Reprinted from INFORMATION AND COMPUTATION
All Rights Reserved by Academic Press, New York and London

Vol. 127, No. 2, June 15, 1996
Printed in Belgium

Full Abstraction for a Shared-Variable Parallel Language

STEPHEN BROOKES

Sehool of Computer Science, Carnegie-Mellon University, Schenley Park, Pittsburgh, Pennsylvania 15213

We give a new denotational semantics for a shared-variable parallel
programming language and prove full abstraction: the semantics gives
identical meanings to commands if and only if they induce the same
behavior in all program contexts. The meaning of a command is a set of
“transition traces,”” which record the ways in which a command may
interact with and be affected by its environment. We show how to
modify the semantics to incorporate new program constructs, to allow
for different levels of granularity or atomicity, and to model fair infinite
computation, in each case achieving full abstraction with respect to an
appropriate notion of program behavior. © 1996 Academic Press, Inc.

1. INTRODUCTION

One of the fundamental purposes of semantics 15 to
provide rigorous means of proving the correctness of
programs with respect to behavioral specifications. For any
particular language different semantic models may be
suitable for reasoning about different behavioral notions,
such as partial correctness, total correctness, deadlock-
freedom, and more general liveness and safety properties
[14]. Ideally one would like a semantics in which the mean-
ing of one term coincides with the meaning of another term
if and only if the terms induce the same behavior in each
program context; this guarantees that one term may be
replaced by the other in any context without affecting the
behavior of the overall program, thus supporting compo-
sitional or modular reasoning about program behavior.
Such a semantics is said to be equationally fully abstract
with respect to the given notion of behavior [17, 20, 22].
When the set of program behaviors is equipped with an
approximation ordering and the semantic model has a par-
tial order such that the meaning of one term is less than the
meaning of another if and only if the behavior of the first
term in each program context approximates the behavior of
the second term in the same context, the semantics is said to
be inequationally fully abstract with respect to the given
notion of program behavior and approximation. Clearly an
inequationally fully abstract semantics is also equationally
fully abstract. Intuitively, a fully abstract semantics is at
exactly the right level of abstraction to support composi-
tional reasoning.

The difficulty of finding fully abstract semantics is well
known [4, 17, 20, 227]. Many standard semantic models are

correct, in that whenever two terms induce different
behavior in some context they denote different meanings,
but teo concrete since the converse may fail. Sometimes one
can show that by adding extra syntactic constructs to the
programming language the model becomes fully abstract.
However, unless the extra constructs are computationally
natural and the original language was clearly deficient
because of their omission, the full abstraction problem for
the original language is still important.

The standard state-transformation semantics for sequen-
tial while-programs is fully abstract with respect to partial
correctness behavior. However, for a parallel version of
this language [9, 18], in which parallel commands can
interact by updating and reading shared variables, the full
abstraction problem is more difficult. Parallel programs
may exhibit non-deterministic behavior, depending on the
scheduling of atomic actions, so the partial correctness
behavior of a parallel command is naturally modelled as a
non-deterministic state transformation, usually represented
as a function from states to sets of states. However, the state
transformation denoted by a parallel combination of com-
mands cannot be determined solely from the state transfor-
mations denoted by the component commands; thus the
state-transformation semantics for a parallel language is not
even compositional, and is certainly not fully abstract. It is
not even sufficient to model a program as a set of sequences
of states, each sequence recording a possible execution
history of the program, since this semantics still fails to be
compositional. One needs a semantic model with more
detailed structure, so that the possible interactions between
commands executing in parallel may be modelled
appropriately.

Hennessy and Plotkin [9] described a denotational
semantics for this language, based on a recursively defined
domain of resumptions, built with a powerdomain operator.
However, the resumptions semantics is too concrete: skip
and skip; skip denote different resumptions even though
they induce the same partial correctness behavior in all con-
texts. They showed that with the addition of extra features
to the programming language, the resumptions model
becomes fully abstract. However, one of the extra constructs
is a rather peculiar form of coroutine execution which
allows counting of the number of atomic steps taken by a

145 0890-5401,/96 $18.00

Copyright € 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.

146

command executing in parallel. The problem remained of
finding a fully abstract model for the original parallel
language.

It is often reasonable to assume that program execution
is fair, in that commands executing in parallel are not artifi-
cially prevented from making progress. In particular, execu-
tion is weakly fair if whenever a parallel command is con-
tinuously enabled it eventually gets to move [16, 8]. Even
when parallel execution is being simulated on a shared uni-
processor, using a scheduler that interleaves the activities of
parallel commands, it is easy to implement weak fairness
using a round-robin scheduling strategy. The assumption of
(weak) fairness allows us to abstract away from the details
of any particular scheduling strategy and from the relative
speeds of parallel processes. It is well known that fair
execution gives rise to the phenomenon of unbounded non-
determinism—there are parallel programs guaranteed to
terminate under a fair execution strategy but which may ter-
minate in any of a (countably) infinite set of final states. The
interaction of unbounded non-determinism with power-
domain constructions is problematic. For instance it is dif-
ficult to see how to adapt the Hennessy—Plotkin resump-
tions model to incorporate fairness; moreover in Apt and
Plotkin’s semantics [4]. unbounded non-determinism
causes lack of continuity of certain key functions. Park [19]
provided a denotational semantics for shared-variable
programs, including a formal treatment of fairness, but
failed to achieve full abstraction for a familiar reason: Park’s
semantics distinguished between skip and skip: skip. This
left open the problem of finding a fully abstract model for
shared-variable programs with respect to a suitable notion
of fair behavior.

In this paper we solve these problems. We first describe a
new denotational semantics for shared-variable programs.
and we show that it is fully abstract with respect to partial
correctness behavior. We do not need to add a coroutine
construct to the language in order to achieve full abstrac-
tion; instead, our proof makes essential use of a syn-
chronization primitive (the “conditional critical region”
construct) already present in the language. We model the
meaning of a command as a set of transition traces. A trans-
ition trace is a finite sequence of pairs of states recording a
possible interaction sequence of the command with its
environment; each pair of states represents the effect of a
finite, possibly empty, sequence of atomic actions. The set of
traces of a command is closed under two natural operations:
“stuttering” (cf. Lamport [15]) and “mumbling.” This
model is conceptually simpler than the resumptions model,
since it does not require the use of powerdomains or recur-
sively defined domains. The model also validates a number
of intuitively natural equations and inequations between
programs which fail in the resumptions model.

We also show how to incorporate fairness into our
semantic framework in a natural way, by including infinite

STEPHEN BROOKES

transition traces representing fair computations. In doing
this we build on the foundations laid by Park [19], with the
key extra ingredient supplied by our use of c/osed trace sets.
All operations on trace sets used in our semantic definitions
are continuous, with respect to set inclusion. We prove full
abstraction with respect to the appropriate notion of
behavior, termed “strong correctness,” in which both ter-
mination and divergence (non-termination) are regarded as
observable. Our semantics may therefore be used to reason
about total correctness, partial correctness, safety and live-
ness properties of parallel programs executing fairly.

We also show that our semantic models are adaptable to
a variety of settings: one may easily accommodate the addi-
tion of certain extra features to the programming language,
and the results do not depend crucially on assumptions
about the level of atomicity or granularity of execution.

2. SYNTAX

We discuss a standard shared-variable parallel language,
as in [9, 18]. There are four syntactic sets: Ide, the set of
identifiers, ranged over by I, Exp, the set of expressions,
ranged over by E; BExp, the set of boolean expressions,
ranged over by B; and Com, the set of commands, ranged
over by C. Identifiers and expressions denote integer values,
boolean expressions denote truth values, and the language
contains the usual arithmetic and boolean operators and
constants. For commands we specify the following
grammar:

C:u=skip | I:=E| C,; C, |if Bthen C, else C, |
while Bdo C | C, | C, | await B then C.

A command of the form await B then Cis a conditional criti-
cal region,' converting C into an atomic action that is
enabled only in states satisfying B; we impose the
(reasonable) syntactic restriction that C must be a finite
sequence of assignments (or skip).?

We write free[£] to denote the set of identifiers occurring
free in E, and similarly for boolean expressions. For com-
mands we define

free[skip] = { }
free[]:= E] ={I} ufree[E]
free[C,; C,] =free[C,] ufree[C,]

! Also known as a “conditional atomic action” [3].

> This restriction is motivated by pragmatic concerns: it is easy and
inexpensive for a scheduler to suspend execution of other parallel com-
mands while a finite sequence of assignments is performed, but not practi-
cal to suspend while an arbitrary command executes, since a loop may take
an unbounded amount of time. Moreover, the restriction does not hamper
the utility of the programming language and suffices for establishing full
abstraction.

FULL ABSTRACTION FOR A SHARED-VARIABLE PARALLEL LANGUAGE

free[if B then C, else C,] = free[B] u free[C,] u free[C,]
free [while B do C| = free[B] u free[C]

free[await B then C] = free[B] U free[C]

free[C, || C,] =free[C,] u free[C,].

3. OPERATIONAL SEMANTICS

We present a structural operational semantics similar to
the semantics given in [9].

We use N for the set of (non-negative) integers, ranged
over by n: and V= {tt, £f} for the set of truth values,
ranged over by . A state is a finite partial function from
identifiers to integer values. Let § = Ide — , N denote the set
of states. ranged over by s. We write dom(s) for the domain
of s. and [s|7=n] for the state which agrees with s except
that it gives identifier I the value n. We use notation like
[{,=n,. .. [, =n,] for states.

When s is a state defined on (at least) the free identifiers
of E, we write { E, s> — * n to indicate that E evaluates to n
in state 5. Similarly for boolean expressions. We assume that
the semantics of expressions and boolean expressions are
given by semantic functions & and 4, characterized opera-
tionally by

ELE] ={(s,n) | (E, sy =*n}
B[B] ={(s,v) | {B,s) =*v}.

For command execution we specify a set of configurations
Conf={{C, s> eComx S | free[C] =dom(s)},

a transition relation — < Conf x Conf, and a subset of
successfully terminated configurations. A configuration of
the form ¢ C, s> will represent a stage in a computation at
which the remaining command to be executed is C, and the
current state is 5. A transition of the form (C, s> = {C', 5"}
represents a computation step in which an atomic step of C
enabled in state s is performed, causing the state to change
to s’ and after which the remaining command to be executed
is C'. The transition relation for commands is defined to be
the smallest relation satisfying the syntax-directed tran-
sition rules given in Fig. 1. This means that a transition is
possible if and only if it can be deduced from these rules. The
successfully terminated configurations are those for which
{ C, s> term is provable from the rules in Fig. L.

Note how the rules specify the atomicity of boolean
expression evaluation, assignment, and conditional critical
regions, by means of —*, the reflexive transitive closure of
the transition relation. The transition rules for C, || C,
clearly specify the interleaving of atomic actions performed
by C, with those performed by C,, and we have specified
that a parallel composition terminates only when both
components have terminated.

147

(skip, s)term

(E,s) =" n
(I:=FE,s) — (skip,[s | I = n])

(Cr,8) = (C},5)
(Cl 3 C‘Zs 5} = (C;! C?\ S?}

(T, s)term

(Cy; Cy, 5) = (Ca,)

(B,s) =" tt
(if B then C) else Cy, s) — (C}, s)

(B,s) =" £f
(if B then C, else Cy, s} — (Ca, s)

(while B do C,s) — (if B then C;while B do C else skip, s)

<Cl'. S> - (C";! 3’)
Cy, 8y — (C1]|Ca, 8"

(Cay5) = (Cy8)
(C1]|Ca, 5) = {C1]|Cy, 8)

(G

(Cy, s)term (Cy, shterm
(C1|C, s)term
(B,s) ="ttt (C,s) =" (C',s")term

(await B then C,s) — (C',5")

(B,s) =~ £f
(await B then C,s) — {(await B then C,s)

FIG. 1. Transition rules for commands.

A configuration like {await B then C, s)» is said to be
“blocked” if B is false in s; we model blocking operationally
by means of a “busy-wait” or “idle” transition, as expressed
in the final rule of Fig. 1.> More generally a parallel com-
mand is said to be blocked in a given state if each of its com-
ponent commands is blocked in this manner; thus C is
blocked in state s iff the only possible transition of {C, s)
is an “idle” transition back to itself.

A computation of a command C from state s is a maximal
sequence of consecutive transitions starting from {C,s).
A computation is either finite, ending in a successfully
terminated configuration, or infinite.

4. PROGRAM BEHAVIOR

We will focus initially on two closely related notions of
behavior, each determined by the finite computations of a
program.

¥ An alternative interpretation of blocking is obtained if we omit this
transition rule: a blocked configuration would then have no enabled trans-
ition. We would then need to distinguish between two kinds of finite com-
putation (successful and blocking). This would greatly complicate the
presentation of later definitions and results, without gaining any generality.

148

DeFINITION 4.1. The partial correctness behavior func-
tion .#: Com — (S x §) is defined by

M[C]={(5,5) | {C, 5> =*{C', 5" term}.

A Hoare-style partial correctness assertion {P} C{Q},
where P and Q are boolean-valued expressions involving
identifiers, is valid if every terminating computation of C
from a state satisfying P ends in a state satisfying Q. As
usual, P and Q are “conditions” drawn from some specifi-
cation language. Assuming that the condition language
contains at least expressions of the form

x;=m & &x,=ng,

where the x; are identifiers and the #; are numerals, it is easy
to see that two programs have the same partial correctness
behavior if and only if they satisfy the same Hoare-style
assertions,

The partial correctness behavior .# ignores all inter-
mediate states that arise during a computation, focussing
only on the first and last states of successful computations.
We now present a simple generalization. A (finite) srate
trace of Cis a sequence of states occurring during a success-
ful computation of C. Let §* denote the set of non-empty
finite sequences of states.

DEerFINITION 4.2. The (finite) state trace behavior func-
tion &: Com — 2(S ™) is given by
g[C] = {5051...8: | <C, 56> =*(Cy, 58>
=¥ % (G, 5 term).

Partial correctness behavior induces a preorder — , and
an equivalence relation = _, on commands,

Cc , C' <= Vs.(free[C] ufree][C'] = dom(s)
= #|Clscs #[C"]s)
CE=sCeC,C&CC,C
where we write .#[C] s for {s' | (s,5") e .#[C]}.
Similarly we define the state trace preorder and equiv-
alence relation on commands:
Cr, C' < Vs. (free[C] ufree][C'] = dom(s)
=F[C]lsc&[C']s)
C=p s CoeC & C =,

where #[C]s={s,...5: | 55,...5,€ Z[C]}.

STEPHEN BROOKES

MNone of these relations is substitutive, since we have:

xi=lhix=x4+l=4x:=2
(x:=Lixi=x+1) | x:=2%# ,x:=2|x:=2
Xi=lixi=xtl=sni=1;xi=2

fxo=Lx =x41) [X =2 (X =1 x:=2) || x:=2.

We therefore define the substitutive preorders < , and
<., and the substitutive equivalence relations = , and
= g by

&

CL,C'eVP[-].(P[C] =, P[C])
B B B BB o€
C<y C'=VP[-].(P(C] =4 PLC'])
C=yC'=C<,C'&C' <, C,

where P[—] ranges over program contexts, that Iis,
programs with a hole (denoted [—]) into which a com-
mand may be substituted; and P[C] denotes the program
obtained by substituting C into the hole. Thus C= , C" if
and only if C and €’ are interchangeable in all program con-
texts without affecting partial correctness. By definition,
< , and = , are congruences, since they are preserved by
all programming language constructs.

Since A [C) = {(s,5') | ss' € #[C]} it is easy to see that
Cc, C'=Cc , ', and similarly state trace equivalence
implies partial correctness equivalence. The converse fails,
as shown by

xi=liwi=xgliexi=2

x=hxi=x+1=,x:=2

Nevertheless the substitutive preorders < , and < .. coin-
cide, so that = , and =, also coincide; two commands
induce the same state traces in every context if and only if
they induce the same partial correctness behavior in every
context.

ProrosiTiON 4.3. For all commands Cand C', C< , C'
ifand only if C<,, C'.

Proof. Since C =, C' implies C = , C' it follows that
C<. C'implies C< , C'. For the converse we argue as
follows.

Assume C £, C'. Then there is a context P[—] and
a state trace o=s,...s, such that oce ¥[P[C]] but
a¢ Z[P[C']]. Since states are finite, for each state s there
is a boolean expression IS, such that for all states s’ such
that dom(s') =2 dom(s), {IS,, s'> -»* tt if s’ and s agree on

FULL ABSTRACTION FOR A SHARED-VARIABLE PARALLEL LANGUAGE

dom(s), and (IS, s'> —* £f otherwise. Then the program
context

O[—1=P[—1] | (await IS then skip; ...;
await IS, then skip)

has the property that (sq, s.) €. #[Q[C]] but (5o, 5:) ¢
HA[O[C']]. ThusC « , C'. 1

As a corollary, a semantics will be fully abstract with
respect to state traces if and only if it is fully abstract with
respect to partial correctness.

5. RESUMPTION SEMANTICS

Hennessy and Plotkin [9] gave a denotational semantics
based on a domain R of “resumptions,” defined recursively
by the domain equation

R=S—2(5+(RxS)),

where Z is a suitable powerdomain constructor, + denotes
the separated sum and x denotes the cartesian product of
domains. The resumption semantic function #: Com — R is
characterized operationally by the following property:

R[C)s={s| {C, s) term}
V{(Z[C'],5) |1 {C,s> =LKL, 5>}

This shows clearly how resumptions model intermediate
state changes. The resumption semantic function can also be
given a denotational definition, since Z[C, | C,] can be
determined from #Z[C,] and #2[C,]. Moreover, .4 [C] can
be be extracted from #[C] by an “unravelling” operation,
as described in [9].

However, the resumption semantics makes many unne-
cessary distinctions between programs: for instance skip and
skip; skip denote different resumptions even though they
induce the same partial correctness properties in all con-
texts. To attain full abstraction Hennessy and Plotkin
added a form of “coroutine” composition C, co C, to the
syntax of the programming language, together with a non-
deterministic choice operation C, or C,. The operational
behavior of C, co C, is to perform single atomic steps alter-
nately from C, and C, until one of them terminates, and
C, or C, can behave either like C, or like C,. The transition
rules for C, co C, are

(C,5)-><C, 5
(Cje0C,,5) »<Cye0CY, 5

{C,,s) term
{C,coC,,s) term’

149

These two extra constructs permit program contexts to
be built which can count the number of atomic actions
taken by a command, thus distinguishing between skip and
skip; skip. The resumptions model then becomes fully
abstract for this extended language. Nevertheless, this
coroutine construct seems rather ad hoc and difficult to
motivate. The full abstraction problem for the original
language remained open.

6. TRANSITION TRACES

The main problem with the resumptions model is that it
represents explicitly the one-step transition relation — and
is therefore forced to distinguish between too many com-
mands. Instead we design a semantic model based on the
reflexive, transitive closure of the transition relation
(denoted —*).

Informally, a (finite) tranmsition trace of a command
C is defined to be a sequence of pairs of states
(S0, SH)(51, 81) - (55, 5¢) such that it is possible for C to per-
form a computation from s, to s if execution is interrupted
k times, the ith interruption changing the state from s; to
5,01 (0<i<k). A transition trace of this form is interferen-
ce-free iff 5. =s, ., for each i, so that the trace corresponds
to a computation in which the state is never changed by the
command’s environment. The degenerate case (k =0) yields
simply a pair (s, s") such that C has a computation from s
terminating in s'. Formally, we write 7 [C] for the set of
transition traces of C, characterized operationally by

7Cl=

{ SO"S‘U "Iv‘ {Skask) |
<C1 SO) = <Clasi)> &
Cy, 810 =>*Cp 1) &

(Cpys5p> =% C, 53> term}.
Clearly .# and % can be extracted from 7, in the following
sense: for all commands C,

H[C]={(5,5) | (s,s)eT[C]}

_gpl]:CJl = {S()Sl S | So, 5'1]“1-: 52) Sk—la s)ed [[C]}
The above operational characterization of 7 has obvious

but important consequences.

PROPOSITION 6.1. The set of transition traces of a com-
mand C is closed under “stuttering” and “mumbling”: for all
o, fe(SxS)*and all s, 5, s" €S,

afe T[C]=uls,s) e T[C]

N, s fe T[C] =als, s")BeT[C.

s, s

150

The first closure condition corresponds to reflexivity of
—*_ the second to transitivity. Since a stutter introduces a
repetition and a mumble absorbs an intermediate state, the
terminology is closely related to everyday usage.* Given a
set T of transition traces, we let T'7, the closure of T, be the
smallest set containing 7 and closed under stuttering and
mumbling. We say that 7'is closed if T= T*. Proposition 6.1
thus states that 7 [(] is closed.

Let £=S8xS, and let 2%(X*) denote the set of closed
sets of (non-empty) traces, ordered by inclusion. It is easy to
see that this forms a complete lattice, with least element the
empty set and with least upper bounds given by unions. We
will show that the trace semantic function 7 : Com —
PT(Z), characterized operationally above, can be defined
compositionally.

Since skip causes no state change, no matter how many
times it is interrupted, it 1s easy to see that the traces of skip
are finite sequences of stuttering steps:

T [skip] = { (50, S0)--- (54, 8¢) | k=0 &
Vi (0<i<k=3s,€8)}

=4(% .5 | s,

Similarly, since we assume that assignments and conditional
critical regions are atomic,

FTH:=E]={(s,[s|I=n])|(s,n)e&[E]}T
T [await B then C]
={(s,5)| (s, tt)eB[B] & (s, sV e T[C]} "

The traces of C,; C, are built by concatenation. When T
and T, are closed sets of traces we define

T, T,={af|aecT, & feT,}",

denoting the smallest closed set of traces containing all rele-
vant concatenations; the closure operator accounts for the
possibility of mumbling between the end of a trace in T} and
the start of a trace in T5. It then follows that 7 [C,; C,] =
TG\ TIC,]

* We should note, however, that our use of the term “stuttering” differs
from Lamport [15]. In Lamport’s setting a program denotes a set of
sequences of states, and a set X' = (S) is said to be closed under stutter-
ing if for all p, p’ in S$* and all se S,

psp e X == pssp' e X.

The implication from left to right corresponds to reflexivity of —*, and the
reverse implication to transitivity. Thus in Lamport’s terminology “stutter-
ing” combines repetition of a state and absorption of an intermediate state.

STEPHEN BROOKES

The traces of a while-loop while 5 do C are obtained by
closure from traces of form

BiviBaya--Bives

where k = 0, each f; corresponds to an evaluation of B to
tt, each y, is a trace of C, and « corresponds to an evalua-
tion of B to £f. We therefore extend the Kleene-star opera-
tion to closed sets of traces in the obvious way: 7'* denotes
the smallest set containing 7 and the empty trace,® closed
under stuttering, mumbling and concatenation. It then
follows that

7 [while B do C] =(7[B]; 7 [C])*; 7 [B],

where we write 7 [B] ={(s,s)|(s,tt)eB[B]}" Simi-
larly we have
F [if B then C, then C,]
=7 [B]; 7[C,] v I [8B]; T[C.],
writing 7 [B] for {(s,s) | (s, ££)e B[B]}".

The transition traces of C, || C, are built by interleaving.
Foraand fin 2* let « || f# be the set of all transition traces
built by interleaving o with . This may be defined induc-
tively as follows:

alle=e| a={a}
oo || pp={oy|yexl pB} uipy' |y €| B},
where ¢ and p range over 2, o and ff range over 2'*, and ¢

is the empty trace. When 7', and T, are closed sets of traces
we define

T | To= {allplacT, &peT:}"

It then follows that 7 [C, || C,]| =7 [C,] | Z[C-].
We summarize these results in the following denotational
description of 7.

ProPOSITION 6.2. The (finite) transition traces semantic
Sunction 7 : Com — 2'(Z ") is characterized uniquely by the
Jollowing clauses:

I [skip] = {(s,s) | se S}'
TH:=E]={(s,[s|I=n])|(s,n)eE[E]}'
T[C; Gl =7[C]; T[C]

3 Although transition traces are always non-empty, some of our defini-
tions are simpler if we include the empty trace.

FULL ABSTRACTION FOR A SHARED-VARIABLE PARALLEL LANGUAGE

F[if B then C, else C;]
=7[B), 7[C.]v T [B]; T[C]
7 [while Bdo C] = (7[B]; Z7[C])*; 7 [B]
TC | G]=7[C] | 7]
T [await B then C] = {(s,s') e 7 [C] | (s, s)e T [B]} .

Note that all operations on closed sets of traces used in
this semantic definition are monotone (even continuous)
with respect to set inclusion. An alternative (and equivalent)
definition of the trace semantics of loops can be given using
least fixed points. For each boolean expression B and
command C, the function F on 27(X ") given by F(T) =
(7 [B]; 7[C]; TuZ [B]) is continuous. Its least fixed
point is therefore

WT.AT)=) F"{}
n=0

=(7 B 71CD*; 78]
= 7 [while B do CJ.

It is also worth noting that the loop semantics can be
obtained by taking the least fixed point of the analogous
operation on (not necessarily closed) sets of traces and then
taking the closure. This can be made precise as follows.
For (arbitrary) trace sets T, and T, let T,-T,=
{af |ae T, & BeT,}, so that T; T,=(T,-T,)". Clearly
the collection of (arbitrary) trace sets, ordered by inclusion,
also forms a complete latticee The function F'(T)=
(7[B]-Z[C]-TuZ[B]) is continuous, with least
fixed point given by

pT.F(T)=(7[B] - 7 [C])*- 7 [B].

and the closure of this set is (7 [B]; 7 [C])*; 7 [B] =
" [while B do CJ.

7. FULL ABSTRACTION

Given the assumption that expression evaluation is
atomic, the only important aspect of an expression’s opera-
tional behavior in the transition rules for commands is its
final value. It follows trivially that two expressions induce
the same partial correctness behavior in all program con-
texts if and only if they evaluate to the same results in all
states. Thus, & is fully abstract for the expression sub-
language, and 4 is fully abstract for the boolean expression
sub-language.

151

We now show that the transition trace semantics for
commands is fully abstract. We define 7 [C]s=
{s'a| (s,8")ee T [C]} and

C = C' < Vs.(free[C] u free[C'] = dom(s)
=F[ClscsT[C]s)
C=4 el Ci& O C

ProPOSITION 7.1. The transition traces semantics 7 is
inequationally fully abstract: for all commands C and C',
CerCeCs,C

Proof. Suppose C = C'. Since J is a denotational
semantics, for each program context P[—] the only rele-
vant aspect of C in determining 7 [P[C]] is Z [C].
Moreover, all operations used in the semantic definitions
are monotone with respect to set inclusion. Thus we get
F|P[C]]| =7 [P[C']]. But then for all relevant states s,

HM[P[C]]s= {S’ | (s, S’]Eﬁ'—[[P[C]]]}
c{s'|(s,sYeT[P[C']]}
— M[P[C']]s.

This shows that C =, C'= C< , C".

Recall that for each state s there is a boolean expression
IS, that evaluates to tt from s’ if s’ agrees with s on dom(s),
and evaluates to ff otherwise. Similarly there is a command
MAKE, such that

{MAKE_, s'> —* (skip, s>

for all states such that dom(s') =dom(s).

Now suppose C iz~ C’, so that there is some transition
trace o= (5, 5p)(5,, 51) -+ - (54, 5}) belonging to 7 [C] and
not to 7 [C']]. Let DO, be the command

await IS, then MAKE, ;
await IS, then MAKE,;

await IS, then MAKE, .

The traces of DO, are obtained by closure from the trace
&= (g, 5,)(5", 5)...(8% _,). Let P [—] be the program
context [—] || DO,. Each trace of P, [C] is obtained by
closure from the result of interleaving a trace of C with & In
particular, since o €. 7 [(] it follows that the interference-
free trace

(S0, 56)(80, 81)(81, 8180 82) 0 (S 15 S)(Sk S%)

is possible for P,[C]. Since trace sets are closed under
mumbling, it follows that (s,, s%) € #[P[C]].

152

However, (s,, s}.) cannot belong to the set .#[P[C']],
since this would require C’ to have a trace o’ such that inter-
leaving o’ with « can yield an interference-free trace of form

(Sos t)(t1s 120205 t3). (8, 8,)(E,, SE).

But it is easy to see that this is possible only if a itself is
derivable from o’ by stuttering and mumbling. It would then
follow that a € 7 [C'], contradicting our assumption.

Thus, Cz C' implies C< , C'. That completes the
proof. [

For example, consider the commands C=x:=1;
x:=x+1and C'=x:=1; x :=2. They have the same par-
tial correctness behavior but different transition traces:
clearly

a=([x=0], [x=1])[x=0], [x=1])

is a trace of C but not of C’. The context P,[—] built in the
proof above is

[—1 | await x=1 then x :=0

and it is clear that P [C] may terminate with x = | but that
P_[C'] cannot.

Similarly, consider the commands x:=0 and x:=0;
x:=0. It is easy to see that

and this inclusion is proper. The trace ([x=1], [x=0])
([x=1], [x=0]) is possible for x:=0; x:=0 but not
for x :=0. These two commands can be distinguished by
running them in parallel with the command await x =0 then
x:=1L

8. LAWS OF PARALLEL PROGRAMMING

We can use trace semantics to prove equations and
inequations between programs, with the guarantee that
these laws may be used safely for reasoning about partial
correctness, or state traces, in any program context. The
following Proposition summarizes some laws, writing = for
=, (or, equivalently, for = , or =) and = for =, (or,
equivalently, for < , or <)

ProrosITION 8.1, The following laws are valid:

skip; C= C=C; skip

(Cy; Cy); C3=Cy;(Cy; Cs)
C | skip=C

G, G=6G|C

STEPHEN BROOKES

(GG C3=C, | (C, 11 G5)
(if B then C, else C,); C=if Bthen C,; Celse C,; C
if (B, & B,) then C, else C,

= if B, then (if B, then C, else C,) else C,
while B do C=if B then C; while B do C else skip.

Proof. The laws may be easily validated, taking advan-
tage of natural algebraic identities involving T; T,
T, | T,, and T*. For example, skip is a unit for sequential
and parallel composition because trace sets are closed under
stuttering and mumbling. It is obvious from the definitions
that for all closed sets T',, T, and T, we have

(T, Ty), Ty=T,;(T5; T3)
={afy|loeT, &feT,&yeTs}"
{T! ” Tz) || T3=T1 || {Tz { Ts)

=Uf{xlBllylaeT &peT, &yeTs}!
T, || TEZTQ [T,,

since concatenation and interleaving operations on trans-
ition traces are clearly associative, and interleaving of
transition traces is obviously a symmetric operation.
The rules for conditionals and loops are straightforward,
since (T, uT,); T=(Ty; T)U(T,; T)and 7B, & B,] <
7T[8.]; 7[B.]- 1

In addition, since for all a, £, ye Z* we have a(f || y) &
(aff) || 7, we obtain the following law:

Ci; (G| C) = (C5C) | Cs,

from this law, we may derive the inequation
G, G e GG

Since the semantics is tailored to correspond to partial
correctness, and we model blocking as busy waiting, the

semantics also validates the following laws:
while true do skip = C
while true do skip = await false then C.
This is reasonable, since a diverging program satisfies only
vacuous partial correctness properties, and induces non-
termination in every program context.
Since assignment is atomic, this semantics validates the

law [:=I=skip. Since boolean expression evaluation is
atomic, we can also show that

T [B]; 7[B]=7[B]
T[B]; Z[B]eZ [B]nF [B],

FULL ABSTRACTION FOR A SHARED-VARIABLE PARALLEL LANGUAGE

and the semantics validates the following laws:

while Bdo C
= if B then while B do C else skip
if B then C, else C,
= if B then (if B then C, else C,) else C,.

If the expression language is deterministic, so that for all £
and s the set & [E]s contains at most one value, we also
obtain the inequation

I'=[E,/[INE;= I:=E;I:=E;,

where [E,/I]E, denotes the expression obtained by sub-
stituting E, for each free occurrence of I in E,, with
appropriate changes of bound variable to avoid capturing
any free identifiers of £,.

By way of contrast, we discuss briefly some results of de
Bakker [6] concerning the equivalence in all sequential con-
texts of sequences of simple assignments, and we compare
what happens in the parallel case. A simple assignment has
form I:=1I, where I and I' are (not necessarily distinct)
identifiers. The following list of axioms is given by de
Bakker:

=
Il
=
gt
I
=
Il
=
I
e

xi=yx:=z=x:=z (x#2z)
X =),z =X=x:=),z:=)
X :}?’Z =yEZ =y,x =.J!

Together with some simple rules, such as

Ciixi=x'=Cyxi=x" Cuyi=y=Cyi=y

=G

xX#Yy

this gives a complete axiomatization of equivalence in all
sequential contexts. That is, two sequences of simple
assignments induce the same behavior in all sequential con-
texts if and only if their equivalence can be proven from
these axioms and rules.

However, each of these axioms fails for parallel contexts:

s The first of de Bakker’s axioms is invalid in the context
[— Ix:=1].

s The second is invalid in the context [— || w:=x].

s The third is invalid in the context [— || x :=0].

o The fourth is invalid in the context [— || y :=0].

153

Instead, the following inequational versions of the first two
axioms hold in all parallel contexts:

X,

Il
T
In

Xi=y;yi=x
A xXi=y;xi=z

I
In

X

The second of these is itself a special case of the law given
above for [:= E,; I:= E,. The third and fourth de Bakker
axioms cannot be weakened to an inequality in either direc-
tion. For instance,

Xi=yri=nE Xisp 2=y

is invalid in the context [—] | ¥ :=y + 1 and the reverse
inequality fails in the context [—] || x :=x+ 1.

9., FINER GRANULARITY

Our semantics can be adapted to deal with finer levels of
granularity. For instance, we might allow interruption of an
assignment [:= E during the evaluation of £, and interrup-
tion of a conditional during the evaluation of its test. To
make the discussion precise, suppose that we have the
following abstract syntax for boolean expressions and
integer expressions:

B:=true | false | 7B | B, & B, | E, < E,
E:=0|1|1|E +E,|ifBthen E, else E,.

To adapt the operational semantics we introduce the set
BExp' of extended boolean expressions, defined by adding
the clauses B ::= v (v € V) to the grammar for BExp, and the
set Exp’ of extended integer expressions, defined by adding
E ::=n (ne N) to the grammar for Exp. We use configura-
tions of form <{E,s) and {B,s), where £ and B are
extended expressions. A configuration of form {n+ E,, s>
(with me N) represents a stage in evaluation of a sum
expression where the left-hand expression has been
evaluated to the integer n and the right-hand expression
remaining to be evaluated is E,; a configuration of form
n e N represents the final result of evaluation.

A fine-grained transition system for expressions 1is
described in Figs. 2 and 3. Note that the transition rules
specify that a conjunction B, & B, is evaluated from left-to-
right with a short-circuit strategy, avoiding evaluation of B,
if B, evaluates to ££. On the other hand we specify that in
a sum expression E,+ E, the two sub-expressions are
evaluated in parallel. These choices were made solely for
illustration, and the transition rules and subsequent seman-
tic definitions may easily be modified to model different
evaluation strategies.

Now that expression evaluation is no longer atomic, the
semantic functions & and 4 are not fully abstract. Instead

154
(true, s) — tt
(false, s) — £f

(B,s) — (B',s)
(~B,s) = (=B, s)

(B,s) — tt
(=B, s) — ff
(B,s) — ff
(=B, s) — tt
(Blis) = (Bi,s}
(Bl &Bg, S) —F (B; &BQ, S)

(B, s) — tt
(31&827 S) — (B'Z: S)

(Bl,ﬁ') — £ff
(B]&Bg, 5) — ff

(Els 5) — (E;,S)
(By < Ey,8) = (E) < Ey,s)

<E2: S) e (E‘,Z? ""‘)
(El S E?: S) - <El S Eé$ S)

(m < m,s) —tt ifm<n

(m < mn,s) > ff ifm>n

FIG. 2. Fine-grained transition rules for boolean expressions.
we need to extend the transition traces semantics to cover
expressions, to allow for the possibility that the state may
change during evaluation. Since we assume that expression

evaluation never causes any side-effects, we can use a
slightly simpler trace structure than for commands:®

T B8] ={((30’So)(513 81) (S S), 0)

{B,sgy 2% (B, 50> &
(B8, »*(By,5) &

CBis 8) =" f-’}

¢ Actually, we could have used traces of form (s¢s, -- - 5., v), with minor
modifications in what follows. Our notation is deliberately chosen for
uniformity, so as to simplify some of the details that follow.

STEPHEN BROOKES

(I,8) = sll]

(B,s) = (B',s)
(if B then E; else E, s) — (if B’ then F else E,, s)

(B,s) = tt
(if B then E) else E, s) — (£, s)

(B, s) — ff
(if B then E, else Es, s) — (Es, s)

(Elr3> - {E;r3>
(El G Eg_.S) — {E; -+ Eg,&}

(Ey,8) = (By,)
(E\ + E,,5) — (E, + Ej, 5)

(m+n,s) =k ifm+n==~%

FIG. 3. Fine-grained transition rules for integer expresions.

T[E] = {((%v%)(-ﬁa 51) . (8gs S,)]
(E, 500 »*{E, 500 &
CE, 80 =2*(E,,s5) &

CEg Si) =" ’3}

Thus a trace ((sq,50)(81,581)...(5¢,), v) €F [B] means
that there is an evaluation of B from initial state s, resulting
in value v, during which the environment makes k inter-
ruptions, the ith interruption changing the state to s;. In
particular allowing no interruptions corresponds to the
definition of %, and Z[B] = {(s.n)|((s,s),n)eT [B]}.
Note that the traces of an expression are again closed under
(the obvious analogues of) stuttering and mumbling. For
boolean expressions this amounts to the following:

ProrosiTioN 9.1, For all boolean expressions B, all
states s, all o, p € Z*, and all truth values v,

(«B, v) € T [B] = (als, s) B,v) e T [B]
(a(s, 5)(s, 5) B, v) € T[B] = (a(s, 5) B, v) € T [B].

We write 27(X " x V) for the set of closed sets, ordered
again by inclusion. Similar properties hold for integer
expressions, so that 7 [E] is a closed subset of ZF x N.

So far we have characterized 7 [B] and 7 [E] opera-
tionally. As with commands, we can also give denotational
definitions. We give the details only for boolean expressions.

FULL ABSTRACTION FOR A SHARED-VARIABLE PARALLEL LANGUAGE 155

PROPOSITION 9.2. The fine-grained trace semantics (skip, s)term
T :BExp— P'(Z+ x V) is uniquely characterized by the ’
following clauses: (E,s) = (E',s) (E,s) = n

(I:=E, s) = (I:=E' s) {I:=E,s) — (I.=n, s)

T [true] = {((s,), tt) | se S}'
7 {I:=n,s) — (skip,[s |] =n])

[true] = {((s, 5), £f) | se S}"

7 [B] ={(x —w) | (%, v) e T[B]}, G Bl 0 o

(C1; Cp,5) = (C1;Ca, 8"} (C1;C,5) = (Cay 8)

where Ttt=ff, Tff=tt
T [B, & B,] = {(a, ££) | («, ££)e T [B,]}
v {(af, v)| (o tt)e T[B,] & (B, v)e T[B,]}'
T[E, <E])={(y,m<n) | (e, m)eT[E] &
(B.meT[E] &yea]| p}".

(B,s) = (B, s)
(if B then C, else C3, s) — (if B' then C, else Cy, 5)

(B,s) — tt
(if B then C, else Cy,s) — (C1,s)

(B,s) = £f
An operational characterization of the fine-grained trace (if B then C, else Cy,s) — (Cy, s)
semantics of commands is given exactly as before, but using
the fine-grained transition relation — from Fig. 4: (while B do C,s) —+ (if B then C;while B do C else skip, 5)
(Clr 5) =¥ <C;‘ Sj) {CZs S) s (C;,Sr}

9'[[C]] e {(501 So)(81, 81) .. (5, S) |
<Cs SD> =% <Cl7 S,;]> &
(C1, 510 =*LCy 510 &

(ClICs, 5) = (C1lICays) (C1lICo, 8) = (CHlIC,)

(Cy,s)term {(Cy,s)term
(C1]|Cy, s}term

(B,s) ="ttt (C,s) =" (C', sV term
{await B then C,) — (C', s")

ProrosITION 9.3, The fine-grained trace semantics of (B, s) =" ££
commands is uniquely characterized by the following clauses: .

{Cs 8¢ =*C, 5;) term}.

(await B then C,s) — (await B then C, s)
T [skip] ={(s,s) | seS}*
TI:=E]l={als, [s|I=n])|(x,n)e T[E]}!

T[C.; C.)=7[C,]: 7[C,] PROPOSITION 9.4. The fine-grained semantics is fully
7if B then C, else C,] abstract: for all terms t and t' of the same syntactic type,

(W e i
=718} 71C,] v 78] TIC] Proof. For commands the proof is similar to the proof
J [while Bdo C] = (7 [B]; 7[C])* 7 [B] of Proposition 7.1.
s . s For boolean expressions ¢ and ¢’ with different transition
TG Gl=71C] I T1C] traces it is easy to construct a context of form
 |await B then C] = {(s,s") e 7 [C] | (s,5)e T [B]}". C|if[—]thenz:=0elsez:=1 (for a suitably chosen C
and z) that distinguishes between them.

FIG. 4. Fine-grained transition rules for commands.

Here we write T [B] for the set {a|(«, tt)e 7 [B] and For integer expressions with different transition traces we
T [B] for {« | (x, ££) e T [B]}. can find a discriminating context of form C || z:=[—1]. |

Again all operations on trace sets used in this semantics For examplc, the br?olcan expressions x < x and true are
are continuous with respect to set inclusion. not semantically equivalent: (([x=0], [x=0])([x=1],

Of course, since the operational semantics of commands [x=1]). ff)e 7 [x<x] — 7 [true]. As a result they may
is now fine-grained, we are now interested in notions of induce different behavior in contexts such as
behavior defined as before but based instead on the fine-
grained transition relation of Fig. 4. x:=1|if[—]thenz:=0elsez:=1.

156

The relationships given in Proposition 8.1 continue to hold
for the fine-grained semantics. However, the identity
I:=I'=skip fails because assignment is not atomic. For
example,

x:=0;(x:=x||x:=1)#_, x:=0; (skip || x:=1),
because ([x=0],[x=0])[x=1],[x=0]) is a trace of
x:=x but not of skip. Instead we get the inequality
skip = I:=1I. Similarly, we have only an inclusion .7 [B];
7 |B] =2 7| B], the converse direction failing in general;
and we obtain the following inequalities

while Bdo C
= if B then while B do C else skip
if B then C, else C,
= if B then (if B then C, else C,) else C,.

10. FAIRNESS

So far we have ignored the possibility of infinite com-
putation and non-termination. This was appropriate for
reasoning about partial correctness, and in general for
any property determined entirely by the finite traces of a
program. However, many parallel programs are designed
specifically not to terminate, and we would like a semantics
suitable for reasoning about total correctness, and about
safety and liveness properties, in addition to partial correct-
ness.

When reasoning about parallel programs it is often
natural to make a fairness assumption [197]: when running
commands in parallel, no individual command 1s forever
denied its turn for execution. This kind of assumption per-
mits us to abstract away from scheduling details, such as the
relative speeds of parallel processes, and to deduce program
properties that hold in any “realistic” implementation of the
programming language. At least for the form of fairness
described informally above, it is easy to design schedulers
that guarantee fair execution, so that the fairness assump-
tion provides a convenient and reasonable abstraction. In
this section we extend our semantics to incorporate finite
and infinite traces corresponding to fair executions. We
provide an operational characterization of the set of fair
traces of a program, followed by a denotational charac-
terization. Since we model blocking as busy waiting, there is
no need to distinguish between “weak” and “strong” fair-
ness: a non-terminated command is always enabled, since
even a command stuck at an await with its test false can per-
form an idle step.

In order to characterize the fair infinite computations of
a command operationally, care must be taken to keep track
of which parallel component performs each atomic action

STEPHEN BROOKES

(see, for example, [8]). The crucial casc is for a command
of form C, || C,. An infinite transition sequence of C, || C,
is fair if and only if for each i = 1, 2 the sub-sequence of steps
involving C, is either finite and ends in a successfully ter-
minated configuration, or is infinite.

For example, consider the program

C=(x:=0| whilex=1doy:=y+1)

started in initial state [x=1, y=1]. This program has
infinitely many terminating computations, in which the
loop body is executed a finite number of times and then the
assignment to x occurs, causing the loop to terminate. For
each positive integer k there is such a computation ending
in the state [x =0, y =k]. There is also an infinite computa-
tion of C in which the loop body is repeated forever.
However, this computation is unfair, since it can only occur
if the assignment to x 1s forever denied a chance to execute.
Under the fairness assumption this program is guaranteed
to terminate. Since the final value of y is an arbitrary
positive integer this program exhibits unbounded non-
determinism.
For another example, the program

x:=0;y:=0; (await x=1 then y:=1 |
while y=0do x:=1—X)
has a non-terminating weakly fair computation, in which
the await command only gets to move after an even number
of loop iterations, when x is equal to 0, so that it never
changes the value of y. This shows that even under fairness

assumptions it can be possible for blocking to persist.
We write

<C'0'JSIZ}>_}<C‘1.'Sl>'_> “'<C”.,S">—) -~ fair

to indicate a fair infinite computation. Similarly, we write
<Ct)1 S()> =7 <C‘I'Sl>"’* "'<Crusn> —*...fair

to indicate an infinite sub-sequence of a fair infinite com-
putation; in particular, this indicates that infinitely many of
the transition sequences {C,, s;> —»* {C,, |, 5;,,» involve
a non-zero number of steps. Finally, we generalize further to
non-consecutive transition sequences, writing

(Cos 807 = *<Cy, 500 &
(Cp,8) =*KCos)) &+ &
<C“,5"> —* <Cn+lv5:,> - fair

FULL ABSTRACTION FOR A SHARED-VARIABLE PARALLEL LANGUAGE

when there is a fair computation of C, from initial state s,
during which execution is interrupted infinitely often, the
ith interruption changing the state from s; to s, , (for each
i=0). Each (s,,s;) represents a finite (possibly empty)
sequence of atomic actions performed by the command, and
infinitely many of these action sequences must be non-
empty.

This provides a natural generalization of transition traces
to encompass fairness. We therefore define 2 =2+ u 2%,
the set of finite or infinite transition traces, and we charac-
terize the fair trace semantics operationally as follows:

T [C] = {(s0, $0)(s1, $1) - (555 8k) |
C 50> =2*CCy, 500 &+ &
{Cp, 55y 2 *LC', 5)) term} U

E T oo O
(C 540 =¥ (Cy550 &--- &
{Cis 85 5K Cyy 13 8D & o fait}:

Note that C has an infinite interference-free trace beginning
in state 5 iff { C, s> has a fair infinite computation from s.

For obvious reasons only finitely many interruptions
can occur between successive atomic actions by C; conse-
quently, 7 [C] is again closed under stuttering and
mumbling, where we allow finitely many stutters or mum-
bles between successive stages in a trace, and we allow use
of a closure operation at infinitely many positions in an
infinite trace. Formally, we extend the definition of closure
to subsets of 2 as follows. A set T of finite and infinite
traces is closed if and only if T satisfies the conditions of
Proposition 6.1 and also

Agoty...00,... €T

= oty(80, 5o) %1(8y, 8,)...0,(5,,5,)...€ T

%o(S0 50)(805 5g) a1(51, 51)(sh, 57) %z... € T

=>a0(50s 53) fx1(-5'1,5'1r) 0ly... € T,

We let 27(Z£>) denote the set of closed sets of finite or
infinite traces. This again forms a complete lattice under set
inclusion.

Again we show that 7 can be defined compositionally.
The clauses defining the traces of skip and assignment are
unchanged.

We extend concatenation to infinite traces in the obvious
way: if « is finite we define off as before to be the result of
concatenating £ on the end of «; if « is infinite we define aff
to be o. Then we define T'y; T, ={af |aeT,, e T,}" and
again we have 7 [C,; C,] =7 [C,]; 7 [C,].

157

We define T* on closed sets of finite or infinite traces as
before but using the extended notion of concatenation. We
also define

T ={ooa;...0,... | ¥Yn=0.0, € T}

We then extend the trace set of a loop command to include
infinite traces corresponding to divergence:

7 [while B do C|
=(7[Bl; 7[C])* 7 [~Bl v (7 [B]; T[CD*.

Similarly we extend the trace set of an await command to
include infinite traces corresponding to blocking:

7 [await B then C]

={(s,8) | (s5,8)e T [B] & (s,8") e T[C]|}Tw (T [B])“.

For o and ff in 2™ let « || § be the set of all traces built by
fairly interleaving o with f. Perhaps the simplest way to
define « || f formally, following Park [19], is

a | B={y|(a B, y) €fairmerge}
Jairmerge=(L*RR*L)” u(LUR)* 4

L={(o,e,0)|0ceX}
R={(e,0,0)|ae’X}
A={(o, e a)|aeZ”} U {(e, B, B) | feZ™},

where we extend concatenation to work on sets and
on triples of traces in the obvious way. To be precise,
for X, Y=Z> let XY={aff|aeX,peY}; for triples
let (ay, @, a3)(fy, B2B3) = (2, By, 2282, 23 B3). Intuitively,
when (o, 8, y) € (L*¥*RR*L)® each of a and f is infinite and
y is an interleaving of all of a with all of §. When («, f, y) €
(LU R)* A at least one of @ and £ is finite, and y is again an
interleaving of all of o« with all of §; as soon as all of one trace
has been consumed there is no longer any fairness require-
ment.

Then we define a fair interleaving operator on closed sets
of traces by

T T2=U {911 [oy|oyeT) &aye Tz}T,

with the result that 7 [C, | C,] =7 [C,] || T[C,]. With
these definitions in hand, we can define & denotationally.
We give details for the coarse-grained case; the correspond-
ing fine-grained version is obtainable similarly.

158

DeriNiTioN 10.1. The fair transition traces semantic
function 7 : Com — 27(X*) is defined by the following
clauses:

T [skip] = {(s,5) | s S}T

TI:=E]={(s,[s| I=n]) | (s,n)eE[E]}'

T[C; G]=7[C]: 7[C]

T [if B then C, else C,]

=7[8]; 7[C\]v7[B]; 7[C,]
J [while B do C]

=(7[B]; 7[CD*; 7 [~B] v (7 [B]; 7[C])”
TG Gl=71C] | TC]
7 [await B then C]

={(s,5)eT[C] | (s,5)eT[Bl}Tu(T[B])“

Yet again all operations on trace sets used in this seman-
tics are continuous with respect to set inclusion. The seman-
tics of while-loops again has an equivalent formulation
using fixed-points, but now we must use a greatest fixed-
point. As before, the function F'(T)=(7 [B] -7 [C]-
T v Z [—1B]) is monotone on the complete lattice of (not
necessarily closed) sets of traces. Its greatest fixed point is

vI.F(T)=(7[B] - 7[C])* - T[B]u
(7[B]-7[C]

and the closure of this set is .7 [while B do C].”

To show how the fairmerge definition works, we now
return to the example programs discussed above. First, it is
easy to show that all interference-free traces of the program

x:=0| whilex=1doy:=y+1

are finite, corresponding to the fact that according to the
fair operational semantics this program always terminates.
Second, consider the program

await x=1 then y :=1 || while y=0dox:=1—x.

" The reader can easily check that .7 [while B do C] does not coincide
with the greatest fixed point of the corresponding operator on closed sets,
AT (7 [B]: 7 [C]; TuF[B]). For instance, when B=true and
C=skip this functional is simply A7.7 and its greatest fixed point is
PN Z™), the set of all traces; but 7 [while true do skip] = {(s. 5) | s€ S},
consisting only of the infinite stuttering sequences.

STEPHEN BROOKES

Introduce the following abbreviations:

o_=([x=1y=0],[x=0,y=0])
o, =([x=0,y=0],[x=1,y=0])
T:('[;{:O,y:[}],. [-x:{}-._l":{}]}

Then (o _o .) is a trace of the while-loop, and t® is a trace
of the await-command. And we have ((o_o,.)” 1%
(o _to .)?) e fairmerge. The trace (o _to,)" represents a
fair infinite execution of the parallel program in which the
await command is continually blocked. The program also
has traces corresponding to executions in which the await
command is scheduled in a state satisfying its test, so that y

gets set to 1.

10.1. Full Abstraction

We now generalize the notion of state trace behavior to
include infinite state traces. Let S* =8% U S be the set of
non-empty finite and infinite sequences of states.

DerFiniTioN 10.2. The fair state trace behavior function
& Com — 2(5%) is given by:
ZLIC] = {5051--'Sk [<C, 862 2*<Cy, 8> =%
« =¥ L Cpy 5y term) U
{sli"'sn'“ | <G, 50> =*Cy, 5 —*
i Cpyy 8, —* - fair}.
By definition, as before, %[C] is determined by the inter-
ference-free subset of 7 [(C].

ProOPOSITION 10.3. The fair transition trace semantics is

Sully abstract with respect to fair state traces: for all com-

mands Cand C', C= C'= C<, C.

Proof. As before the forward implication is straight-
forward. For the converse, suppose C has a trace « that is
impossible for C'. If « is finite we may argue as before.
Otherwise, suppose « is infinite, say

a={(So, $0)(S1, §1)... (S, 84)...

Let x4, .., x; be the (finitely many) identifiers occurring free
in either C or C'. Without loss of generality we can assume
that the domain of each state in « is {x|, - X5 }: Let & ¢
Vis e ¥pand zy, ..., z; be distinct fresh identifiers. Let ¥ := 2
stand for the command
X1 =2y e Xgp =2y,

and y:=0 stand for y,:=0;..;y,:=0. Let £=7 be the
boolean expression

(X1=y1) &--- & (xp =yy).

FULL ABSTRACTION FOR A SHARED-VARIABLE PARALLEL LANGUAGE

Let CHOOSE(y) be the following command:

)7:=(-);t:=(};(tii=1
| whilez=0doy,:=y,+1
| whilet=0doy,:=y,+1
| —
| whilet=0doy,:=y,+1
)
with a similar form for CHOOSE(Z). Intuitively,

CHOOSE(y) “guesses” a state; fairness guarantees termina-
tion and that for each state s there is a computation of
CHOOSE(y) that guesses s, by setting each y; to s(x;) for
i=1,.,k We will write y=s(X) to indicate the state

[yi=s(xy), .. ye=5(x;)]
Let P[—] be the context

[=1 || while true do (CHOOSE(7);

CHOOSE(z2);

c:=c+1;

await X = j then X :=2).
Then P[C] has an infinite state trace characteristic of «
while P[C'] does not. Specifically, P[C] has a fair execu-
tion in which at stage n the loop guesses the states s, and
s, then waits until C reaches s/, before setting the state to
$,+1- This corresponds to a state trace of the form

[X=s0(%) | y=0]2=0]c=0]

[X=15o(%) | 7=156(%X) | Z=5,(%) | c=1]

[%=50(%) | 7=50(X) [Z=251(X) | c=1]

with alternating steps made by the context and by C. Since
C’ cannot manipulate the y,, z; or ¢, and does not have the
trace a, P[C'] has no state trace of this form. ||

The laws given in Proposition 8.1 continue to hold for the
fair trace semantics. However, the inequation

Cu(GIGC)=(ChG) G

159

and its corollary C,; C, = C, | C, may fail when C, has
infinite traces. Nevertheless, these inequations still hold if C,
has only finite traces, for instance when C, contains no
loops or awaits.

Note that the busy-wait treatment of blocking means that
this semantics still identifies await false then skip with
while true do skip, since they both denote the set of all
infinite stuttering sequences. However, the inequation
while true do skip = C now fails.

11. ROBUSTNESS

The full abstraction results given above relied only on cer-
tain general properties: monotonicity of the semantic defini-
tions, compositionality of 7, and the fact that the behavior
of a program is embedded in its trace set. We can therefore
extend these results to deal with any additional program
constructs that do not violate these properties.

11.1 Non-deterministic Choice
For instance, we may add a non-deterministic choice con-
struct C, or C,, with operational semantics given by
(CyorCy, 8> > <Cy, 5
(CiorCyy5) = {Cs, 8.

Then J [C, or C,| =7 [C,]uZ[C,], and all of the pre-
vious development goes through with minor modifications.®
For the language extended with non-deterministic choice
this semantics is again fully abstract, and the laws of
programming given earlier continue to hold. In addition, or
is idempotent, commutative and associative, or distributes
through sequential and parallel composition, and C = C"if
and only if (Cor C')=C". The following laws of equiv-
alence hold:

CorC=C

C] or CZ = Cz or CI

(C, or C;)or C;=C, or (C, or C5)

(Cyor C,), C=(C,;; C)or (C,; C)

G (Cyor C,)=(C Cy)or (GC,)

(CrorC,) || C=(C, || C)or (C, || C)

if B then (Cor C') else C,

= (if B then C else C.) or (if B then C’ else C,).
8 Of course, the coroutine construct C; co C, from Hennessy—Plotkin

cannot be handled by our semantics, since 7 [C, co C,] cannot be deter-
mined from 7 [C], and 7 [C],.

160

The coarse-grained semantics satisfies the law

1| ::E| ”1’3‘.:]

=, =E;IL:=E)or (I, :=E,; I, :=E,),

but this fails in the fine-grained case since x :=x+1 || x:=
x + 1 has the trace ([x =0], [x = 1]), but this is not a trace
of x:=x+1; x:=x+1. In the fine-grained semantics we
obtain instead the following inequation:

I, :=E, | I, :=E,
S(E =B L= EYw (L, i=E I i=Ey)

11.2. Local Variables

We can also expand the programming language to
include local variable declarations by adding the syntactic
clause

C:=new/=FEin C".

The intention is that [is a local variable initialized to the
value of E and that C" may update and read I. Each
occurrence of /in C’ is bound by the declaration, so that

free[new I = Ein C'] = free[E] U (free[C'] — {I}).

Since the scope of the declaration only includes C' no other
process executing in parallel may read or write to the local
variable. An advantage provided by this extension is that
it permits a natural form of reasoning about the behavior
of programs under “locality” assumptions, such as the
assumption that no parallel command will alter the value of
certain shared-variables. It is possible to incorporate local
variable declarations into both coarse- and fine-grained
semantic models. Again we give details for the coarse-
grained case.

To define the operational behavior of this construct
we first introduce generalized commands of the form
new [/=n] in C, representing a block with body C using
local variable I with current value n. The transition rules are

{E,s»>*n
(newI=FinC,s> —» (new [I=n]in C, s)

G s I=n])><C, [s|I=n"]>

((new [I=n]inC, s)
—=<{mew [I=n"]inC, [|I=s(I)]).

(C,[s|I=n]) term
{mew [I=n]in C, s) term

STEPHEN BROOKES

where we extend the update operation on states so that
[s'| I=4s(1)] denotes s'\/ when ¢ dom(s), where s'\[I is
the restriction of s’ to the set dom(s’) — {I}. Note the careful
treatment of /, distinguishing between local and global ver-
sions of the identifier; it is easy to see that every computa-
tion of new /= Ein C from a state s leaves the value of (the
global) f unchanged.

To give a denotational description we first introduce
some auxiliary definitions. For a trace o with nth
step (s,,s5,) let a\J be the trace with nth step
(s,.[s% | I=s5,I)]). By convention, if I'¢dom(s,) this
collapses to (s, s,). Clearly a\[7 is a trace in which the value
of I is never changed “internally.” We also define {/=k) o
to be the trace beginning with the step ([s, | I=k], 53) and
whose nth step for n=1 is ([s, | I=s,_,(I)],s,). This
operation constructs a trace in which 7 is initialized to the
value k and is never changed “externally.” Then we define

T [new I=Ein C']
={a(p\) | (0, k) e T[E] & <{I=k)pe T [C'T}".
The definition captures the idea that C' treats [as a local
variable, and even though its environment may change the
value of (a global variable named) / such a change does not
affect the value of the local version of I; similarly, although
C”" may change the value of its local I it has no effect on the

global version of 1.
For example, the command

newx=1lin(y:=x;x:=x+1;y:=x)
has each of the traces

([y=0), [y=1)[y=11[yr=2])
([x=9,y=0],[x=9,y=1])
([x=9,y=1],[x=9,y=2])
([x=9,y=0],[x=9,y=1])
([x=5,y=1],[x=5,y=2])
([y=0][y=11)[y=8][y=2])

but no traces of the forms

a[x=9,y=0],[x=9,y=9])p
a([x=0,y=0],[x=1,y=0])8

for any o feZ® It is also easy to see that

T [mew x=0inx :=x+ 1] = 7 [skip].

FULL ABSTRACTION FOR A SHARED-VARIABLE PARALLEL LANGUAGE

With this expansion the trace semantics is still fully
abstract, and validates the following natural and intuitively
valid equivalence:

new/=EinC = C if [I¢free[C].

The proof relies on the following property: if I does not
occur free in C then every trace a of C satisfies a\J =a.
Similarly we can show that when [is not free in C,, and
C, does not change any identifier occurring in E, we get
new /=FEin(C,; C,)=C,;newI= Ein C,
new /I=Ein(C, | C;)=C, | newI=Ein C,.
Finally, if we define [I'/I] C to be the command obtained by
replacing all free occurrences of [in C by I', renaming

bound variables when necessary to avoid capture, we can
show the validity of the law

new /=FEinC=new['=Fin [I'/]]C,

provided I' does not occur free in C.

As an example illustrating the use of local variables,
assume that f/ denotes a boolean-valued total function on
the integers and consider the following commands:

Co = while found =0 do (if /(i)

then (found :=1;k:=1i)elsei:=i+2)
C, = while found = 0 do (if f()

then (found :==1;k:=j)elsej:=j+2).

Let SEARCH be the program

new found =0 in

(mew i=0in C,) | (newj=1in C)).

Intuitively, SEARCH runs two loops in parallel, each look-
ing for a “root” of f, and terminates if a root is found. Each
loop uses a local counter variable, and the variables k and
JSound are shared. Assuming that f'has a root and that execu-
tion is fair, this program should always terminate and the
final value of k should be a root of f. This is shown by the
trace set:®

T [SEARCH] = {(s, [s | k=n]) |
neN& (s, tt)e B[f(n)]}".

? We tolerate a slight abuse of notation, using » to denote both an integer
and the corresponding numeral.

161

12. SUMMARY AND CONCLUSIONS

We have introduced transition traces and used them as
the basis for a variety of fully abstract semantics for a
shared-variable parallel programming language. Our results
apply in coarse- and fine-grained versions to yield full
abstraction with respect to two forms of program behavior,
corresponding to partial and strong correctness. In each
case, extra language features may be added without
invalidating full abstraction, provided certain general
semantic properties are preserved; in particular, the trace
semantics of the new features must be definable composi-
tionally and monotonically. This shows the flexibility and
generality of our ideas and results.

The idea of using sequences or traces of some kind to
model the behavior of concurrent programs is widespread.
For instance, several authors have used traces (sequences of
communications) to build models of determinate or indeter-
minate dataflow networks, notably [11, 13, 21]. Indeed,
others have also used sequences of pairs of states in
imperative settings [2, 7, 10, 19].

In the earlier papers [2, 19] a pair of states was used to
represent a single atomic action. Park’s semantics [19] is
obviously closely related to ours, since we adapt Park’s
definition of fairmerge; but Park’s use of single-step traces
causes his semantics to be too concrete, distinguishing
between skip and skip; skip again. Abrahamson’s semantics
[2] is too concrete for the same reason, and ignores fairness.
The key difference between this early work and ours is that
we use a pair of states to represent an arbitrary finire
sequence of atomic actions, and consequently develop a
semantics based on closed sets of traces.

In the more recent papers [7, 10] a pair of states
represents a single state-changing atomic action together
with a finite sequence of idle steps. The semantics presented
in [7, 10] models a program as a set of finite traces closed
under a slightly weaker form of stuttering and mumbling
than ours. In [7, 10] a set of traces T is said to be closed if
and only if

afe T=os, s)feT
as, s)(s, s)feT=a(s,s')feT
als, s'Ws', sV e T=oa(s,s")feT,

so that mumbling is only allowed to absorb idle steps. The
semantics given in [7] does not explicitly account for recur-
sion (and therefore ignore issues of fairness). Their seman-
tics achieves full abstraction with respect to a different
notion of behavior, in which the observer of a program is
assumed to be omniscient, able to observe every state-
change occurring during a computation. For example the
equivalence

(x=Lx=x+1)orx:=2=x:=1;x:=x+1

162

fails in the semantics of [7], whereas it holds in our model.
The treatment of local variables in [7] is essentially the
same as ours.

Abadi and Plotkin [1] use a trace model (prefix-closed
sets of finite sequences of pairs of states, also closed under
stuttering and mumbling) for reasoning about safety
properties of reactive systems and the study of composition
rules.

Jonsson and Back [12] have independently constructed
a trace model closely related to ours, concentrating on total
correctness and dealing with unfair as well as fair execution;
they consider a simple imperative language of guarded
commands (with branches executed as atomic actions),
extended with an interleaving parallel composition. Their
model for partial correctness is essentially the same as our
finite trace model, involving closure under stuttering and
mumbling; for total correctness they introduce closure
under “fair unstoppability.” In an earlier version of this
paper [5], we mentioned that in a total correctness seman-
tics trace sets would need to be closed under “chattering”; as
Jonsson and Back show, this is not sufficient to achieve full
abstraction. However, since the notion of termination con-
sidered in [12] is rather specialized, it i1s unclear if their
ideas can be used to yield a total correctness semantics for
our shared-variable language.

Program constructs or operational assumptions (such as
fairness) that give rise to unbounded nondeterminism do
not cause semantic problems in our framework. For
instance, it is almost trivial to add a random assignment
command [:=7? to the syntax, with the transition rule

{I:=?5) > (skip, [s[I=n]) (neN)

and the following denotational semantics:
TI:="={(s,[s|I=n])|sesS&neN}".

This would again yield a fully abstract semantics.

In contrast unbounded non-determinism causes severe
problems in traditional powerdomain semantics [9, 4]. Apt
and Plotkin [4] proved that for a sequential while-loop
language with random assignment there is no denotational
continuous least fixed point semantics that is fully abstract
with respect to a notion of behavior based on strong
correctness, equivalently with respect to finite and infinite
state traces. Our fair trace model provides a denotational
continuous semantics for a parallel version of this language,
is fully abstract with respect to the same notion of behavior,
but is not a least fixed point semantics. The fair trace model
can instead be characterized as the closure of a greatest fixed
point semantics. We also showed that the corresponding
least fixed point semantics (the finite traces model) is fully
abstract with respect to finite state trace behavior, equiv-
alently with respect to partial correctness behavior. For the

STEPHEN BROOKES

sequential language discussed by Apt and Plotkin there is
no need to use traces to achieve full abstraction, since the
relevant behavior functions can already be defined composi-
tionally. When our semantic definitions are simplified and
adapted to the sequential setting they yield two fully
abstract semantics for the Apt-Plotkin language, with
respect to partial correctness and strong correctness, respec-
tively.

ACKNOWLEDGMENTS

Several people have made helpful comments and suggestions that led to
improvements in the presentation of this paper, including Albert Meyer,
Prakash Panangaden, Vaughan Pratt, John Reynolds, and the anonymous
referees. Susan Older suggested using non-deterministic “guessing” to sim-
plify the full abstraction proof for the fair trace model. This research was
sponsored in part by the Avionics Laboratory, Wright Research and
Development Center, Aeronautical Systems Division (AFSC), U.S. Air
Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-
90-C-1465, Arpa Order 7597. Support also came from the National Science
Foundation under Grant CCR-92006064. The views and conclusions con-
tained in this document are those of the author and should not be inter-
preted as representing the official policies, either expressed or implied, of
the U.S. Government.

Received January 1, 1994; final manuscript received February 1, 1996

REFERENCES

1. Abadi, M., and Plotkin, G. D. {1993), A logical view of composition,
Theoret. Compur. Sci. 114(1), 3-30.

2. Abrahamson, K. (1979), Modal logic of concurrent nondeterministic
programs, in “Semantics of Concurrent Computation” (G. Kahn, Ed.),
Lecture Notes in Computer Science, Vol. 70, pp. 21-33, Springer-
Verlag, Berlin/New York.

3. Andrews, G. R., and Schneider, F. B. (1983), Concepts and notations
for concurrent programming, ACM Comput. Surveys 15(1), 3-43.

4, Apt, K. R, and Plotkin, G. D. (1986), Countable nondeterminism and
random assignment, J. Assoc, Comput. Mach. 33 (4), 724-767.

5. Brookes, S. (1993), Full abstraction for a shared variable parallel
language, in “Proc. 8th Annual IEEE Symposium on Logic in Com-
puter Science,” IEEE Comput. Soc. Press, Los Alamitos, CA.

6. de Bakker, J. W. (1971), Axiom systems for simple assignment
statements, in “Symposium on Semantics of Algorithmic Languages™
(E. Engeler, Ed.), Lecture Notes in Mathematics, Vol. 188, pp. 1-22,
Springer-Verlag. Berlin/New York.

7. de Boer, F., Kok, J., Palamidessi, C., and Rutten, J. (1991}, The failure
of failures in a paradigm for asynchronous communication, in “Concur
91" (J. Baeten and J. Groote, Eds.), Lecture Notes in Computer
Science, Vol. 527, pp. 111-126, Springer-Verlag, Berlin/New York.

. Francez, N. (1986), “Fairness,” Springer-Verlag, Berlin/New York.

9. Hennessy, M., and Plotkin, G. D. {1979), Full abstraction for a simple
parallel programming language, in “Mathematical Foundations of
Computer Science,” Lecture Notes in Computer Science, Vol. 74,
pp. 108-120, Springer-Verlag, Berlin/New York.

10. Horita, E., de Bakker, 1., and Rutten, J. (1990), Fully Abstract Denota-
tional Models for Nonuniform Concurrent Languages,” Technical
Report CS-R9027, Centre for Mathematics and Computer Science,
Amsterdam.

11. Jonsson, B. (1989), A fully abstract trace semantics for dataflow
networks, in “Sixteenth Annual ACM Symposium on Principles of
Programming Languages,” pp. 155-165, ACM Press, New York.

o0

FULL ABSTRACTION FOR A SHARED-VARIABLE PARALLEL LANGUAGE

. Jonsson, B., and Back, R. J. R. (1993), Fully abstract semantic

orderings for shared-variable concurrent programs, draft paper.

. Keller, R. M., and Panangaden, P. (1986), Semantics of digital

networks containing indeterminate operators, Distrib. Comput. 1(4),
235-245.

. Lamport, L. {1977), Proving the correctness of multiprocess programs,

IEEE Trans. Software Eng. 3(2), 125-143.

. Lamport, L. (1983), What good is temporal logic? in “Information

Processing 83: Proceedings of the IFIP 9th World Congress™ (R. E. A.
Mason, Ed.), pp. 657-668, North-Holland, Amsterdam.

. Lehmann, D., Pnueli, A., and Stavi, J. (1981), Impartiality, justice, and

fairness: the ethics of concurrent termination, in “Proceedings of the
Eighth International Conference on Automata, Languages and
Programming,” Lecture Notes in Computer Science, Vol. 115,
pp. 264-277, Springer-Verlag, Berlin/New York.

20.

21.

22,

163

. Milner, R. (1977), Fully abstract models of typed lambda-calculi,
Theoret. Comput. Sci. 4, 1-22.
. Owicki, 8. S, and Gries, D. (1976), An axiomatic proof technique for
parallel programs, Acta Inform. 6, 319-340.
. Park, D. (1979), On the semantics of fair parallelism, in “Abstract
Software Specifications” (D. Bjener, Ed.), Lecture Notes in Computer
Science, Vol. 86, pp. 504-526, Springer-Verlag, Berlin/New York.
Plotkin, G. D. (1977), LCF considered as a programming language,
Theoret. Comput. Sei. 5(3), 223-255.
Russell, J. R. (1989). Full abstraction for nondeterministic dataflow
networks, in “Proceedings of the 30th Annual Symposium on Founda-
tions of Computer Science,” pp. 170-177, IEEE Press, New York.
Stoughton, A. (1988), “Fully Abstract Models of Programming
Languages,” Research Notes in Theoretical Computer Science,
Pitman, London.

Printed by Catherine Press, Ltd., Tempelhof 41, B-8000 Brugge, Belgium

- o—dy

