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Historical introduction to
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The original version of this paper appeared as a technical report 15 years ago [28],
based on the work carried out at Edinburgh University in the Fall of 1975. The ideas
and concepts introduced in this work have been widely referenced and have become
the basis for a significant body of foundational research on semantics of programming
languages. The purpose of this introduction is to sketch the background for this
research and to mention briefly some of this later work, thus placing the paper in
context.

Christopher Strachey’s [40] work on the formal description of programming
language concepts raised problems concerning the nature and existence of semantic
models for A-calculi. Dana Scott developed a theory of domains and continuous
functions that established adequate mathematical foundations for Strachey’s semantic
descriptions and formed the basis for the denotational approach to semantics, ad-
vocated in [37] and later applied to a wide variety of programming languages
[39,34,42,24]. Semantic domains were typically taken to be complete lattices [38] or
more general kinds of complete partial order [38, 25], the precise combination of
order-theoretic assumptions being chosen to suit the application and often justified by
appealing to intuitive arguments concerning computability. A good survey of domain
theory is provided in [24].

However, these semantic treatments typically make no intrinsic distinction between
domains used to represent data and domains used to represent procedures or func-
tions. For certain purposes it seems appropriate to make such distinctions: for
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example, a data domain may model some kind of data structure built from storage
cells containing primitive values, and it might be important to make precise the sense
in which a computation producing or consuming data operates incrementally. The
development of concrete domains was originally motivated by problems such as these,
arising notably in the study of dataflow networks and sequentiality.

The foundations for a theory of dataflow networks were laid in 1974 by Kahn, in
the seminal paper [26]. This now represents a classic example of the use of elementary
domain-theoretic concepts in modelling parallel programs. Kahn described a simple
language for parallel programming, based on an abstract dataflow model of determin-
istic parallel computation: a network of autonomous, sequential, functional processes,
connected by communication lines that represent unbounded queues. The notion of
sequential process was rather intuitive: at all times a process is either computing or
waiting for information on a single input line. In Kahn’s model, each communication
line is capable of carrying data of some given type D, and a (possibly infinite) history of
the traffic along a communication line is represented as an element of a “sequence
domain” denoted D®; each process computes a continuous function from input
histories (or “streams™) to output histories. A network is then described by a set of
(mutually recursive) functional equations, one for each communication line, and the
behavior of the network is obtained in a natural way by taking the least fixed point.
The coincidence of this least fixed point with the operational behavior of networks is
now known as “Kahn’s principle”. Although Kahn did not provide a formal opera-
tional semantics for networks, this principle seems very appealing and intuitive.
Indeed, Kahn's principle has been adopted as a critical test in judging the correctness
of subsequent semantic treatments of dataflow networks, including generalizations to
permit nondeterministic processes [22, 33, 1,29].

In joint work with David MacQueen, Kahn later provided an operational model
for networks based on demand-driven, coroutine-like execution [27]: processes “con-
sume” input data in response to requests to “produce” output. This operational view
clearly suggests the need for a domain-theoretic account of incremental computation.
Kahn also realized that queues and the corresponding sequence domains ought to be
a special case of a more general kind of data structure and domains.

Problems concerning the domain-theoretic characterization of sequentiality also
emerged from foundational work on the denotational and operational semantics of
A-calculi. Dana Scott [35] introduced LCF, a logic for computable functions based on
a simply typed combinatory logic with arithmetic and boolean primitives and recur-
sion. Scott gave a model in which datatypes are modelled as domains and phrases of
functional type denote continuous functions. He suggested investigating the relation
between his semantics and syntactic reduction rules. He also asked whether the
presence of intuitively parallel (i.e. nonsequential) functions in the semantics, such as
Kleene’s “parallel or”, was desirable. Plotkin took up Scott’s suggestion and gave an
operational semantics to a A-calculus variant of Scott’s combinatory logic, christened
PCF. The operational semantics brings out the essentially sequential character of the
language; this was made precise by Berry’s sequentiality theorem described below [3].
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Plotkin [34] proved an adequacy theorem showing that the reduction rules for
PCF programs accorded with their denotations — as imagined by Scott. Plotkin
further showed that as a result of the presence of the parallel functions, the Scott
model fails to be fully abstract. That is, there are terms with different denotations
in the model that are nonetheless operationally indistinguishable, in the sense that
one can be substituted for the other in any program context without changing the
result of evaluating the program. Early semantic formulations of sequentiality, aiming
to construct models that contain no parallel functions, were of limited utility
[43,30,33]. Milner’s model [30], while fully abstract, is “syntactic” in nature, and left
open the problem of finding a semantic characterization of sequential functions. The
need thus arose for a domain-theoretic notion of sequentiality refining the notion of
continuity.

At about the same time, Gérard Berry [2] introduced the notion of stability
used in [6,9] to study canonical forms and optimal computations for recursive
programs. Berry [3] showed that the A-calculus is syntactically stable and sequential
[3], and introduced a model using stable functions between dI-domains, employing
the stable order rather than the pointwise order typical in Scott’s theory [4].
The stable order ties in nicely with properties of program computations. Stable
functions and the stable ordering have many pleasing algebraic properties; for
instance, the category of dl-domains and stable functions is cartesian-closed. A
large body of work concerning or using stability has been developed. For instance,
Girard [23] gave a model for polymorphism using qualitative domains and stable
functions, and Coquand et al. [15] generalized this to obtain a model for
polymorphism using dI-domains and stable functions'. Taylor [41] concerns
the algebraic theory of stable domains, and Droste [21] investigates some of
the properties of stable domains. While the notion of stability refines conti-
nuity in an appealing way, Berry’s class of stable functions still included some
intuitively nonsequential functions. It did not seem possible to give an adequate
definition of sequential functions using either Scott domains or dI-domains,
and the problem of finding a satisfactory semantic notion of sequentiality
remained.

In this paper Kahn and Plotkin proposed the first general domain-theoretic
framework in which a semantic account of incremental computation and sequential
functions could be given. Starting from the idea that domains should be (at least)
w-algebraic, coherent, complete partial orders, they progressively introduced extra
assumptions designed to characterize a class of “concrete domains” that can plausibly
serve as models of data and can be equipped naturally with a notion of incremental
computation. They also introduced “information matrices”, essentially abstract
descriptions of data structures, built from “cells”, for which there is a natural notion
of incremental computation by filling cells according to accessibility constraints.

1t is also possible to model polymorphism using Scott domains and continuous functions [15].
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Kahn and Plotkin proved a representation theorem making precise the intuition that
“concrete domains are the domain-theoretic counterparts to information matrices”.
Winskel [44] gave an improved proof for the representation theorem for concrete
domains, and this formed the basis for the proof by Curien in [18]. The name
“information matrix” has been superceded by the term “concrete data structure”
(introduced by Berry)®.

Kahn and Plotkin showed that concrete domains are closed under cartesian
product, separated sum, upper section, and a form of grafting. They also showed that
concrete domains are closed under certain restricted forms of inverse limit, thus
justifying the solution of recursive domain equations. Kahn and Plotkin identify an
important subclass consisting of the distributive concrete domains (corresponding to
distributive concrete data structures). Every distributive concrete domain is also
a dl-domain, and every Kahn—Plotkin sequential function between distributive con-
crete domains is also stable. The converse fails, however, since there are stable
functions that fail to be Kahn—Plotkin sequential.

Nielsen et al. [31] later constructed a domain-theoretic framework for modelling
Petri nets, based on “event domains”, with a concrete representation using “event
structures”. Winskel [44] developed an extensive theory of event structures and event
domains. Event structures provide a more general framework than (distributive)
concrete domains; certain event structures (characterized by a “stability” property)
give a representation for dI-domains [46]. A good survey of event structures is
provided in [45], and Droste [19, 20] reports some more recent work on the proper-
ties of event domains and concrete domains.

In a separate (unpublished) manuscript Kahn and Plotkin showed that concrete
domains indeed form the basis for a general theory of sequential functions; the details
of this theory were summarized by Berry and Curien [7, 18]. Berry’s syntactic
sequentiality theorem [5,4, 18] provides an interesting link with the work of Corrado
Bohm: the set of PCF terms and the set of their Béhm trees form concrete domains,
and the function that maps each PCF term to its Bohm tree is sequential. This gives
a domain-theoretic way to express the sequentiality of the usual f-reduction evalu-
ation strategy for A-expressions.

Since the sequential functions are closed under composition and recursion, one can
use the Kahn—Plotkin framework to give a denotational semantics to the determinis-
tic dataflow networks considered in [26], enabling a precise formulation of the
“folk theorem” that Kahn networks (with sequential primitives) compute sequential
functions (see, for instance, [32]) and demonstrating that concrete domains do
indeed provide an appropriate generalization of the sequence domains used in
[26]. However, the category of concrete domains and sequential functions is not

2 According to Gilles Kahn, he and Plotkin considered a “concrete” domain to be a domain that could be
associated naturally with a data structure, the use of an adjective being justified because arbitrary domains
do not appear to have this property; on the other hand, data structures were already concrete enough.
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cartesian-closed, since the set of sequential functions between two concrete domains
may fail to form a concrete domain [18]. The Kahn-Plotkin notion of sequential
function makes sense at first-order types, but this limitation prevents its use at higher
order. The problem remained of constructing a sequential model for PCF.

In a major development, building on Kahn and Plotkin’s work, Berry and
Curien [7, 18] introduced a theory of sequential algorithms between concrete
data structures. A sequential algorithm can be viewed as a Kahn—Plotkin sequential
function together with a (sequential) computation strategy for that function.
The operational behavior of sequential algorithms, described in [18], is demand-
driven and coroutine-like, thus emphasizing the connection with the earlier work
of Kahn and MacQueen [27]. The Berry—Curien category of concrete domains and
sequential algorithms is cartesian-closed, and thus provides an intensional sequential
model of PCF; the Kahn-Plotkin category can be recovered as an extensional
quotient [18]. Reference [10] introduced a cartesian-closed category of generalized
concrete data structures and continuous functions, and used this as the basis
for a category whose morphisms can be viewed as parallel algorithms, generalizing
the Berry—Curien algorithms in a natural way to permit parallel computation
strategies.

There have been further developments generalizing the Kahn—Plotkin framework,
aiming for cartesian closure and full abstraction, including [12, 11]. Working with
qualitative domains equipped with a coherence structure (QDCs), Bucciarelli and
Ehrhard [12] showed that the Kahn—Plotkin notion of sequentiality can be captured
(at first-order types) as a kind of preservation property (“strong stability”) generalizing
Berry’s notion of stability. The strongly stable functions between two QDCs, ordered
stably, form a QDC, so that the notion of strong stability extends to higher-order
types. They thus obtained a cartesian-closed category of QDCs and strongly stable
functions. The work reported in [11] concerns a framework of sequential functions
between “indexed domains”, domains equipped with a parametrized notion of in-
cremental computation; the indexed domains are closed under sequential function
space, and this is true for both the stable order and the pointwise order; the
model obtained there is fully abstract for a subset of PCF obtained by imposing
a simple syntactic constraint on the use of application. In both cases [12, 11] the new
definition of sequential functions coincides with the Kahn—Plotkin definition when
restricted to concrete domains and first-order types, showing the robustness of the
original work.

The Berry—Curien algorithms model is fully abstract with respect to an intensional
form of program behavior (in which one can observe computation strategy) [7, 8].
Recent results [14, 17] have shown that an extended version of the sequential
algorithms model (incorporating error values) yields an extensional model, fully
abstract for an extension of PCF that includes certain control facilities. Indeed, the
original sequential algorithms model is fully abstract for an extension of PCF
including a “catch” control primitive, without requiring the inclusion of errors [13].
Despite these results the original full abstraction problem for PCF remains open. It is
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likely that any solution to this long-standing problem will build ultimately on the
pioneering work of Kahn and Plotkin.
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