Electronic Notes in Theoretical Computer Science 1 (1995) to appear

Full Abstraction for Strongly Fair
Communicating Processes

Stephen Brookes and Susan Older !

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We present a denotational semantics for a language of parallel communicating pro-
cesses based on Hoare’s CSP [10] and Milner’s CCS [14], and we prove that the
semantics is fully abstract with respect to a deadlock-sensitive notion of fair be-
havior. The model incorporates the assumption of strong fairness: every process
which is enabled infinitely often makes progress infinitely often. The combination
of fairness and deadlock causes problems because the “enabledness” of a process
may depend on the status of other processes. We formulate a parameterized notion
of strong fairness, generalizing the traditional notion of strong fairness [5] in a way
that facilitates compositional analysis. We then provide a denotational semantics
which uses a form of trace, augmented with information about enabledness, and is
related to the failures model for CSP [2] and to Hennessy’s acceptance trees [7]. By
introducing closure conditions on trace sets, we achieve full abstraction [13]: two
processes have the same meaning if and only if they exhibit identical behaviors in
all contexts.

1 Introduction

We present a denotational semantics for a language of parallel communicating
processes based on Hoare’s CSP [10] and Milner’s CCS [14]. In this lan-
guage, processes have disjoint local states and communicate by synchronized
message-passing along named channels; unlike the original CSP, we permit
nested parallelism. Our model incorporates the assumption of strong fairness:
every process which is enabled infinitely often makes progress infinitely often.
Fairness assumptions allow us to abstract away from unpredictable details
concerning schedulers or the relative speed of parallel processors. The combi-
nation of fairness and deadlock (and related forms of blocking like starvation)

1 This research was sponsored in part by the Office of Naval Research under Grants No.
N00014-92-J-1298 and N00014-93-1-0750. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as representing the official
policies, either expressed or implied, of the U.S. Government.

© 1995 Elsevier Science B. V.

BrookES AND OLDER

causes problems because the “enabledness” of a process may depend on the
status of other processes: a synchronized communication requires the cooper-
ation of a sender and a receiver. In contrast, enabledness in a shared-variable
parallel language depends only on the global state. As a consequence, fair
semantic models for shared-variable languages (such as [3]) cannot easily be
adapted to yield suitable models for communicating processes.

In this paper we show how to achieve a denotational semantics for com-
municating processes that handles the combination of fairness and deadlock
appropriately. We begin with an operational semantics along traditional lines,
and use it to formulate a parameterized notion of strong fairness, generalizing
the traditional notion of strong fairness [5] in a way that facilitates composi-
tional analysis. We then provide a denotational semantics using an abstract
form of trace, augmented with information about enabledness. This seman-
tics is related to the failures model for CSP [2] and to Hennessy’s acceptance
trees [7], although neither of these earlier models incorporated fairness. Our
semantics is adequate with respect to a deadlock-sensitive notion of behavior:
whenever two processes have the same set of traces they exhibit the same
possible behaviors in all program contexts, assuming fair execution. By intro-
ducing closure conditions on trace sets, we achieve a fully abstract semantics
[13]: two processes have the same closed set of traces if and only if they ex-
hibit the same behaviors in all program contexts, assuming fair execution.
This means that the closed trace semantics is at precisely the correct level of
abstraction to support syntax-directed, compositional reasoning about fair be-
havior. We also discuss how to adapt our semantics to achieve full abstraction
with respect to some other natural notions of behavior.

2 Communicating Processes

2.1 Syntax

The abstract syntax of our programming language is defined as follows. Ex-
pressions are built from identifiers and boolean and integer constants, using
the usual arithmetic and boolean operations. We let I range over the set Ide
of identifiers, B range over the set BExp of boolean expressions, and F range
over the set Exp of integer expressions. Commands C', guarded commands
G, and guards G are given by the following abstract grammar:

C:=skip | I := E | Cy;Cy | if B then C; else Cy | while B do C |
GC | Ci|ICy | C\h
GC ==(G — C) | GC10GC,
G:=hll | hlE
Here h ranges over a set Chan of channel names. In examples, as is con-
ventional, we will use the abbreviation G for a guarded command of form
G — skip. We let Com be the set of commands.
We impose the syntactic constraint that in all parallel commands C1||Cs
the components C; and €5 must have disjoint sets of free identifiers, corre-
sponding to the requirement that parallel processes have disjoint local states.

2

BrooKESs AND OLDER

(C,s)term (Cy,81)term (C,, sp)term
(C\h, s)term (C1]|Cs, 51 U s5) term if disjoint(s1, s2)

Fig. 1. Inference rules for the predicate term

(o, s)term

We write free[B]] and free[E] for the free identifiers of B and E respectively,
and for commands C we define free[C] as usual, by structural induction:

free[skip] =0
free[l := E] ={I} U free[E]
free[C1; Ca] = free[C1] U free[C2] = free[Ch]|C2]
free[if B then C; else Cy] = free[B]U free[C1] U free[C2]
free[while B do C] = free[B]U free[C]
free[h?I]={I}
free[R!E] = free[E]
free[G—C = free[G] U free[C]
free]GC1OGCs] = free[GC1] U free| GCs)
free[C\h] = free[C].

2.2 Operational semantics

A state 1s a finite partial function from identifiers to integers. We use N for
the set of integers, and we let S = [Ide —, N| denote the set of states. When
s is a state we write [s | I = n] for the state which agrees with s except that it
gives identifier I the value n. The domain of a state, denoted dom(s), is the
set of identifiers for which the state has a value. We say that two states s;
and s, are disjoint, and write disjoint(s, s2), when their domains are disjoint.

We assume for simplicity that expression evaluation always terminates and
causes no side-effects, and we assume that the evaluation semantics for boolean
and integer expressions are given. We write (F, s)—*n to indicate that F
evaluates to value n in state s, with a similar notation for boolean expressions.
We use V = {tt, ff} for the set of truth values.

For commands, guarded commands and guards we use a labelled transition
system, much as in [16]. Command configurations have the form (C, s), where
s is a state defined at least on the free identifiers of C'. We use the place-
holder e to represent a terminated command, for instance in configurations of
the form (e||C, s), (C]|e, s) and (e\h,s). A configuration (C, s) is terminal iff
(C, s)term can be proven from the inference rules in Figure 1. In particular,
a parallel command terminates only when each of its component commands
has terminated.

A label X is a member of the set A = {e} U{h?n,h!ln | h€Chan,ne N}.
The label of a transition indicates the type of atomic action involved: € rep-
resents an internal action, h7n represents the receipt of value n on channel A,
and h!n represents the transmission of value n along channel h. Two labels A,
and Ay match iff one has form h7n and the other h!n for some channel name A
and value n; when this holds we write match(Aq, A2). For a label A, chan(}) is
the channel associated with A; by convention, we define chan(¢) = ¢. We write

3

BROOKES AND OQLDER

(E,s)—¥n
(skip,8)=0,8) F=F e e(e s [T =)
(Cl,s)—'\~>(1,8 ~(Cy,s')Yterm (CI,S)—/\-)(C{,.S')term
(C1; O3, 8)25(C1; Cs, 8') (Ch; C2, 8)-25(Ch, 8')
(B, s)—"tt (B, s)—*ff
(if B then C, else Cy,s)—=(Cy,s) (if B then C else Oy, s)——(C4, s)
(B,s)—"tt (B, s)—"ff

(while B do C,s)—(C;while B do C,s) (while B do C,s)—(e,s)
Fig. 2. Transition rules for sequential constructs
(h?1,5)25(e,[s | I = n]) for each n € N

(E,s)—*n (G, s)23(e, s')
(W'E, 5) 2 (e, 5) (G308 5.5
A

(GCy, 8)25(C, s __{GCy5)—(C, 8')
(GCLOGCy, s)25(C, s') (GC1OGC, 8)25(C, ')

(Clasl
(C] ”02, 81 U Sa

C1,81)
CillC2, 51 U s2)

if disjoint(sy,s3)

)25
)2
A
(Cq, 8 Z;EEQ: 55) if disjoint(sy,s,)

(C] ”Cg, S U S9 ||CQ, 81 U 32)

3
(Ch, 1) 25(C1,8)) {Cy,83)25(Ch, sb) " otk
(01”0'2:‘31 U 32)-%(0{”0;’5"1 U 35’) 1T aisjoin (51132) maltc (i 2)

(C,5)24(C", ")
(C\h, s)=25{C"\h, s')

Fig. 3. Transition rules for parallel constructs

an(}) # h

(C, S)—AZ*(C”, §') to indicate that command C in state s can perform an action

labelled A, leading to C’ in state s’. The transition relations By (A € A) are

characterized by the axioms and inference rules in Figure 2 and Figure 3.
A direction d is a member of the set A = {h?,h! | h € Chan}. For a label

A, dir(X) is the direction associated with A, and we define dir(e) = e. Two
directions dy and dy match iff one has the form A? and the other A! for some
channel h, and again we write match(d;,d,). For any direction d, d is the
unique d’ such that match(d,d’). Two sets X; and X, of directions match,
written match(Xy, X3), if there exist d; € X, d2 € X, such that match(dy, ds).

A configuration (C, s) is enabled if (C,s)—+(C", s’} for some C", s’ and .
A configuration (C,s) is blocked if it is neither enabled nor terminal; in such
a case, we write (C, s)dead. A command C' is enabled (respectively, blocked)

4

BroOKES AND OLDER

in state s iff the configuration (C,s) is enabled (respectively, blocked). The
set of enabled directions for a configuration (C, s) is given by

inits(C, s) = {dir()) | 3C", s'.(C, s)3(C", ') }.

A computation is a maximal finite or infinite sequence of transitions; a
partial computation is a finite sequence of transitions. A finite computation
ending in a terminal configuration is said to be successful, while a finite compu-
tation ending in a blocked configuration is deadlocked. We extend the notions
of enabling and blocking to a partial computation p in the obvious way, taking
inits(p) to be the set of directions enabled in the final configuration of p.

3 Strong Fairness

In this paper, we focus on strong (process) fairness which, informally, guar-
antees that every process which is enabled infinitely often proceeds infinitely
often.

Whether a process is enabled depends on the context in which it appears,
since communication on a restricted channel is enabled only when synchro-

nization on that channel is possible. For example, consider the program
(C1)|(C2||C3))\a\b, where:

C = while true do a?z, C, = while true do a!0, C3 = while true do b!0.

Every strongly fair computation of C5||Cs contains infinitely many outputs
on both channels ¢ and b, since C; can output on a infinitely often and C3
can output on b infinitely often. When placed in the larger context, however,
('3 is prevented from performing output on b because this channel is now
restricted and no matching input on b is ever available. In contrast, even
though channel a is also restricted in this context, Cy is repeatedly enabled
for synchronization with ;. Thus the program has an infinite fair execution
in which Cj5 is blocked, but none in which C; or Cy ever become blocked.

This example motivates the introduction of generalized notions of enabled-
ness and fairness, parameterized by a set of directions representing the context.
For a set F of directions we characterize the set of computations that are “fair
modulo F”. Roughly speaking, a computation p of C' is fair modulo F' if every
parallel subcomponent which is enabled infinitely often either makes progress
infinitely often or eventually reaches a configuration in which it can only per-
form actions involving the directions in F' and it remains unable to synchronize
with any other components. The idea is that even though the directions in F
may be enabled infinitely often along p, it is possible to construct a program
context P[—] which restricts communication on the channels in F' and fails
to provide those components with sufficient opportunities to synchronize. For
instance, in the example above, the infinite computation of C5||C5 which never
outputs along channel b is fair modulo {b!}: the context (Cy||—)\a\b restricts
communication on channel b and provides no synchronization opportunities
for C3’s bl0 action. We now show how to capture this notion of parameterized
fairness formally.

BroOOKES AND OLDER

Definition 3.1 Let F be a finite set of directions. A configuration (C,s) is
enabled modulo F if inits(C,s) — F is non-empty; (C,s) is blocked modulo F
if inits(C,s) C F.

Clearly, any configuration which is blocked mod F' is also blocked mod F’
for all F/ O F. As before, we extend these notions to partial computations
in the obvious way: p is blocked modulo F' if its final configuration is blocked
modulo F.

Using these definitions, we can now give an operational characterization
of strongly fair computation modulo . When F' = () this characterization
coincides with the traditional notion of strong process fairness (cf. [5],[1]).

The fairness of a (possibly partial) computation p of a command C is deter-
mined by the fairness set F, the syntactic structure of C, and the form of p. A
finite successful computation is always fair, and a partial computation blocked
modulo F is fair modulo F'. A computation of a command of form C'\A is fair
modulo F iff the underlying computation of C is fair modulo F' U {h! , h7}.
A computation of any other non-parallel command is fair modulo F' iff the
underlying computations of its component commands are all fair modulo F.
Finally, an infinite computation p of C1]|C is fair modulo F' if and only if
it can be obtained by merging (and synchronizing) a computation p; of C
and a computation py of Cy which satisfy the following conditions: p; is fair
modulo Fi, py is fair modulo F5, F' D F) U F;, neither component infinitely
often enables synchronization with a direction in the other component’s fair-
ness set, and neither component infinitely often takes a direction in the other
component’s fairness set.

Example 3.2 The following examples highlight the compositional aspect of
this characterization.

(i) The partial computation p; = (a!0—b!1, s)ﬁ(bll, s) is fair modulo {b!}.
(ii) Let C be the program while true do c!1. The infinite computation
p2 = (C,8)=((cl1; C), s)2H(C, 5)—((cl1; C), 5)(C, s) = - -
is fair modulo @; the only direction enabled infinitely often along p, is c!.

(iii) Let p be the infinite computation
((al0—d1)]|C, s) =% (b1 || C, 8)—+(b!1]| (c!1; C), 5)
L (01| C, s) = (b1 || (!1;C),)2 - - -

in which no b!1 transition is ever made. This computation can be obtained
by merging p; and p,. Since p, neither uses nor enables synchronization
with b! infinitely often, p is fair modulo {b!}.

(iv) As an immediate consequence, the computation
((@10=B)[CI\, 5) =% ((BIL]| €)\b, 5)—H{(B11 || 115 C)\b,)
<5 (1L C)\by 5) = -+

is fair modulo 0.

BrookEs AND OLDER

Example 3.3 The next examples illustrate the role of fairness sets in deter-
mining those contexts in which a given computation can be considered fair.

(i)

(i)

(iiii

4

Let C be the program while true do (a!10b!1), and consider the compu-
tation

Pe = (C,s)—‘>((a‘1 O b‘l), C, 5)‘1_!1}(0’ S)—E>((a'1 O b‘].), C,s)“—”> L

which never outputs along channel b.

The set of infinitely enabled directions of p, is {al,bl}, but p. is fair
mod () because there are no parallel subcomponents of C' which become
blocked along p..

Define C; = while true do a!l and C; = b!'1—(while true do b!1), and
consider the computation

p = (C1[Ca, 8)—=((al1; C1) | Ca, 8)=5{C || Cay)= -

which never outputs along channel b.

Again, the set of infinitely enabled directions of p is {a!,b!}. In con-
trast to the previous example, however, p is not fair mod), because the
component C remains blocked mod {b!}; nevertheless, p is fair mod {b!}.

Let C, be the program while true do (a!00b7z), and let p, be the com-
putation

(Cpy 5)—((al0 0 b22); G, 5)-22(Cp, 5)—3((al0 O b72); Cpy 5) 2% - -

which never receives input along channel b. p, is fair mod) and enables
both a! and b7 infinitely often.

Let P[—] be the context ([—]||C;)\b. There is a fair (mod @) computa-
tion of P[C] which never synchronizes on channel b, because no subcom-
ponents of C or the surrounding context become blocked. In contrast,
every fair (mod @) computation of P[C}||C3] must eventually synchronize
on channel b, because it is unfair for C5 to be forced to block on b! when
a matching direction is enabled infinitely often. Thus there is no fair
execution of P[C4]|Cs] in which the C, component performs p,: such an
execution would treat C5 unfairly.

Denotational Semantics

We now construct a denotational semantics which corresponds to the oper-
ational characterization of fair execution given in the previous section. The
meaning of a program will be a set of traces, each trace representing an ab-
stract view of a fair computation. We show how the traces of a command
can be constructed from the traces of its syntactic subcommands, justifying
our definitions by appealing to the operational transition rules. The result-
ing denotational semantics supports compositional reasoning about program
behavior, assuming fair execution.

BROOKES AND OLDER

4.1 Traces

A step is a member of £ = S x A x S; intuitively, (s, A, s") represents a
transition of form (C,s)—+(C",s"). A (simple) trace is a finite or infinite
sequence of steps representing a sequence of uninterrupted transitions. It is
convenient to introduce a family ¢, (s € §) of “local units” for concatenation,
so that ae, = a and £,8 = 8 whenever s is the final state of o and the initial
state of 3. Thus we define the set of traces to be ¥® = ¥* U ¥¥, where
Yh=de | s€ 8} 2= 2F UEY and

E+ = {(Sﬂﬂ ’\0: 31)(313 ’\193‘2) < (Ska /\ka Sk-l—l) |
k>0& (Vi <k+ Lsi €5) & (Vi <k € A)),
5 = {(s0, Ao, 51)(51, A1,82) - - - (Sky Aky Sk1) ... [Vi 2 0.5, € S& A € A}

Given a (possibly partial) computation p, trace(p) records the state tran-
sitions and actions occurring along p. For example, if p is the computation

A A A
(C,50)=3(Ch1, 51)—> - - —3(Cy1, Sk41) term,

then trace(p) = (S0, Ao, $1)(S1, A1,82) - .. (Sky Ak, Sk41). For a trace a, we write
dirs(c) and chans(a) for the set of directions and the set of channels appearing
along «. '

Simple traces are insufficient for reasoning about fairness, because they fail
to provide information about enabledness; knowing which actions could have
been taken is as important as knowing which actions were taken. Obviously
we need to keep track of the set of directions which are enabled infinitely often
along an infinite computation. In addition, since a finite computation of a loop
body may be used to generate an infinite computation of the corresponding
loop, we also need to record the set of directions which are enabled along
a finite computation. Thus, we let en(p) represent the “relevant” enabling
information about the computation p: if p is an infinite computation, en(p) is
the set of directions enabled infinitely often along p; if p is a finite computation,
en(p) is the set of directions enabled in some configuration of p.

We will represent a successful computation p by the pair (en(p), trace(p))
in Pan(A) x ¥*; a partial computation p by the acceptance (trace(p), inits(p))
in ¥* X Pgn(AU {€}); and an infinite, fair mod F' computation p by the triple
(F,en(p), trace(p)). We therefore define the set = of (augmented) traces to be:

E e Pﬁn(A) X 2* U E* X Pﬁn(A U {E}) U Pﬁn(A) X Pﬁﬂ(A) X ¥

The fair trace semantics 7 : Com—PZ is then characterized operationally
by:

TICY = {{enlp), trace(s) |
p = (C,50)22H{Ch, 81) 224 + =+ 224(Ciy1, 841) term}
U {(trace(p), inits(p)) | =(Crt1, Sk+1)term &

= {08} 25 (058255 oo 25 [y}
U {(F, en(p), trace(p)) | F € Pen(A),

pr={C, So>ﬁ> e i}(ck_ﬂ,skﬂ))\k—ﬂ .-+ is fair mod F'}.

8

BrOOKES AND OLDER

4.2 Operations on trace sets

We can now give a denotational characterization of 7 by defining, for each
construct in the language, a corresponding operation on trace sets.

We assume a semantic function & : Exp—P(S x N) characterized opera-
tionally by E[E] = {(s,n) | (E, s)—*n}. Using the operational characteriza-
tion of 7 it is easy to see that:

T [skip] = {(0, (s, ¢,5)), (e.,{€}) | s € S},
T = E]={(0,(s,¢,[s|] = n])), (e, {e}) | I € dom(s) & (s,n) € E[E]}
In each case, the acceptance (e, {¢}) reflects the fact that only an e-transition
is possible from the initial state. Similarly, for guards we obtain:

TIh?I)={{{h?},(s,hn,[s|I=n])) |s€ S & I € dom(s) & n € N}
U{(e.,{h?}) | s € § & I € dom(s)},
TIRE]={{{h'}, (s, hln,) | (s,n) € ELET}
U{(e.,,{h!}) | s € S & free[E] C dom(s)}.

Here, for example, the acceptance (e,, {h!}) for A!E indicates that only output
on channel A is initially possible.

For a sequential composition C; Cy we need a-notion of concatenation on
trace sets, adapted to combine and propagate enabling information appropri-

ately. We therefore define the sequential composition T7; T, of trace sets T}
and T3 by:
Ty; To={(D1U Dy,apB) | (D1,ae,) € Ty & (Ds,e,0) € T»}
U {{a, X) | (2, X) € T1}
U{{aB,X) | (D,ae,) €Ty & (e.5,X) € T}
U{(F,D,a) | (F,D,a) € T1}
U {(F, Dg,aﬁ) | (Dl,o:ss} € Tl & (F, Dz,&ﬁ} € Tg}
This definition reflects the fact that when concatenating a finite trace a with
an infinite trace 3, only the enabling information about [remains relevant:
a direction is enabled infinitely often along of if and only if it is enabled
infinitely often along 3. We thus define T[Cy;Cy] = T[Ci]; T[C2] and
TIG-C] =TIG]; TIC]
For loops we need a form of iteration on trace sets, again propagating
information about enabling. We define the finite iteration of the trace set T’

to be T* = | J T, where T° = {{D,e,) | s € S} and T™*! = T™ T. We then
define the iIfE]?lite iteration T“ by:
7%= {{a, X) | {a, X) € T*} U {{(F,D,q) | (F,D,a) € T"}
U{(F,D,a0e1...ak...) | (Vi 2 0.(Di,e,cie,.) €ET) &
F € Pan(A) & D={d|Vi>0.35>i.de D;}}.

This definition may be justified intuitively as follows. Clearly T contains
no finite successful traces. Every acceptance of T™ is an acceptance of T,
and every infinite trace of 7™ is also an infinite trace of 7. In addition,
T contains those infinite traces which arise by concatenating infinitely many

9

BROOKES AND OLDER

finite traces a (k > 0) from T'; in such a case, a direction is enabled infinitely
often along the resulting trace iff it is enabled along infinitely many of the
ar. Letting T[B] = {(0,(s,¢,3)), {&,{€}) | (B,s)—*tt}, we then have
Tlwhile B do C] = (T[B]; TIC])* v (TIB]; TICD)*; T~ BI.

The command GC;0GC, represents a choice between GC| and GC; to be
made on the first step. Each computation of GC; (1 = 1,2) therefore gives rise
to a corresponding computation of GC10GCy, in which initially any action
enabled by either component was enabled. Thus, we define the guarded choice
operator on trace sets as follows:

0T, ={(D1 U X,a;) | (D1,e.01) € T1 & (e, X) € T}
U {(Dg U X,CEQ) I (DQ,S,CEQ) €Ty & (E,,X) € Tl}
U{{e, X1 UXa) | (6, X1) € T & (e, X3) € Ty}
U{{a,X) €ETLUT; |a &)

U{(F,D,a) | (F,D,a) € T, UTs}.

We thus obtain the equation T[GC,OGC;] = T[GCL]OT[GCY].

The computations of C'\h are the computations of C' which do not visibly
use channel h. Correspondingly, 7'\h can be obtained from T' by removing
traces that use h and deleting h? and h! from the enabling sets in the remaining
traces. Given a set of directions X, we let X\h = X —{h!,h?7}. We then define
T\h by:

T\h={(D\h,a) | (D,a) € T & h ¢ chans(a)}
U {{a; X\h) | (o, X) € T & h ¢ chans(a)}
U {(F',D\h,a) | (F,D,a) € T & F' D F\h & h & chans(a)},

so that T[C\h] = T[C]\A.

For a parallel command C}||C3, we begin by formulating a “fairmerge” rela-
tion for simple traces. This adapts Park’s fairmerge definition [15,3], originally
given for shared-variable parallel programs, to incorporate local states and syn-
chronized communication. We define a relation fairmerge C X x ¥ x 4%
such that (a, 3,7) € fairmerge iff v can be obtained by merging (and possibly
synchronizing) a with j3.

Consider first the steps of Cy||Cs. If o7 = (51, A, 8}) is a step of Cy and s is
a local state of Cy, then oy e, = (51 U s, A, s U s) represents a step of C||Cy
in which C, idles in its local state. If oy = (s1,),8}) and o3 = (89, A, s}) are
matching steps of Cy and C; then oy]|jo2 = (s1 U s2,¢,8] U s5) represents a
synchronizing step of C1||C3. Hence the steps of Cy||C; can be characterized
in terms of the following set of triples:

A={(o,e,0]e.), (e 0,0)e.) |0 € £ & s € S & disjoint(s, o)}
U {(o1,02,01]|02) | 01 € E& 02 € X & disjoint(oy, 02) & match(oy,02)}.

For a trace a of C; and a local state s of C3, we let a ¢, be the trace obtained
by combining s with all states in a. If C'; has terminated in state s, this again
represents a fair execution of C'1]|C2. We therefore define

B ={(a,c.,ale,), (e,a,a]e) | a€ E%° & s € § & disjoint(s,a)}.
We extend the operations of concatenation and iteration to triples of traces

10

BrooKES aAND QLDER

(componentwise), and to sets of triples (elementwise), in the obvious way.
It then follows that the desired fairmerge relation can be characterized as
fairmerge = A*B U A“.

Next we define the parallel composition 7||7; of trace sets Ty and T5.
This corresponds directly to the operational characterization of fair compu-
tation for C;||Cy given in Section 3, although the presentation here is more
explicit (formalizing the notion of fair merging) and more detailed (propagat-
ing information about enabledness). For acceptance sets X; and X5, we define
X1|| X2 = X3 U X, U {e | match(X;, X2)}, and we write bounded(F, &) when
each direction in F' occurs only finitely often along a. Where the subscripts ¢
and j appear below, we assume 7,5 € {1,2} and ¢ # j.

|| Ta={({D1U D3,) |

(D1, 01) € Ty & (D3, a3) € T3 & (1, 2, @) € fairmerge}
U {{e, X1]| Xz) |

(a1, X1) € T1 & (a2, X3) € Ty & (a1, 2, @) € fairmerge}
U {0, X) | (e, X) € T & (D, B) € T; & (2, ,) € fairmerge}
U {(Fa DJ'!'T) |

(Di,a) € T; & (F, D;,8) € T; & (o, B,7) € fairmerge}
U{(F',DUX,y) |

FFODOFUX&(F,D,o)eT; & (B, X)eT; &egd X &

bounded(X,a) & —match(D,X) & (e, 8,7) € fairmerge}
U{(F", D1 U D3,7) |

F! 2 FiU F, & <F],D1,a) e’ & (FQ, Dg,ﬁ) €Ty &

bounded(Fy, 3) & bounded(F;,) & —match(Fy, D;) &

—match(Fy, D1) & (o, 3,7) € fairmerge}.

We then have T[C4||C2] = TIC:]|ITTC:]

4.3 Denotational semantics

Proposition 4.1 The trace semantics T : Com—PZ is characterized deno-
tationally by:

Tlskipl = {0, (5,,9), {6 {e}) | s € 5
TMI == E]={(0, (s, & [s|] =n])), (e, {e}) | (s,n) € E[E]}
TICy; Co]=TIC:]; TIC:]
T[if B then C, else C;]=T[B]; T[C:i] U T[-B]; T[C-]
T [while B do C]=(T[B]; TICD)* U (T[B]; TIC])"; T[B]
TR ={({h?},(s,hn,[s|I =n])) | s € S & n € N}
U{(e,{h?}) | s € S & I € dom(s)}
TIRIE]={{{A!}, (s,h!n,s)) | (s,n) € E[E]}
U{(e.,{h'}) | s € S & free[E] C dom(s)}
TIG=C]=TIG]; TIC]
TIGC,0GC,)=T[GC|BT[GCs]
TICCl=TIGITICH

11

BrooKEs AND OLDER

TIC\h]=T[C\,.
a

This shows that our denotational semantics accurately reflects the opera-
tional behavior of programs executing under the assumption of strong fairness.

Example 4.2 Consider the program (a!0 | a?z)\a. By definition,

T[a!0] = {(e., {a!}), ({a'}, (s,4!0,5)) | s € S},
Tla?z] = {(e,, {a?}), {({a?}, (s,a™n,[s|lz = n])) | s € S & z € dom(s)}.

Letting s range over S, and letting s, abbreviate the state [s|z = n], it follows
that

TLal0]| a?el= {{en {alsa?, N}, {(5,10,5), {a}), ((5,a?n,50), {al}),
({al,a?},(s,¢,50)), ({al,a?},(s,aln,s,)(sn,al0,s,)),
({a!,a?},(s,al0,s)(s,an,s,)) | n € N & z € dom(s)}.

Consequently,

Tl(a'0lla?@)\a] = {(e., {e}), (D, (s, ¢, [s|e = 0])) | & € dom(s)}
=T [:=0]. '

Example 4.3 Consider the program C = ((C1]|C2)||C3))\left\right, where

the processes C; are defined as follows:

C' = while true do left!0,

Cy = while true do right!1,

C3 = while true do ((left?z—out!z)O(right?z—out!z)).
The infinite traces of C; all have form (F, {left!}, ((s, €, s)(s, left!0, s))), and
Cy’s infinite traces all have form (F,{right!},((s,¢, s)(s, right!l,s))”). Be-
cause every (non-acceptance) trace of Cs has form (F, {left?, right?, out!}, o),
the only traces of Cy||Cy which can be successfully merged with C5’s traces
must have the form (0, {left!, right!}, 3). Therefore, each such # must contain
infinitely many left!0 actions and infinitely many right!1 actions. As a result,
every fair computation of C' contains infinitely many out!0 actions as well as
infinitely many out!l actions.

The trace semantics can be used directly to prove that certain equivalences
of programs hold under strong fairness. The following proposition states some
of these program equivalences.

Proposition 4.4 Each of the following laws holds under strong fairness, where
we write C1 = C3 to indicate that T[C,] = T[C2]:
C] ” CQE Cg || 01
(Ci]I C2) | Ca=Cy || (C2 || Ca)
(Cy || C2)\h=C1 || (C2\h), provided h & chans(C})
C\h=C, provided h & chans(C')
(C\h1)\h2 = (C\h2)\ 1.

12 0

BROOKES AND OLDER

5 Full Abstraction

A semantics is adequate with respect to a given notion of behavior if when-
ever two terms have the same meaning, they induce the same behaviors in all
program contexts. A semantics is fully abstract [13] with respect to a given
behavioral notion if it gives two terms the same meaning if and only if they
induce the same behaviors in all contexts. A fully abstract semantics makes
precisely the right distinctions and retains just enough detail to support com-
positional reasoning about behavior.

For communicating processes there are several different natural notions of
behavior. We will focus first on a form of state trace behavior; this corresponds
to the assumption that a program is a closed system (no external communica-
tion) and that one can observe and detect each state change. We also suppose
that it is possible to distinguish between deadlock and successful termination.
We therefore introduce the notation S*§ = {sgs;...sré | Vi € 0..k. s; € S},
letting the tag ¢ indicate deadlock.

Definition 5.1 The state trace behavior M : Com—P (S5 U 5*§) is defined
by:
M[[O]] = {3031 e Sk | (C, 30)‘—6‘)‘(01, 31)—63’ 2 —E)'{Ck, Sk>term}
U {5081 ... 50 | {Co, 80)—(C1, 81)— - - - —(C, s)dead}
WE LT e -
(Co, 30)—(C1,81)——> -+ —(Ck, k) —> - -+ is fair}.

The semantics T is adequate with respect to M but makes more distinc-
tions than it should for full abstraction. For example, consider the following
commands:

C1 = (al0—0!0) O (al0—cl0),

C2 = (a!l0—b!0) O (a!0—c!0) O (a!0—(!0 O cl0)).
The trace ({b!,c!}, (s, a!0,s)(s,b!0,5)) and the acceptance ((s,a!0,s), {d!,c!})
are both possible for Cy but not for C;. However, after performing an «!0,
each may perform b!0 or cl0 and each may refuse one of these actions (but
not both). From this it follows that C; and C3 can respond identically to
all communication attempts from their environment, and as a result behave
identically in all contexts.

Next consider the following guarded commands:

GC, = (al0—5610)0(a!0—(b100c!00d!0))
GO = (al0—b0!0)0(a!0—(5100100d!0))O(a!l0—(5100c!0)).
For similar reasons, it is impossible to find a context distinguishing between
GC; and GC3, even though only GC; has the acceptance ((s,al0, s), {b!, c!}).
These two examples motivate the imposition of closure conditions on trace
sets similar to those used in [2,7]. However, this still does not suffice to
achieve full abstraction. To see why, recall that in a trace (F, D,a) of C, F
represents a set of constraints on the type of context in which a will represent
a fair computation of C, and D provides information about the directions

13

BrooKES AND OLDER

enabled infinitely often along «. The difficulty is in determining under what
circumstances one can distinguish between two commands whose traces differ
only in their accompanying fairness sets or enabled sets.

Distinguishing between a process with the trace (F, Dy,) and one with the
trace (F, Dy, a) requires a context with a subcomponent whose own fairness
constraints are satisfied by D; and not by D, (or vice versa). When placed in
such a context, one process will be able to perform a without ever synchro-
nizing with that subcomponent, whereas the other process cannot perform
« without enabling that subcomponent infinitely often and therefore being
forced by fairness to synchronize with it eventually.

In contrast, distinguishing a process with the trace (Fi, D,) from one
with the trace (F3, D, a) requires a context which enables some direction in
Fy or F; (but not both) infinitely often as part of a guarded choice. Again,
one process will be forced eventually to synchronize with that choice but the
other process can fairly ignore it forever. For example, the context P[—]
in Example 3.3 was able to distinguish the traces (@, {a!, b}, trace(p.)) and
({b'}, {a!, b}, trace(p)) by placing the b7z command within a guarded choice;
this was sufficient to force C||C; to synchronize on channel b but permitted
C' to refrain from using b at all.]

Bearing these considerations in mind, consider the following commands:

C1 = (al0—-b!0—¢!0) O (a!l0—b72) O (a!0—(b!0 0O b?x)),

Cs = (a!l0—bl0—c!0) O (al0—b72) O (a!0—(b!0 O b72)) O (a!0—5!0).
The trace ({a!,b!,b?},(s,al0,s)(s,dl0,s)) is possible for C; and for Cs, but
only 7[C3] contains the trace ({a!,b'},(s,al0,s)(s,b!0,s)). To distinguish
between C; and (3 we would therefore need a context which allows each C; to
repeatedly perform a!0 then b!0. In order to allow an observer to determine
whether b7 is enabled infinitely often, the context would have to enable b!
infinitely often and restrict communication on channel b. Since the context
also needs to allow each C; to keep performing b!0, it must also enable b7
repeatedly. As discussed above, the context must therefore contain parallel
components, one which may block while continuously attempting to output on
b and one which repeats b7 actions. However, the component which is meant
to block will be enabled infinitely often and hence make progress, regardless of
whether C; or C} is inserted. Essentially, the fact that b7 is enabled infinitely
often by 7 during this execution is masked by the context’s own behavior.

Similarly, consider the guarded commands ' = GC;0GC; and C' =
GC,0GC,0GCs, where:

GCy = bl0—(while true do (b!00 a?z O a!0))

GC5 = bl0—((while true do b!0) || (a?z—while true do a?z))

GC3 = bl0—(while true do (b!00 a?z)).
Letting « represent the simple trace [(s, b!0, s)(s, €, s)], the trace sets of C and
C’ both contain the traces (0, {b!,a?,a!},a) and ({a?},{a?,b'}, a). However,
the trace (0, {a7, b'}, @) is possible for C' but not for C'. To distinguish between

C and C’ requires a context in which GC3 can be distinguished from both GC}
and GC; at the same time. To distinguish GC3 from GC}, the context would

14

BrooKES AND OLDER

need to place the relevant GC; in parallel with a process which blocks while
trying to perform input on channel a. To distinguish GC5 from GC5 the
context would need to place the relevant GC; in parallel with a process which
has infinitely many opportunities to perform output on channel a but also
has other options available. The context would therefore need to contain two
parallel components, one continuously attempting to perform input, the other
repeatedly offering matching output. Again the “blocking” component will be
enabled infinitely often by the other component, regardless of whether C or
(" is inserted. Hence, no context can distinguish between them.

Therefore, in order to achieve full abstraction, we introduce the following
closure conditions on trace sets. The first three conditions are analogous to
conditions used in [2] and [7]; the last two conditions are motivated by the
preceding examples.

Definition 5.2 Given a trace set T, the closure of T (written T') is the
smallest set containing 7" and satisfying the following conditions:

* Superset:
If (D,e) isin Tt and D C D', then (D',) is in T".

If (F,D,a) isin TT, F C F" and D C D', then {F’,D’,a} is in T'T.
e Union:

If (o, X) and (a,Y) are in T, then (o, X UY) is in T
* Convexity:

If (o, X) and (@, Z) are in Tt and X CY C Z, then {,Y) is in T.

* Displacement: B
If (DU{d},a) isin T, d ¢ dirs(a) and d € dirs(a), then (D,a) is in T1.

If (F,DU{d},a) is in T, d appears only finitely often along «, and d
appears infinitely often along a, then (F, D,a) is in T™.

¢ Contention: B
If(Fl,Dl,O’) and (FQ, Dg,a) are in TZT, d c (Fl—Fg) and d € (Dg“—Dl)—Fz,
then ((Fy U Fy)—{d}, (D1 U Dy)—{d},a) is also in T'.

These closure conditions are precisely what is needed to obtain full ab-
straction. Let P'= be the set of closed sets of traces. We define a closed
trace semantic function 7T : Com—P!= denotationally, modifying the se-
mantic equations given for 7 earlier by building the closure property into
each clause.

Definition 5.3 The closed trace semantic function 71 : Com—P'Z is given
by:
Ttlskip] = {{0, (s, ,9)), (&, {e}) | s € S}
T := E]={(0, (s, ¢ [s|I = n])), (e, {e}} | (s,n) € E[E]}
THCy; Ca] = (THC]; THC.D)!
TH[if B then C} else Cy] = (T[B]; TH[C.]U T'[~B]; TH[Ca])!
15

BroOOKES AND OQLDER

THwhile B do O = ((T'[BE THC* U (TH[BL THCIY; TH-BY)!
TR)= {({h?}, (s, h?n,[s|] = n])) | n € N}
Uilen (A7) | T € dom(s)}
THR'E] = {({A'}, (s, hln,s)) | (s,n) € E[ET}
U{(e., {h!}) | free[E] € dom(s)}
THG—C] = (THGE TC)
THGCOGC,] = (THGCOTHGC,])!
THCCoD = (TMICITC2D)!
THC\Rl=(T'[CI\)".

The following proposition states that for any command C, the meaning
given to C by the closed trace semantics 71 is exactly the closure of T[C1].

Proposition 5.4 For all C, TY[C] = T[C]'.
Proof. By induction on the structure of C, using the following equalities:
(Ts Tt = (THTH, 10 = (THY, (Oh)' = (T{om)t,

(LT = (THTHT, (T\W)' = (TN\R), (WUT)" = (TfU T
O

Proposition 5.5 The semantic function T is (inequationally) fully abstract
with respect to M: for all commands C and C’,

THCIC THC] < VP[-].M[P[C]] € M[P[CT].

Proof (Sketch) The forward implication follows from compositionality of
the semantics, monotonicity of the operations on trace sets, and the fact that
for all commands C,

M[C]={a | 3D. (D,a) € T'[C] & chans(a) = {} }
U{ad | {a,0) € THC] & chans(a) = {e} }
U{a |3D. (0, D,a) € TI[C] & chans(a) = {e} }.

The reverse implication requires showing that whenever 7T[C] € TT[C"],
there is a context in which C and C' induce different sets of behaviors. The
context chosen depends on the nature of the trace possible for C' but not
possible for C’. When C has an acceptance which is not possible for C’, the
proof is straightforward. When C has a finite trace which is impossible for ¢,
a simple generalization of the approach given below for infinite traces suffices.

Whenever (F, D, a) is possible for C' but not for C’, the closure condi-
tions ensure that any trace of form (F”, D', &) which is possible for C’ must
have some fairness constraint or enabled direction which distinguishes it from
(F,D,a). Let {(Fy, D1,a),...,{Fu, Dn,a) be the (finitely many) minimal a-
traces of C’ from which every (F’, D', a) in T1[C’] can be derived by closure.
It suffices to build a context which distinguishes each of these minimal traces
from (F, D, a).

For each 1 € 1..m we can choose a direction d; which is either in F; — F
or in D; — D. Moreover, we can always choose these directions in such a way

16

BRrooKES AND OLDER

that the set {d; | 1 < i < m} can be partitioned into sets X and Y, with
each member of X in some F; — F, each member of Y in some D; — D, and
—match(X,Y).

We let H = {hy,...,hi} represent the set of channels which appear in C
or C', and we let z, y, f1 and f2 be fresh identifiers. We use x and y to create
guards corresponding to the directions in X and Y; f1 and f2 serve as flags
indicating whether certain synchronizations have occurred. We let G(X, z)
be a set of guards in one-to-one correspondence with X as follows: k!0 is in
G(X,z) when h? is in X, and h?z is in G(X,z) when h! is in X. We define
G(Y,y) in a similar fashion.

We next construct a program guess(z, f1) which repeatedly “guesses” how
to synchronize with o by nondeterministically choosing a channel on which to
communicate, choosing whether to perform input or output, and (in the case
of output) choosing a value to send. Because these choices are recorded in the
state, it is always possible to determine whether or not the command in parallel
with guess(z, f1) actually performed the trace a. Each “guessed” communi-
cation is offerred alongside the guards of G(X,z) as a guarded choice; con-
sequently, in any infinite computation of guess(z, f1), synchronization with
directions in X is enabled infinitely often. If one of the guards in G(X,z) is
ever chosen, guess(z, f1) sets f1 to 1.

We can now define a distinguishing program context P[—]| as follows, where
we assume G(Y,y) = {q1,..-,9;}:

(=] I guess(z, £1) || ((g1—=f2:=1) O--- O (g;—=f2:=1))\ k1 ... \h.

Under the assumption of strong fairness, P[C] has a behavior corresponding
to a in which f1 and f2 are never set to 1, whereas P[C'] does not. O

6 Other Notions of Behavior

The state trace behavior M reflects the assumptions that external commu-
nication is prohibited and that every state change can be detected. In this
section, we consider behaviors which relax one or both of these assumptions.

6.1 Simple traces

If we assume that a program is an arbitrary command, and that external com-
munications are observable, it is natural to consider the simple trace behavior

function § : Com—P(X* U ¥*§), defined by:

Ak—1

S[C] = {trace(p) | p = (C, 50)22{C1, 81) L5 - - - 21Oy, s1) term)
U {trace(p)8 | p = (C, 50)22{(C1, 51) L5 - - - 240, sp)dead)
U {trace(p) |

p=(C, 30>_59+<01,31)£>. , e

(Ci, sx)22s - -+ is fair).

As before, we assume that it is possible to distinguish between deadlock and
success and that every single transition can be detected.

17

BrookEs AND OLDER

The proof of Proposition 5.5 can be adapted easily to show that that 7
is also inequationally fully abstract with respect to §. Thus M and S induce
the same notion of contextual equivalence: two commands have the same state
trace behaviors in all contexts if and only if they have the same simple trace
behaviors in all contexts.

6.2 Stuttering and mumbling

So far we have assumed an “omniscient” observer capable of detecting every
state change made during a computation. If instead we suppose that an ob-
server sees only a subsequence of the states during a computation, we obtain
corresponding notions of behavior based on —*, the reflexive, transitive clo-
sure of the one-step transition relation. One then needs to impose closure
conditions on trace sets corresponding to “stuttering” and “mumbling” [12,3].

Definition 6.1 The relation ~»C X x X* is the least reflexive, transitive

relation on simple traces satisfying the following conditions:

» Stuttering: ae,f ~ a(s,¢€,s)5.

* Mumbling: a(s,¢€,s')(s’, A, 8")8 ~ a(s, A, s")3 and a(s, A, s')(s',¢€,8")8 ~
afs, A, s")0.

To be precise, each condition may be applied finitely often at each position

along a trace.

Definition 6.2 Given a trace set T', let T, be the smallest set containing 7'

and closed under the conditions below:

o If (D,a) isin T, and a ~ ¢/, then (D, ') is also in T..
If (F,D,a) isin T. and o~ o/, then (F, D,¢') is also in T..

o If (o, X) is in Ty and a ~ @, then (o/, X) is also in 7.
If (
If (o

L]

a, X) is in Ty, then (o, {€}) is also in 7.
(s,€,8),X) is in Ty, then (a, X U{e}) is also in T..

-

The fourth condition reflects the fact that each stuttering step performed
on a “complete” computation leads to a new partial computation as well. The
fifth closure condition arises because acceptances must now account for those
actions which are possible after some finite number of e-transitions.

Stuttering and mumbling correspond to generalized relations 2 (AeA),
where == is the reflexive, transitive closure of — and == (for A # ¢) is
defined so that (O,S>:/\><C", s’} if and only if there exist Cy,Cs, 51,52 for
which (C, 8)=5(C1, 51) —3(Ca, 83)==(C", ').

Given a trace set T, we define T = (T.)!, so that T} is closed under
stuttering, mumbling, and the closure conditions of Definition 5.2.

We let PIZ be the set of closed sets of traces. Much as before, we
can define a denotational semantic function 7. : Com—PI= such that for

all commands C, TI[C] = (T[C]){. Moreover, T, is inequationally fully
abstract with respect to both the generalized state transition trace behav-

18

BROOKES AND OLDER

ior M, : Com—P(S® U 5§*§) and the generalized simple trace behavior
S.: Com—P(X* U ¥*§) defined below:

M. [CT={s081-. .3k | {C,30)==>(C1, 81)= - - - ==(C, sx) term}
U {s051 - - - 86 | {Co, 80)==>(C1, 81)== - - - ==(C%, sx) dead}
U {s081...8k...]| (Co,80)==> -+ - =>(C}, 8)=>: - - is fair},

8.[C1={trace(p) | p = (C, 50)=2%(C1, 51) =% - -+ 23 (Ch, sy term}
U {trace(p)d | p = (C, @%(Cl,sl)% o -/\'l‘z_g(Ck,sk)dead}

U {trace(p) | p = (C, 8()):(\0? B 2‘3(0&, Sk)ék'}' - is fair}.

The proofs of full abstraction are analogous to that presented in the previous
section.

7 Related and Future Work

Our semantics is related to the failures model of CSP [2,11], Roscoe’s failures
model of occam [17], and Hennessy’s acceptance tree models of communicating
processes [7-9]. Of these only {17] and [9] consider communicating processes
with local state; neither of these papers deals with fairness. Roscoe [17] as-
sumes that divergence (the ability to perform an infinite sequence of e-moves)
is “catastrophic”: his semantics identifies all pairs of possibly divergent pro-
cesses. As a result his model is tailored to reasoning only about total cor-
rectness properties of programs. Hennessy [9] achieves full abstraction with
respect to a notion of behavior based on “testing” [6]. Of the remaining pa-
pers, only [8] models a form of fairness, giving an acceptance tree model for
a language of asynchronous processes (without local state) and achieving full
abstraction with respect to a notion of fair testing. The notion of fairness
considered there is rather limited: roughly speaking, an infinite parallel com-
putation is fair iff both of its projected computations are infinite and fair.
The fair trace semantics for communicating processes developed in [4] uses
a form of simple trace and does not account for the possibility of deadlock.
We regard our work as putting these earlier models into a wider perspective,
showing how to incorporate state, fairness, synchronization and deadlock in a
single framework.

Our work achieves somewhat similar net results to [3], where full abstrac-
tion was achieved for a fair shared-variable parallel programming language.
As remarked earlier, the trace models used there do not simply adapt to the
setting of communication-based languages. The two approaches seem to be
orthogonal, however, and we plan to develop a hybrid form of trace semantics
which combines the two approaches to provide a model for a language allowing
processes both to communicate by message-passing and to share memory.

Our semantics incorporates an assumption of strong process fairness. We
expect that our approach can be adapted to incorporate other notions of
(strong) fairness, such as channel fairness or communication fairness [5]. We
also plan to develop a semantics incorporating weak fairness, i.e. every process

19

BrooOKES AND OLDER

which is continuously enabled will eventually proceed.

References

[1] K. Apt and E.-R. Olderog. Verification of Sequential and Concurrent Programs.
Springer Verlag, New York, 1991. '

[2] S. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating
sequential processes. JACM, 31(3):560-599, July 1984.

[3] S. Brookes. Full abstraction for a shared variable parallel language. In Proc.
8th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer
Society Press, June 1993.

[4] S. Brookes. Fair communicating processes. In A Classical Mind: Essays in
Honour of C.A.R. Hoare. Prentice-Hall, January 1994.

[5] N. Francez. Fairness. Springer-Verlag, New York, 1986.

[6] M. Hennessy and R. DeNicola. Testing equivalences for processes. Theoretical
Computer Science, 34, 1984,

[7] M. Hennessy. Acceptance trees. JACM, 32(4), 1985.

[8] M. Hennessy. An algebraic theory of fair asynchronous communicating
processes. Theoretical Computer Seience, 49, 1987.

[9] M. Hennessy and A. Ingolfsdottir. Communicating processes with value-passing
and assignments. Formal Aspects of Compuling, 3, 1993.

[10] C.A.R. Hoare. Communicating Sequential Processes. CACM, 21(8):666-677,
August 1978.

[11] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall
International, 1985.

[12] L. Lamport. What good is temporal logic? In R. E. A. Mason, editor,
Information Processing 83: Proceedings of the IFIP 9" World Congress. IFIP,
North Holland, September 1983.

[13] R. Milner. Fully abstract models of typed lambda-calculi. Theoretical
Computer Science, 4:1-22, 1977.

[14] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, 1980.

[15] D. Park. On the semantics of fair parallelism. In D. Bjgrner, editor, Abstract

Software Specifications, number 86 in Lecture Notes in Computer Science, pages
504-526. Springer Verlag, 1980.

[16] G.D. Plotkin. An operational semantics for CSP. In D. Bjgrner, editor, Formal
Description of Programming Concepts II, pages 199-225. North-Holland, 1982.

[17] A.W. Roscoe. Denotational semantics for occam. In Seminar on Concurrency,
volume 197 of Lecture Notes in Computer Science. Springer-Verlag, 1984.

20

