sound but not complete. One reason for incompleteness
is rather trivial: every command satisfies an assertion ¢ whose root is false, but we have
no way of proving this from the above rules. One solution is to add a rule to this effect:

—root(¢)
I'sat ¢

Even this does not guarantee completeness by itself. We saw earlier (Examples 2 and 3)

(BO)

that we were unable to prove some assertions about parallel commands. Example 2, for
instance, showed that there is no proof from these rules alone that the command

[@im=z+1|| Brz:=z+1]
satisfies the assertion L
{(z=0}a{z=1Hz=1}8{z =2} + flz = 1}{z = 1 }afz = 2}).

Rule (B0) does not help in thesec examples. Essentially, the reason for this is that we really
need to use two assertions about each component command here: we need to be able to say

18



that z:=x + 1 will change the value of z from 0 to 1, and that it will equally well change
the value of = from 1 to 2. Of course, in general the number of separate assertions required
may be more than two. We will therefore allow conjunction of asscrtions and include a
natural rule which expresses an appropriate notion of implication for our asscrtions. For
conjunction we simply add to the syntax of our assertion language the clause

¢ = ($1 D ¢2).

We use P rather than & merely to keep a distinction between conjunction at this level
and conjunction in the condition language. The interpretation is simple:

=Tsat(¢;PD¢2) & ETsatg;, & F T satpy.

Conjunction is clearly associative, and we may therefore omit parentheses and write

1 D b2 D o3,

for example. We then extend the definitions of our syntactic operations to cover conjunc-
tions. The definition of parallel composition of assertions is a straightforward generaliza-
tion of the earlier definition. When ¢ and 1 are conjunctions, [¢ || ¥] is defined to be a
conjunction: for each conjunct P E?’:l a; P;¢; of ¢ and each conjunct @ E;n:l B;Q;iv; of
1 we include in [¢ || ] a conjunct of the form:

(PLQYN Pl 9] + 3 5,406 1| 0.

i=1 =1

When ¢ and ¢ are simple assertions this is exactly the same definition as before. For an
example, when ¢ and 1 are the assertions

¢ ={z=0}{z=1}D({z=1}a{z=2}),
v = ({z=0}8{z=1} D ({z=1}8{z=2}),

the parallel composition has four conjuncts:

{z=0}a{z=1}y + B{z=1}9),
{z=1Ho{z =2}y + B{z=2}¢),
{false a{z =1}y + B{z=2}¢),
{false }a{z =2}y + B{z=1}9).

For sequential composition we merely put (¢1 P ¢2); ¥ = (é1; %) D (¢b2; ¥) and similarly
when we have a conjunction in the second place: in other words, sequential composition
distributes over conjunction. With these additions, the axioms and rules given earlier
remain sound, with (B3) applicable for conjunction-free assertions as we have not specified
a definition of safe(¢) when ¢ is a conjunction.

19



We add rules for conjunction introduction and elimination:

I'sat ¢ I'sat ¢
I'sat (¢ D 9)

(B6)

[ sat (¢ D ¥)
I'sat ¢, I'saty

(B7)

Implication between assertions is defined as follows for simple assertions without
conjunction; the definition extends in the obvious way to conjunctions: we certainly want

to have (¢ @ ¥) = ¢ and (¢ P ¢) = ¢ for example. For

¢ = P(J_ c:Pigi),

=1
b = Q) aiQit),
i=1
d=v) & (@=2P) & AP:=2Q) & \(¢:=w)
i=1 i=1

In the case when n = 0 this merely requires that @ = P. Also, when ¢ is { P }a{Q} and
Y is {P'}a{Q"} we have ¢ = ¢ iff P = P and Q = Q’'; this is analogous to the usual
Rule of Consequence of conventional Hoare logic [1,12]:

P=P, (PH{@} Q=@ ©
{Pr{Q'}

Our rule for implication is a form of modus ponens:

F'satd =14
I'sat ¢

(B8)

From the definitions above it follows, for example, that

{P}o{Q}e = {P}a{Q},

because ¢ = true. This means, in particular, that we may derive the following assertion
schemas for assignment and skip, by using the axioms (B1) and (B2) together with (B8):

a:skip sat { P }a{ P}, (B1')
a:I:=F sat {[E\I|P }a{ P }. (B2)
These forms resemble the usual Hoare axioms for-these constructs [12].

20



Ezamples.
Consider again the problematic examples introduced earlier.

Ezample 1. We wish to prove that I" sat 0, where

I

¥ [a:zi=z +1 || B:z:=2 + 1],
0 ={z=0}a{z=1}Hz=1}8{z=2} + B{z=1}{z=1}a{z=2}).

We have the following assertions (by rules B2 and B6):

a:z:=z+ 1lsat ¢

$=({z=0}a{z=1)®{z=1}a{z=2)),

Biz:=z+ 1sat
v ={z=0}{z=1} ) D{z=1}8{z=2})

We have already seen that [¢ || 9] is a conjunction of four terms, one of which is
{z=0}a{z=1}yp + B{z=1}9¢).

Buty = {z=1}f{z=2}and ¢ = {z=1}a{z =2} Hence, [¢ || ¥] = 06, and
the result follows by (B4) and (38). &

Ezample 2. In the composition [a:z:=2 || (8:2:=1;7:2:=z+1)] the two component
commands satisfy the assertions '

{true }a{z =2},
{true}p{z=1}{z=1}{z=2} B ({z=2}1{z=3})).

The parallel composition of these assertions implies the desired assertion:

true
A
x=2 x=1
true x=1

o
]
»
X
i
ol

o<
"
%)

o
“"""'—-—-l
e ——

R

b
Y
|
W

x
W

N



Ezample 8. Let I' = [a:z:=1 || B:y:=1]. We wish to prove that I sat 0, where

0 = {true}(a{z=1}{z=1}B{z=1&y=1}
+t{y=1H{y=1}o{z=1&y=1})

To this end, let ¢ and v be the following assertions:

¢ = {true}a{z=1} P {y=1}a{z=1&y =1},
Y = {true}f{y=1} @ {z=1}p{z=1&y=1}.

Then we have a:z:=1sat ¢ and f:y:=1sat . And
(@1l 4] = {true}(e{z=1}yp + B{y =1}¢)

By choosing the appropriate conjuncts in ¢ and i we see that this assertion implies 0.
That completes the proof. g

Soundness and Completeness.

Although we do not provide a proof in this paper, the proof system formed by (B0)-
(B8) is sound: all provable assertions are valid. The system is also relatively complete in
the sense of Cook [8]: every true assertion of the form I sat ¢ is provable, given that we
can prove all of the conditions necessary in applications of the critical region rule and of
modus ponens. Both of these rules require assumptions which take the form of implications
between conditions. Let Th be the set of valid conditions (including implications between
conditions). Write Th | T sat ¢ if this can be proved from (B0)-(B8) using assumptions
rom Th. The soundness result is:

Theorem 8. If Th | I'sat¢ then = I'sat¢. 1
Relative completeness is expressed as follows:
Theorem 4. Iff= T sat¢ then Th I I'sat¢. 1

We omit the proof of this result.

22



3. Deriving Owicki’s proof rules.

In Owicki’s proofl system, conventional Hoare-style assertions of the form

{PIT{Q}

aic used, although the parallel composition rule requires the use of a proof outline above
the inference line. A proof outline is a command text annotated with conditions, one
before and one after each syntactic occurrence of an atomic action. At least for sequential
commands, safe assertions in our assertion language correspond precisely with such proof
outlines because computations of sequential commands follow the syntactic structure of
the command. The analogy can be extended to parallel commands too, although the
syntactic structure of a proof outline is no longer so close to that of the corresponding
safe assertion. The following proof rule forms a connection between our proof system and
that of Owicki. Above the line, we have a safe assertion of our form, and below we have a
Hoare-style partial correctness assertion. The rule states that a safe assertion implies the
partial correctness of the command with respect to its root and leaf conditions. The rule
is:

' sat ¢, safe(g)
{root(¢) }T'{ leaf(¢) }

To see why Owicki’s proof rule for parallel composition required an extra constraint, that
of interference-freedom, let us see how to model her rule in our notation.

(R)

Owicki’s parallel composition rule essentially corresponds to a slightly different form of
parallel composition of assertions. This may be defined as follows. For ¢ =P .. | 0 Pi¢;
and Y = Q E;":l B; Q1 with n and m non-zero, we put

)

[Bllow] = {P&QYD_ a{ P:&Q}ei llo ¥]+ D_ Bi{ P &Q; B¢ llo ¥i]).

=1 =1
We also specify that
{PINIL |lo @ >_ BiQ%;] = {P&Q} D B{P&Q; }{PINL [0 %],
i=1 i=1
and a similar definition when the terms are exchanged. In particular,

[ello %] = [¥lloe] = ¥.

The essential difference between this operation and our earlier one is that this one carries
pre-conditions through into post-conditions. For example,

{P}a{P'}o{@}{Q}] = {P&QNAP &Q}H P &Q}B{P' &Q'}
+{P&Q HP&Q }o{ P &Q'}).
23



Unfortunatecly, this form of composition does not always produce an assertion which
correctly describes the behaviour of a parallel composition of commands. We need the
notion of wnterference-freedom to guarantee this.

Define the set atoms(¢) of atomic sub-assertions of ¢ by induction on the depth of ¢.
For the assertion ¢ = PZ:-;l o; P;¢; we put

™

atoms(¢) = {{P}o;{P;} |1 <i<n}U U atoms(¢;).

i=1

A terminal assertion { P }NIL has no atomic sub-assertions. The interference-free condition
is defined as follows:

Definition 2.  Two assertions ¢ and 1 are interference-free, written int-free(q, ),
iff for every pair of atomic assertions

{p}a{p'} € atoms(4), {q}B{d } € atoms(4),

the (ordinary Hoare-style assertions)

{p&qg}le{q}
{p&q}p{p}
{p&dq }a{d'}
{p &q}B{r'}

are valid. g

Theorem 5. If ¢ and v are interference-free then

FTysatg, ETysaty = = [['1| [ Ts)sat(d]lo ] =

In view of the above theorem we may include the following rule in our system:

['1sat ¢, Tasaty, int-free(d, )
[Py | Te] sat (¢ |lo #]

(B9)

Note that this theorem and the proof rule are stated in a form applicable to all
assertions, not just to safe assertions. This can, therefore, be regarded as a slight extension
of Owicki’s ideas to encompass a more expressive assertion language. The following result
shows that interference-feedom guarantees the preservation of safeness.

Theorem 6. If ¢ and ¢ are safe and interference-free, then [¢ ||o 9] is safe. &
24



The root and leal conditions of this form of parallel composition satisfy the following
logical equivalences:
root(¢ ||lo ¥) root(¢) & root(1)
leaf(¢ ||lo ¥) leaf(g) & leaf(y).

This may be shown by an inductive argument. The fact that roots and leaves fit together
in this composition simply by conjunction provides us with an obvious link with Owicki’s
proof rule for parallel composition. This rule, taken from [20], is:

If

f

proofs of { P }T" { @, }, { P2 }I'2{ Q2 } interference-free

X IANCETS. ©)

Now proof outlines for the Hoare assertions { P; }I";{ @Q; } correspond to safe assertions
¢; such that I'; sat ¢;, with root(¢;) = P; and leaf(¢;) = Q;. The interference-freedom
of these proof outlines corresponds to interference-freedom of ¢, and ¢2. Then (¢ |0 P2]
is a safe assertion satisfied by [['y || I'2], and has root P; & P» and leaf @, & @,. Thus, a
proof using Owicki’s rule can be represented in our system, if we allow the use of (R) and

(B9).

Interestingly, the analogy between safe assertions and proof outlines also yields some
other connections with conventional Hoare logic. For instance, the sequential composition
rule (B5) together with the following property can be used to derive Hoare’s rule for
sequential composition [12]:

Theorem 7. If ¢ and v are safe and (leaf(¢) = root(1)) then ¢;1 is safe. u

Hoare’s rule was:

{PIT1{Q} {Q}IT2{R}
{P}T';T2{R} .

The derivation relies on the facts that for non-trivial ¢ and 1 we have

root(¢; ¥) = root(¢), leaf(@; 1) = leaf(4)).

Augziliary variables and auziliary critical regions.

It is well known [20] that the proof system based on (B0), (B1), (B2), (B3), (C), (B9),
(B5) and (R) is not complete for partial correctness assertions. As a simple example, it is
impossible even to prove the obviously valid assertion

{z=0}z=z+1]| s:=2+1]{2z=2}

using these rules alone. We chose to avoid this problem by introducing conjunctions and
implication. This particular assertion, for instance, can be proved by using rule (R) on

25



the assertion discussed in Lixample 1 earlier. Owicki achieved completeness by adding
“auxiliary variables” to programs and adding new proof rules to allow their use. We can
formalise this as follows. We say that a set X of identifiers is auziliary for 2 command I’
if all free occurrences of identificrs from this set in I are inside assignments to identifiers
also in X. Thus, for instance, for the command
=z + 1; y:=2; a:=2z
the sets {y },{y,2},{a,2} and {z,y,2,a} are auxiliary, but {z} is not. Let us write
I'aux X
when X is an auxiliary set of identifiers for I'. Given any set X of identifiers and

any command I', we can define a command ['\X resulting from the deletion in [ of all
assignments to identificrs in X. The definition is syntax-directed:

skip\X = skip
(I:=EN\X skip ifIeX
(I:=FE) otherwise
(T1;T\X = (T1\X); (T2\X)
Lo (| T2\X = [(T1\X) || (T2\X)]
(TNX = (T\X).

I

With this definition, it is clear (and provable) that if X is auxiliary for T' then T'\X
has the same partial correctness effect on identifiers outside X as I' does, and T'\ X leaves
the values of all identifiers in X fixed.

Let free[P, Q] stand for the set of identifiers having a free occurrence in either P or

. Owicki’s auxiliary variables rule is:
{PIT{Q} I'aux X free[P,QINX =0
{PIN\X{Q} '
In addition to this rule, for completeness of the Owicki proof system we also need a rule for
eliminating “unnecessary” critical regions and irrelevant atomic actions which have been

inserted merely to cope with auxiliary variables. The following command equivalences are
valid with respect to partial correctness in all contexts:

(AV)

skip; I' =T
I'skip =T
(T'y;T2); T3 = T'y;(Te;Ts)
{(r) = (r)
(skip) = skip
(I:=E) = I'=
[skip ||T] =T
I'||skip] =T

26



Owicki’s proof system uses a rule based on these equivalences, which we may formalise as

{PIT{Q} I'=1I' ;
PRy (2Q)
As an example, we can now prove (as in [20]) the assertion
{z=0}z=z+1]| =z +1]{z=2}

by first introducing auxiliary variables a and b to tag the two assignments and establishing

follows:

the assertion
{z = 0 }a:=0; b:==0; [(a:=1; 2=z + 1} || (=1, z:=z + 1)[{z = 2}.
Then we eliminate the auxiliary variables and the extra critical regions. This augmented
assertion can be proved by first proving the following assertions for the two parallel
components:
{Ps Ha:=1; z:=2z + 1}{ Q. },
P, =(b=0&z=0)V(b=1&z=1),
Qe = (b=0&z=1&a=1)V(b=1&z2=2&a=1),
{P, Hb:=1; z:=z + 1){ Qs },
P, =(a=0&z=0)V(e=1&z=1),
Q= (a=0&z=1&b=1)V(e=1&z=2&b=1).
These two proof outlines are interference-free (this requires the verification of four condi-
tions), and their use in the parallel rule enables us to conclude

{P. & P, Y{a:=1; z:=x+ 1) || {b:=1; zi==2 = 1)]{ Q. & Q; }.
Since we have
{z=0}a:=0;6:=0{z=0&a=0&b=10},
z=0&a=0&b=0 = P, &Q,,
Qa & @y = =2,
the desired result follows by the usual Hoare rules for sequential composition and the Rule
of Consequence.

The Owicki-Gries proof system can, then, be thought of as built from the rules (B0),
(B1), (B2), (B3), (B9), (B5), (AV), (EQ) and (C). It is arguable whether or not our proof
system, which does not require the use of auxiliary variables in proofs, is preferable to
Owicki’s. The reader might like to compare the styles of proof in the two systems for the
example above. Just as it is necessary to exercise skill in the choice and use of auxiliary
variables in Owicki’s system, our system requires a judicious choice of conjunctions.
However, the details of auxiliary variables and reasoning about their values can be ignored
in our system. At least we are able to demonstrate that there are alternatives to the earlier
proof rules of [18,19] which do not explicitly require the manipulation of variables purely
for proof-theoretical purposes and which do not require a notion of interference-freedom
to guarantee soundness.

27



4., IIxtensions.

In this section we discuss briefly some effects of extending the programming language.
We add the await statement (conditional critical region), conditional command, and while
loop, thus bringing the language more fully into line with the programming language
covered in [20].

The syntax for the new constructs will be:
I' = await f:Bdo~:I'" | whilep:BdoI' | if3:BthenT) elsels,

with B drawn from a syntactic category BExp of boolean ezpressions whose syntax will be
ignored. We have inserted labels to indicate that the tests are regarded as atomic actions,
as is the body of an await statement.

For the semantics of these constructs we add to the transition system the following

rules:
sE=-B (A7)
(await §:B do 7:T, s)i»(awa.it B:Bdo~:T,s)
“‘}‘ : '
sEB, (T,s) (1:1111,3) (A8)
(await 8:B do 7:T', s)——(null, ')
:r3 (49)
(if 3:BthenT; else 'y, s)L(I‘l, s)
s=-B (A10)
(if 3: BthenI'; else I';, S)L(I‘g, s)
sEB (A11)
(while 8:BdoT, s)ir(f‘; while B:BdoT, s)
s=-B (A12)

(while §:BdoT, S)L(null, s)

We assume given the semantics of boolean expressions, so that a satisfaction relation

= C S X BExp is known.

Note that these definitions give loops and conditionals the ability to be interrupted
after evaluation of the test and before beginning the selected command. Later we will give
a non-interruptible version.

28



With the extended transition system formed by (Al)-(A12), the old proof rules (B0)-
(B8) are still valid. The lollowing proof rules correspond to the new constructs, and are
closely connected with the new semantic clauses.

I'sat ¢, safe(d)

await 3:8 do v:I" sat {root(¢) & B }y{leaf(¢) } o (e7)
await f: B doy:I"sat ¢ (C8)
await 3:Bdo~v:I'sat { P& -~B}B{P}¢

].‘1 sat qSl (Cg)
if 3:BdoT' | elsel'yssat { P& B}B{ P }¢;

T's sat ¢o (C10)
if3:Bdol'| elsel'ysat { P& -B}3{ P }¢
Whileﬁ:Bdorsat{P&-ﬂB}ﬁ{P}o (C11)

while f§:BdoI'satf, I'sat¢ (C12)

while 8:BdoI'sat { P & B}3{ P }(¢;0)

The soundness of these rules is easy to establish. Note the fact that our earlier rule for
an unconditional critical region (I') can be derived from the new rule by making the test
true.

For a non-interruptible version of loops and conditional, in which there is no inter-
ruption point between test and body, we change the semantics as follows:

sEB, (Tq,s)——(I",s)

A9
(if 3: Bthen T else I'y, s)—(I", s') L)
sF =B, (T3,5)-{T", ) (A1)
(if B: Bthen T else I'y, s)—(I", s')
sk B, (1,02, ) (A1)
(while : BdoT, s)—?—+(I"'; while 8:Bdo T, s')
dninc (A12))

(while 8: B do T, 5)—(null, s)

29



The appropriate proof rules are:

F; sat PZ::—:I (!;P;qﬁ{

. 7 . (C9")
ifg:BdoTlelseTysat { P& B} 7| i Pigs
1‘2 satngzzl cr,-P,-qS,— (010’)
if3:Bdol'elselysat { P& -B} 30| i Pigs
while g:BdoT'sat {P& -B}B{P}e (C11)
while 3:BdoT'satf, TI'satP) . _, a;P;¢; (C12))

while 3:Bdo'sat { P& B} > 7| o; Pi(¢i; 6)

We believe that even with these extensions to the programming language the proof
system remains sound and relatively complete. Soundness is straightforward, since the
proof rules are based so closely on the operational semantics.

5. Conclusions.

We have described a syntax-directed proof system for semantic properties of com-
mands in-a simple parallel programming language. The assertions were chosen to cor-
respond in form to the semantic structure, which itself was chosen to be powerful enough
to allow reasoning about partial correctness properties to be carried out by manipulating
assertions in a context-independent manner. We discussed some connections with more
conventional logics such as the Owicki-Gries proof system.

Various proof systems for concurrent languages proposed by Lamport and others can
also be related to our work. Lamport [16] proposed using assertions of the form { P }I'{Q}
with the interpretation that in every execution which starts somewhere inside I' with P
true, P remains true until I' terminates, when @ will be true. Such an assertion corresponds
to one of our assertions PE:__I a; P;¢; in which each P; (and all other intermediate
conditions) are identical to P and all leaf conditions are identical to Q. The proof rule for
parallel composition given in [16] was:

{PIN{@} {P}r{Q}
{P}IT2{Q}
But our definition of parallel composition of assertions preserves this uniformity property:

the parallel composition of (the assertions representing) { P }I'{Q} and { P }T'2{Q } will
again have leaf ) and each intermediate condition will be P. (In fact, this uniformity

30




property is preserved both by our || and by the other form ||p). Thus, either our proof
rule (B34) or (O) suflices to derive Lamport’s rule. Instead of adding auxiliary variables,
Lamport suggested the addition of program labels and simple assertions about them. He
suggested using labels A\; for the control points (or interruption points) of a program,
and including in the condition language expressions of the form at(\), inside(\), after()).
Lamport’s system requires reasoning about control points and the relationship between
them. Since in a Lamport-style assertion the same P has to represent more than one
control point at a time, the conditions can get rather large. Indeed, it can be argued that
since the same P is serving a multitude of purposes it is more natural to split it up into
its components and to attach these components to the control points at which they are
intended to hold; this is more in line with our notation, with control points corresponding

to nodes in a tree.

The Generalized Hoare Logic of Lamport and Schneider [17] used a similar type of
assertion to those of [L6], except that they insisted that the post-condition coincide with the
pre-condition: they used invariant assertions { P }T'{ P }. The interpretation is as before,
that whenever an execution begins somewhere inside I' with P true, P will remain true
until termination. Again, their proof rule for parallel composition (essentially, a special
case of the one from [16], given above) is representable in our system, Again, control
conditions are used inside invariants, so that an invariant is really serving a multitude of
purposes and could profitably be split up and distributed to the separate control points.

The Transition Logic of Gerth [11] is also has some connection with our work. Gerth’s
assertions, written [P|['[Q], are interpreted: every transition that begins somewhere in T’
from a state satislying P ends in a state satisfying @. Again, the conditions may involve
control assertions. Gerth’s rule for parallel composition is:

[PIM1[Q] [PT2[@]
[PIC: || T2l[@]

But the assertion [P]['[@Q)] can again be rendered in our assertion language as an assertion
with a simple structure (alternating P and @ along each branch), and again our parallel
composition of assertions has the required effect, producing an assertion representating
[P][l'1 || T2][Q] from representations of [P]';[Q] and [P]I'2[@]. This again means that
Gerth’s rule can be derived in our system.

The proof methodology and program development method advocated by Jones [14]
uses rely and guarantee conditions in addition to pre- and post-conditions. Although we
have not yet investigated the connection in any detail, it appears that these ideas are
somewhat related to ours; roughly speaking, a rely condition might correspond to a pre-
condition assumed by every atomic action in an assertion, and a guarantee condition would
then be implied by all post-conditions of atomic actions.

31



Other authors have proposed compositional proof systems for concurrent programs in
which the underlying assertions are temporal in nature. In particular, we refer Lo (4] and
(19]. In contrast to these methods, we have avoided temporal assertions at the expense
of using conjunction and implication as operations on more highly structured assertions
built from conventional pre- and post-conditions. We still obtained a compositional proof
system. In fact, our assertions do have some similarity with temporal logic in the sense
that an assertion has built into it a specification of the possible atomic actions and the
behaviour of the command after each of them, so that one might be able to represent one
of our assertions ¢ in a more conventional temporal or dynamic logic.

We also believe that similar ideas to those used in this paper may be adopted in
an axiomatic treatment of other forms of parallel programming. In particular, CSP [13]
may be axiomatized if we modify the class of assertions to represent the potential for
communication and if we design a suitable parallel composition of assertions. In CSP, the
inclusion of guarded commands will necessitate a distinction between deadlock (a stuck
configuration) and successful termination, but this may be handled by an appropriate
choice of assertion language. We plan to investigate this topic in a future paper, and we
hope that some connections with earlier work [2,18,27] will become apparent when this is
done.

Another possibility for future development is to investigate an appropriate generaliza-
tion of predicate transformers, weakest pre-conditions and strongest post-conditions (see
[10], for example) for parallel commands, using our more general assertions instead of
Hoare-style assertions. For instance, there is a reasonable notion of strongest safe asser-
tion for a (labelled) command and an initial condition, provided we have strongest post-
conditions of conventional type for atomic actions. If sp[c](P) is the strongest post-
condition of atomic action o with respect to the pre-condition P, we may build a safe
assertion ®(T', P) as follows. If the initial actions for I' (from states satisfying P) are
{e@1,...,an}, and if T; is the remaining command after o;, we put

@(F,P) = Pz:aipi‘ﬁis

i=1
where P; = sp[o;](P),
¢ = O(T;, ;).
For convenience we put ®(null, P) = P. For example, the assertion built in this way from
the command [a:z:=z + 1 || B:2:=2 + 1] and the initial condition z = 0 is:

{z=0}a{z=1Hz=1}8{z=2} + B{z=1}{z =1}a{z = 2)}).

Of course, when we include loops and conditionals we should be more careful in our
definitions, but at least for finite commands this type of strongest safe assertion seems to
be of interest. We plan to investigate this topic further.

32



Another point we should mention is that our assertions described above are all finite,
and have been given a rather rigid interpretation: they not only describe the potential
computations of a command as beginning with one of a given set of actions, but also
specily that each of the actions mentioned in the assertion is indeed possible. It is, of
course, possible to relax this interpretation; we are not sure if there would be any benefit
to doing so, but it may be worth investigating. Similarly, we would like to try the effect
of a different choice of assertions. It is clearly possible to model infinite computations by
using recursively defined assertions, perhaps with a version of the u notation often used
for this purpose. Thus, if @ is a variable understood to range over assertions, we might
write uf.[{ P & —~B }3{ P }0] for an assertion which would be satisfied by the command
await 3: B do v:T". Recursive assertions could then be used to build proof rules for loops
and conditional critical regions.

Acknowledgements. The author is grateful for discussions with Eike Best, Ed
Clarke, Rob Gerth, Jay Misra, and Glynn Winskel.

6. References.

[1] Apt, K. R., Ten Years of Hoare’s Logic: A Survey, ACM TOPLAS, vol. 3 no. 4
(October 1981) 431-483.

[2] Apt, K. R., Francez, N., and de Rcever, W. P., A proof system for communicating
sequential processes, ACM TOPLAS, vol. 2 no. 3 (July 1980), 359-385.

[3] Ashcroft, E. A., Proving assertions about parallel programs, J. Comput. Syst. Sci.
10 (Jan. 1975), 110-135.

[4] Barringer, H., Kuiper, R., and Pnueli, A., Now You May Compose Temporal Logic
Assertions, Proc. 16th AoM Symposium on Theory of Computing, Washington, May 1984.

[5] Best, E., A relational framework for concurrent programs using atomic actions,

Proc. IFIP TC2 Conference (1982).

[6] Brookes, S. D., On the Relationship of CCS and CSP, Proc. ICALP 83, Springer
LNCS (1983).

[7] Brookes, S. D., A Fully Abstract Semantics and Proof System for An ALGOL-like
Language with Sharing, CMU Technical Report (1984).

[8] Cook, 8., Soundness and Completeness of an Axiom System for Program Verfification,
SIAM J. Comput. vol 7. no. 1 (February 1978) 70-90.

33



[9] Dijkstra, E. W., Cooperating Sequential Processes, in: Programming Languages,
F. Genuys (I2d.), Academic Press, NY (1968) 43-112.

[10] Dijkstra, E. W., A Discipline of Programming, Prentice-Ilall, New Jersey (1976).

[11] Gerth, R., Transition Logic, Proceedings of the 16'h ACM STOC Conference,
1983.

[12] Hoare, C. A. R., An axiomatic basis for computer programming, CACM 12, 10
(Oct. 1969), 576-580.

[13] Hoare, C. A. R., Communicating Sequential Processes, CACM 21, 8 (Aug. 1978),
666-677.

[14] Jones, C. B., Tentative Stéps Towards a Development Method for Interfering
Programs, ACM TOPLAS vol. 5 no. 4, (October 1983) 596-619.

[15] Keller, R. M., Formal verification of parallel programs, CACM 19,7 (July 1976),
371-384.

[16] Lamport, L., The ‘Hoare Logic’ of concurrent programs, Acta Informatica 14
(1980), 21-37.

[17] Lamport, L., and Schneider, F., The “Hoare Logic” of CSP, and All That, ACM
TOPLAS 6, 2 (April 1984), 281-296.

[18] Levin, G. M., and Gries; D., A proof technique for communicating sequential
processes, Acta Informatica 15 (1981), 281-302.

[19] Manna, Z., and Pnueli, A., Verification of Concurrent Programs: The Temporal
Framework, in: “The Correctness Problem in Computer Science”, ed. R. S. Boyer and J.
S. Moore, Academic Press, London (1982).

[20] Owicki, S. S., and Gries, D., An Axiomatic proof technique for parallel programs,
Acta Informatica 6 (1976), 319-340.

[21] Owicki, S. S., Axiomatic proof techniques for parallel programs, Ph. D. disserta-
tion, Cornell University (Aug. 1975).

[22] Hennessy, M., and Plotkin, G. D., Full Abstraction for a Simple Parallel Programming
Language, Proc. MFCS 1979, Springer LNCS vol. 74, pp. 108-120.

[23] Milner, R., Fully Abstract Models of Typed Lambda-Calculi, Theoretical Computer
Science (1977).

34



[24] Milner, R., A Calculus of Communicating Systems, Springer LNCS vol. 92 (1980).

[25] O’ Donnell, M., A Critique of the Foundations of Hoare-Style Programming Logic,
CACM vol. 25 no. 12 (December 1982) 927-934.

[26] Plotkin, G. D., A Structural Approach to Operational Semantics, DAIMI Report
F'N-19, Aarhus University (1981).

[27] Plotkin, G. D., An Operational Semantics for CSP, Proceedings of the W. G. 2.2
Conference, 1982.

(28] Winskel, G., Synchronisation Trees, Proc. ICALP 1983, Springer LNCS vol. 154.
(1983).

35



