An Improved Failures Model for Communicating Processes

S. D. Brookes
Carnegie-Mellon University
Department of Computer Science
Pittsburgh

A. W. Roscoe
Oxford University
Programming Research Group

Oxford

€y 4

To appear in Proceedings of NSI'-SERC Seminar oi Concurrency, July 1984, Springer

Verlay Tecture Notes in Computer Science (1885).

The research reported in this paper was supperted in part by funds from the Computer
Science PDepartment of Carnegie-Mellon University, and by the Defense Advanced Rescarch
Projects Agency (DCD), ARPA Order No. 3597, monitored by the Air Force Avionics
Loboratory under Contract F33615-81-K-1539. The views and conclusions contained in it
are those of the sutliors and should ret be interpreted as representing the official policies,
either expressed or nuplied, of the Defense Advanced Research Projects Agency or the US

Covernment. .

AN IMPROVED FAILURES MODEL FOR COMMUNICATING PROCLSSIES

S. D. Brookes
Carnegie-Mellon University
Pittsburgh, Pa.

USA

A. W. Roscoe
Programming Research Group
Oxford University
Ozxford
Ingland

0. Abstract,

‘We extend the failures modal of commmnnicating processes to atlow a more saiisfactor
£1

treatment of divergence in addition to deadlock. The relationship between the roevised

modze! and the cld medel is discussad, 2ad we male some conneciions with various models

proposed by ether authors.

i. Introduction.

The papers [3,4] introduced the failure sets mode! for communicating sequential processes.
This model, an extension of the traces model of [L3], was able to represent nondeterminis-
tic behaviour in a simple but eflfective way. We showed how to use this model to give a
-denotational semantics to an absiract version of Hoare’s lauguage CSP [14], und used it to
prove seme theorems about the behaviour of programs. The madel enjoyed many elegant
mathematical properties, which facilitated formal manipuiation and derivation of process
propetties.

The failures model of precesses is able to support a formal treatment of deadlock
properties. A process is said to deadlock if it reaches a stage where it is unable to participate
further in events; this property is captured very simply by the failures model, since a
potential deadlock eorresponds to the ability to retuss all events and this is reflected directly
in the structure of the failure set of a process. However, there are problems associated
with the treatment in this model of the phencinenon of divergence. A process diverges
when it is engaged in on infinite unbroken sequence of internal actions invisible to its

2

environment, and as a result leaves its environment waiting cternally for a response. It is
important to be able to reason about the possibi]ity- of divergence, especially when trying to
establish a liveness property, such as the ability of a process to make some visible response
to its environment. The original failures model has certain weaknesses in its treatment
of diverging processes, as remarked in [11,12,19,20,2,23], and we will make in this paper
suitable alterations to the model which allow a more satisfactory account to be given. The
need for these adjustments was originally, independently, suggested by Hennessy and de
Nicola in [23] and by Roscoe in [12], and had a direct infiuence on the development of
[2]. The relationship of the new model with the models of Hennessy, de Nicola, and other
authors, is discussed in more detail in the final section of this paper. The new mecdel
retains the abilily to model deadlock, and is thus in a well defined sense an improvement
over the original. Again the model possesses an elegant mathematical structure and is well
suited to formal manipulation. '

A second adjustment, independent of the treatment of divergence, is also suggested
in this paper. In the original failures model of processes all refusal sets were finite. This
condition is natural when the processes have a finite alphabet of discourse, so that each
process is only capalble of participation in evenis drawn from a finite set. However, when
processes are allowed to have infinite alphabets it still seems unnatural not to be able to
tell explicitly from the semantics of a process whether or not it can refuse an infinite zet
of events. We will introduce here infinite refusal sets, but with a closure condition making
the change from the old model largely cosmetic. In particular, the oid model will be seen
te “sit inside” the new one in the natural way, so that we are clearly making a reasonable
generalization. With this adjustment in place it becomes slightly easier to formulate some
of the deadlock properties of processes, since deadlock corresponds explicitly to the refusal
of the entire alphabet of events.

We revise the definitions of some of the process compositions from [3,4] to take
divergence into account more accurately, and we give examples to show inadequacies in
the earlier definitions in their handling of this phenomenon.

Outline,

The first two sections of the paper introduce the old and the new models, and use
them to give a semantics to the version of USP described in [3,4]. Some intuitions are
given to justify the changes we have made in buiiding the new model, and the reiationship
between the old and new models is analysed. The third section gives some examples of
applications of the model, defining in the new model the semantics of some interesting
forms of process composition which were used in [3,4]. We see that, with care, all of the
applications discussed in those papers may be transferred to this more general setting. The
same is true of the proof techniques described in the appendix of [4]. The fourth section
contains a comparison of the werk of this paper with that of other authors, setting our

3

work in a more general context. This section also contains some conclusions and points
the way forward to future research. '

For obvious rcasons the contents of this paper overlaps the material of [3,4] to a
substantial degree. In order to avoid too much repetition, and to restrict the length of this
paper, much of the material of the earlier papers is assumed.

Notation.

Throughout this paper we will use the following conventions in notation. Given a set
2 of events, the set of finite secquerces or traces over X will be denoted £*. We use a, b, ¢ to
range over L, and s, t,u to range over L*. The empty sequence is (), and the sequence with
clements ay,...,a, in that order is written (ay,...,ay), although sometimes we may omit
the braces and write aj...a,. Given traces s and t, we write st for their concatenation.
We say s < t (s is a prefiz of t) if there is a trace u such that su = t; such a trace u is
called a suffiz of t. The powerset of ¥ is denoted P(X), while we use p(X) for the finite
powerset (the set of all finite subsets); of course, if ¥ itself is finite these two powersets
coincide. Finally X,Y", Z range over P(X) or p(X), depending on the context.

2, The fallurcs medsl,

In this section we Legin by recalling the ecarlicr failures maodel of {3,1] and its use to
give a semantics to a version of CSP.

A precess is regarded as an agent which communicates with its environment by
performing actions or events drawn from an alphabet 2. Wach event can be thought
of as an atomic action. Sequential processes are characterised at least partially by the
set of possible sequences of events in which they may participate; this constitutes the so-
called trace set of a process [13]. However, since we are going to be modelling processes
with nondeterministic bechaviour, traces are not enough. The trace sct of 2 process does

O ... S N WL O, L .~ R — L 0 T—
not indicate the possibility thal deadlock might cecur as the result of 2 nondeterminis

.o
Fete
[¥]

decision by a process. The effect of a nondeterministic decision by a process is to restrict
its ability to communicate on the next step, by choosing a set of events which wiil not be
possible on that step. Accordingly, the concept of a failure suggests itself as a means of
modelling the effects of nondeterministic decisions. A failure has the form

(s, X),

where s is a finite sequence of events and X is a finite set of events. If a particular failure
(s,X) is possible [or a process, then the process may perform the sequence of events s and

then be unable to perform any of the events in the set X'; we say the process can do s then
refuse X.

Bearing in mind the intuition behind this notion of failures, the failure sct of a process
satisfies four simple conditions (M1)-(M4) below. We therefore define a failure set to be
any subset :

FC I XX

satisfying these conditions:

(10 € o)
(st,0) € F = (s,0) e F i« (M2)
(5, X) c F&YCX = (sY)erF (M3)
(5, X)EF & (s{c),0) &F = (5, XU{c})EF. (M4)

We will denote the failures modeal by M.

For any set /' of failures we define

traces(F) = {s|3X.(s,X) EF}
initials(F) = {c | (¢) € traces(F)}
refusals(F) = {X | (},X) € F}

Fafters = {(¢,X) | (st,X) € F}.

By condivion (M3), ¢ 'z o trace o»f I if aad oniy if (s,) is a failure of F. Thus, (M1) and
By d M3), t { I" il and only if (s,) fzil F. Thus, (M i
(vi2) sbare that the traces of a process forin a nen-empty, prefix-closed set. (Mi2) says that
if a process can refuse all evente in a set ¥ then it can also refuse all subsets of Y. Finally,
(M4) states that an event which is iu'r)os:-;ible on the next step can be included in a refusal
set. It is easy to see that tor any trace s of I, the set I after s also satisties the conditions
above; this represents the behaviour of the process once it has performed the sequence s.

Since failures represent the results of nondeterministic decisions made by a process,
there is a natural partial ordering on failure sets:

,Ft E F; = F‘l __? f“‘g.

We read 'y, T Fy as saying that F'| is more nondeterministic than Fp. The set of all
failure sets, ordered by this relation, forms a coiaplete sewmi-lattice. This means that every
non-empty collection of processes has a greatest lower botnd (union) and every directed
set of processes has a least upper bound (intersection); in particular, the intersection of a
chain of processes is again a process The least element (calied CHAOS in [3,4]) is simply
r* X p(¥), the set containing all possible failures. The maximal eleruents, the so-called
determinisitc processes, are characterised by the condition:

(5,X) €F & X Ninitials(¥ after s) = 0,

or, equivalenily, that their refusal sets contain only impossible avents.

5

CSP operations.

Next we recall the abstract syntax given in (3,4] for a version of CSP. We use P,Q to
range over (syntactic) processes. The following BNIF-style grammar defines the syntax of
our process language:

P.—STOP | SKIP | (e —P) | PNR | POR |
PIlQ | PlIQ | Ps@ | P\a | /7'(P) | /(P) | p | po-P

STOP represents a deadlocked process, and SKIP represents a process which terminates
successfully. Two forms of parallel composition arc represented by P | @ and Pl||Q; the
former is known as synchronous parallel comuposition, the latter asynchronous. Sequential
composition is denoted P;@, and preflixing 2 single cveut is denoted (a — P). Two forms
of choice are represented by PQ and PMQ; the first form is “controilabic” and the
second “uncontrollable” or purcly nondeterministic. The hiding operation P\a conceals
all occurrences of the event a. We let f range over a set of alphabet transformations; these
are renaming functions f : & — X satislying the finite pre-tmage property, i.e. that for
every a & X the set f~Ya) = {beX| f(b) = a} is finite, so that only finitely many
events becorna identified under a renaming. The prouess fF~YP) con perform an evenb
5 whenever P can perform the image event f(b). Conversely, the process f{I’) performs
. f(a) whenever P can perferm . for [urther explanation of the nature and significance of
these syntactic operations see [4]. In the final two clauses p rrnges ovec a seb of process
identifiers and pp.P is a recursive term, corresponding informally to 2 FECUTEIVE PTOCESS
definition of the form p = P. ' \

We will denote the set of terms defined by this syutax by TCSP. A term is closed if
it has no free process identifiers. In order to interpret terms with free process identifiers
we will use an envirenment, which we take to be a function p from process identifiers to
failure sets. Let MEnv be the set of all environraents of this type. We use the notation
p+ [p — F| for the environment which agrees with p except that it maps the process
identifier p to the failure set 7.

The failvres semantics of TCSP is summarized below; these clauses are essontially the
same as the definitions given in [3,4], except that we have made explicit use of environments
in order to treat the seimantics of recursive termas rasher more rigorously. In the earlier
papers we did not make an explicit distinction between syntax and scraantics, preferring
rather to blur the distinction and usc the same notation for the syntactic as well as semantic
opcrations. Here we are forced te emphasise the scparation of syntax and semantics,
because we will later have another semantics to discuss.

This semantics is denotational, in that the failure scts of compound processes are
definable from the failure sets of their components. We assume familiarity with the basic
ideas of denotational semantics, as explained for example in [2€]. We define the semantic

5

function

M : TCSP — [MEnv — M|
by the clauses:
Mlple = plp]
MISTOPfp = {({(),X) | X €p(2)}
M[SKIPJp = {({(},X) | vV&X & X €p(E) }U{(V,X) | X €p(X) }

I

Mi(a— P)lp = {((),X) |« @X & X €p(E)}U{({a)s, X) | (5,) € M[P]o}
MIPTQe = MIP]puU M[Q]p
MPOle = {1 %) (0. X) € M[Plo 1 MIQLe}
| U{(s,X) s 5% () & (5,X) € M[P]p U M[Q]p)
MIP 1@l = {(ss X UTY) | (5, X) € M[Plp & (5,Y) € M[Qlp}

M[P||Q]lp = {(u,X)|3s,t. u € merge(s,t) &
(5,X) € M[P]p & (t,X) € M[Q]r}
MIP; @l = {(s,X) | s tick-free & (5, X U {v/}) € M[P]o}

U{(st,X) | (s+/,0) € M[P]p & s tick-free & (¢,) € M[Q]p}

M[P\alp = {(s\a,X) | (s, X U{a}) € M[P]p}
U {((s\o)t, X) | Yn. {za™,0) € H]P]o}
M1 (PNe == {(sX) | (f(5), F(X)) € M[Z]p}
MUPp = {(f(s), X) | (s, f7HX)) € M[P]p}
Mup.Flp = Hx(A\F.M|[P](p-+ [p = F})).

For an open term the environment explicitly supplies a meaning for free identifiers. In
the clause for P|||Q, we use the notation merge(s,t) for the set of all tcaces obtained by
interleaving the traces s and t. The special event 4/ is used to denote successful termination,

and is used Iin a sequential composition P; @) to signal the starting point of the second
] P88, . J.'»...- ;.(, ~11e .‘i = - ».' ‘ LONRTIENCR G l‘a VeIl ¢ ."- .
rocess, A trace is tick-free if it does not contain an ocenrcrence of this event, and a trace

eading with 4/ represents termination. In the definitien of P\a, we use the notation s\a

for the result of removing all occurrences of u from the trace ¢. Purther explanation and
intuitions for these definitions will be found in [4]. gt Rl

As mentioned above, the failures model M forms a compiete semi-lattice under the
superset ordering. This ordering amounts to a measure of the amount of nondeterminism
a process can exhibit. All of the [ailure set operations used in the semantic clauses above
are continuous, so we can appeal to the Knaster-Tarski Fixed Point Theorem to justify
the existence of least fixed points [26]. We have used the notation fiz for the least fixed
point operator. Thus, the semantics of a recursively defined process is obtained as the
least fixed poiat of the cerresponding function from failures to failures. By continuity, this

7

fixed point can be obtained in the usual way as a limit: the failure set of the process up.P
in environment p is generated as the intersection of the sequence

Fy = CHAOS,
Fat = MIPl(o+ o Fal) (n 2 0).

I

As an example, the term up.(a — p) denotes a process which has the ability to perform an
unlimited number of a events:

Mlpp(a = p)lp = {(@™X)[n 20 & a X &XEP(E)}-

This process satisfies the fixed point equation P = (a — P). The recursion up.p denotes
the failure set CHAOS, and is the tnost nendetermiaistic of all processes. Mutual recursions
can be dealt with in a similar fashion.

We write :)
PCuy®@ <& Vo[M[P]e 2 M[RQ]p],

P=myQ@ & VYo [M[P]p= M[Q]p]
In other words, P == ,; @ when the two processes have identical failuve sets (in this model).
When P C 5 @) we say that P is mors nondeterministic than &. This relation induces a
pre-ordering en TCSP terms.

In view of the IPixed Point "Theersm, a process deflined by recursion should satisfy
its definition. This is expressed forrmaily in the following way. Let 12 be a term with
free proceuss identifier p. We write [(\p|P for the terin arising by replacing every free
occurrence of p in P by @, with suitable name changes to avoid clashes. Then we have:

pp.P = [(up.P)\p]P.

We will often suppress the p notation and simply define a process by the fixed point
equation it is required to satisfy; the implicit undersianding when we do this is that we
are defining the leact fxed point.

The following properties of processes will be assumed. Proofs may be found in the
L= by 1

earlicr papers [3,4] or else in [19,20]. This is not an =xhaustive list or a complete sct of true

equivalences; [19] contains a comglete sei of axioms for a significant subset of our langnage

(omitting some of the operators).

PP Sye P
PQ =u Q0OP
POQOR) =» (PUQ)OR
PL(QNR) =y (POQN(PLR)
PN(QUR) =u (PNQ)UI(PNR)
P[JSTOP =, P
(a—>(PNQ) =p (a—>P)MN(a—Q)
(- P)O(a—@) = (a— P)(a— Q)
PMP =, P
PNe =um QNP
PM(QMNR) =m (PNQNR
Pl =m Q| P
PI@IR) =u (Pl QIR
Pll(@NE) =n (P||Q)N(P] E)
(a—P)||(b— Q) =um STOP if as£b
=p (6> (P||Q) fa=0b
P || STOP =,; STOP
Pll|Q =um 2|||P
(Pillle =m PlIQIIER)
Pll[(@ M R) =um (PlllQ)N(P|R)
(e = Pl|(6 = Q) = (a - (Pi|(b— @) LI(6— ((e — P)[[|Q)
P;(@;R) =p (P;Q)R
STOP|||Q =m @
SKIP; Q =, @
STOP; @ =, STOP
P;(@NR) =um (P; Q)N (P; R)
(PrQ);R =um (P B)N{Q; R)
(a6 - P),Q =pm (a = P;Q) if a 54/

(P\a)\b =ur (P\b)\a

(P\e)\e =um P\a
(a = P)\b =um (a — P\b) if a5~ b
(PN@\e =um (P\a)M(Q\u)

TABLE 1

9

3. The new model.

The failures model is unable to provide an adequate treatment of the phenomenon of
divergence. In addition, all refusal sets were taken to be finite. The new model has the
same basic structure but with two modifications.

1. Divergence. A process is said to diverge at some stage if it is possible for it to
engage in an unbounded sequence of internal actions, invisible to its environment. Such
behaviour is introduced when hiding an infinite sequence of events; if such a sequence is
rendered invisible to the environment of the process, the resulting process diverges. An
example of this is previded by the term

(#p.(a — p))\a.

Here the recursively defined process is able to perform an unbonnded sequence of a
events, which become internal actions when the hiding operation is applied. Divergence
is also introduced by ill-defined recursive definitions, because we regard the initiation of
a recursive call as an internal action; an example is provided by the recursive term up.p,
whose execution results in an infinite sequence of recursive calls. In the failures model
M a divergence caused by hiding was modelled as CHAOS, althcugh another plausible
version of the hiding cperation regarded this type of divergence as indistinguishable from
deadlock. Some of the properties of this version of hiding wera investigated in [2]. This
alternate form of hiding, which inodels divergence by STOP and thus identifies divergence
with deadlock, does not have such appealing algebraic properties, and the chaotic form
was preferred in [3,4]. In particular, the chaotic form of hiding is a continuous operation,
unlike the deadlocking version. However, CHAOS is simply the process which can at any
stage In its execution rejuse any set of events; that is, CHAOS always responds to its
environment by either refusing or performing an event. It can therefore be argued that
it is unreasonable to identify divergence with CHAQOS, the ability to fail to respond at
‘all to the environment, since divergence is more accurately represented by the inability
to respond in any finite time. Indeed, CHAOS does not possess all of the combinational
properties we would like to associate with a diverging precess. In particular, the following

equivalences do not generally hold in the failures model:

P[JCHAOS =,s CHAOS,
P || CHAOS =,; CHAOS,
P|||CHAOS ==,y CHAOS,
CHAOS; Q@ =,, CHAOS.

In each of these cases we would expect divergence of the component process to cause the
possibility of divergence in the compound process. Similar problemns were encountered by
Hennessy and de Nicola [12,19], in trying to axiomatize the failures model, and by Roscoe
[23] when trying to make connections between the failures semantics and an operational

10

interpretation of process behaviour. The use of CHAOS for the purpose of modelling
divergence does not quite fit properly with operational intuitions. Thus, the failures model
alone is insufliciently powerful to give a satisfactory or convincing account of divergence. In
order to provide a more pleasing ttreatment of divergence, we introduce an extra component
into the semantic description of a process. In addition to a failure set, a process will be
associated with a divergence set; this will be a set of traces. If s is a divergence trace of a
process we interpret this as saying that the process may be diverging once it has performed
the sequence s.

2. Infinite refusal sets. Secoadly, if ¥ is infinite we will allow refusal sets to be
infinite; but we also add a closure condition which makes this change largely cosmetic.
Specifically, an infinite set will be a possible refusal if and only if all of its finite subsets are
refusable. Thus, infinite refusal sets are determined by their finite subsets being refusable.

In this new model, which we will denote IN, processes are modelled as pairs
(I", D)
with) _
FCu X PR,
D C ¥~
[n such a pair (#', I}) the failure set is /7 and the divergence set is D. Wea will extract these

two compunents with the functions failures and div. We require the fellowing conditions
on F, which should be compared with (M1)—-(M4) of the previous section.

()0 er ' (N1)
(st,) el = (s,MNerF (N2)
(,X)EF &Y C X = (s,Y)EF (N3)
(5, X)EF & (Ve € Y. ((5(c),0) &F)) = (5,XUY)EF (N9
(VY €p(X).(s,Y)EF) = (5,X) EF. (N5)

The only difference between {N1)-(N4) and the previous conditions is that 37 is allowed
to be infinite in (N4), whereas from use of (M4) only finite sets of impossible events can
be included. (N5) states that a set is refusable if all ol its finite subsets are refusable; the
converse is implied by (N3j.

We also impose a condition on the divergence set, corresponding to the intuition that
divergence is a persistent phenomenon: once a process is diverging it diverges forever.
Moreover, it is impossible to determine finitely any information about a diverging process,
'so that we cannot rule out the possibility that it might engage at some stage in some
sequence of events. In other words, we regard divergence as catasirophic. These considera-
tions lead us to formulate some conditions relating the divergence set D and failure set F

11

of a process:

seD = ste D (D1)
s&€D = (st,X)EF. (D2)

Condition (D1) states that the divergence set of a process is suffiz-closed. The other
condition states the catastrophic or chaotic nature of divergence. A similar argument
was used in [3,4] to suggest that the failure set of a diverging process should be the most
nondeterministic.

As in the old model, there is a natural partial order vn the set of pairs (I7, D) :
(F]_,Dl) g (ﬁb,ﬂz) « I 2 I, & D, :_:)_ Dy.

The interpretation of this is that a process P; is more nondeterministic than P, if it
can diverge whenever Py can diverge and fail whenever P, can fail. Again this ordering
produces a complete semi-lattice structure; the least element, the most nondeterministic
process, denoted | , has divergence set £* and failure set $* X P(¥). Since our rodel
identifics all terms which diverge, we find it convenient to abuse notation slightly and
infroduce a constant term | to the syntax of TCSP, representing divergence explicitly.

We say thut a process is divergence-fros if its divergence sot is emwly, The divergance-
free processes forin a semi-lattice which is cleacly isomotphic to the old failures model,
with bottsm clement CHAOS. The isomorphism & : M —» N, given by

D(F) = ({(5,X) | VY € p{X)(s, V) € F},0),

merely assumes no divergence and introduces infinite refusal sets when required by (IN5).
Thus, in this model there is a distinction between the processes

1= ("% P(xE),5%,
B(CHADS) = (%* X 2(%),0).

Note that the deterministic processes in the new model {the maxiinal elerments) are procisely
the images of deterministic processes in the old medel, under this isomorphisni. In

particular, deterministic processes are divergence-{ree.

Semantics.

To give a semantics to our TCSP language we define a mapping N from processes
to failure sets and divergence sets, when supplied with an environment for the meanings
of free identifiers. Now we nced an environment which maps process identifiers.to pairs
(F, D). Thus, an euvironment e will be a function ¢ : TCSP -+ N. As remarked earlier, we

12

use the functions failures and div to extract the two components of a pair (F', D). We write
e+ [p — (F, D)| for the environment which agrees with e except at p, which is mapped to
the given pair. Let NEnv be the set of environments of this type. The type of the semantic
function is thus

N :TCSP — [NEnv — N]

For presentation purposes it is sometimes couvenient to factor N into two component
functions, by defining auxiliary semantic functions ¥ and D such that

N[P]e = (F[P]e, D[P]e).

With this notation, ¥[P]e is the failure set of P and D[P]e is the divergence set. This
enables us, when desirable, to define N [[P] in terms of the two components. Strictly speak-
ing, the intention is to define both components simultaneously (using mutual recursion).
This is illustrated in the definition for recursive terms:

Npp.Ple = Sx(\(F,D).N[P](e+ [p+— (F,D)])).

For the other syntactic constructs, we define the divergence semauntics first and then give
the failure seis. For the other syntactic constructs, the divergence semaritics

D : TCSP — [NEnv — P(Z")]
is provided by the clauses:

_ Dlinle = div(e[p])
DISTOP]e = 0
D[SKIV’]e =10
Dlla — Ple =:{{a)s|s € D[P]e}
PPN Qe = DP[PJeu P[Q]e
P[POQJe = P[PJeuD|Q]e
DiPliQlle = {si|s & (P[P]en traces(F[Q]le)) U (2[Q]e N traces{ 7 [Pfle)) }
DIP|||@Q)le == {u]|3Js,t.u E merge(s,t) &
{s & DHPH& &t e traces(.ﬂ[@_}}e) V EtE DHQE:: Zs e ti‘aces(?i.Pﬂe))}
D[P;Qle = DI[PJeU{st|s is tick-free ‘& sv/ € traces(7[P]le) &t € D][@e}
D[P\a]e = {(s\a)t|s € P[Plc}U {(s\a)t|Vn.sa™ € traces(F[Ple)}

PIfF ' (P)le ={s|f(s) € D[P]e}
Dr(P)le ={f(s)t|s € D[P]ec}

Notice from this definition that STOP and SKIP have empty divergence sets, while
a nondeterministic composition P M @ or P[] @ may diverge il vne of the components

13

diverges. In a parallel composition P||Q or P|||Q divergence can start at some stage if
either of the component processes can diverge. A sequential composition P;@ can diverge
if either the first component diverges or if the second diverges after the first one has
terminated successfully. The hiding operation explicitly introduces divergence in a case
where the original process is capable of unboundedly many hidden actions; this accords
with our intuitions about divergence, as stated above. [Finally, the divergent traces of a
renamed process are obtained by renaming from those of the original process. It should
be noted that each of these divergence set constructions preserves property (D1).

The failures semantic function has type:
F:CSP — [NEav — P(Z* X P(2))].

We have already specified F[up.PJle. [or the other syntactic constructs, we specify the
following clauses. Apart from the need to close up under condition (D2), these definitions
- are essentially those of [4], and the reader will find further explanation there.

Fp]le = failures(e[p])
FiSTOPle = {{{},X) | X € P(T)}
FIsKiPle = {({), X) |V € X }U{(V, X) | X € P(2) }

Flo — Plle = {((), %) | o € } U {{e)s, X) | (5, X) € F[Ple}
Flprife = F[PJe U FQ]e
Fledele = {((»X) (), X) € F[Plen F]|Qe }
Ul(s, X)]s5£ ()& (s, X) € F[Ple U FiQ]e}
U{(s5,X)]selPLiQ]e}
FIP||Qle = {(s, X UY) | {5, X) € F[Ple & (s,Y) € F[Q]le }
U{(sX)|scD[P|lQle}
FIP|||Qlle = {(u,X) | Is,t.(5,X) € F[Plle & (t,X) € 7[Q]e & u € merge(s,t) }
U {(wX) | ue P[P]l|Q]e}
FliP;Qlle = {{s,X) | svic-free & {5, X U {/}) € 7[P]e}
U{(st, X) | (s+/.9) & F[P]le & stick-free & (1, X) € F[Q]e}

U{(s,X)]|sc 2[P]e}
F[P\aJe = {(s\a, X) | (s, X U {a}) € F[/]e}
U {(wX)|ue DiP\afe}
FLIF~HP)le = {(s,X) | (f(s), F(X)) € F[Ple }
FIfPNe = {(f(s),X) | (s, F (X)) € F[PJe} U {(5,X) | s € D[F(P)]e}.

The next result establishes that our semantic definitions make sense.

14

THEOREM 1. All CSP operations defined above are well defined and continuous.

Proof. Well definedness is easy to show, except for the synchronous parallel operator. In
each case we have to establish that the failure set operations and divergence sct operations
corresponding to the syntactic constructions preserve the properties (N1)-(N5) and (D1)-
(D2). Only the proof for the synchronous parallel operator is non-trivial. A full proof may
be found in [23] or in the full version of this paper {5]. Continuity proofs are relatively
straightforward, along the lines of the proofs given in [4],[2], and [23]. &

Since all of our operators are continuous, we can justify our use of least fixed points
in defining the meaning of recursive definitions, and we know that these fixed points are
explicitly constructible, as was the case in the earlier model.

Exzamples.

1. The process defined by the recursion = (a — P) is dencted up.(a — p). This
process has:

I

Flup-(a — p)le =
Dlup-(a — p)le =

{(@"X)[n2>20&aggX}
0.

i

2. The recursive term up.p denotes the most nondeterminisiic precess |, which can
do anything ai all:
Flupple = £ X P(2),
Dipp.plle = L*.
Note that our notation implies that)
Mlup.p]p = CHAOS
Npp.plle= 1. |
This is an example in which the two semantics produce distinct results. 'We should be
careful to distinguish between the meanings of terms in the two models. However, we can
show that the old semantics and the new esseatially coincide excspt in their treatment
of divergence. This is stated precisely as follows. First we need to define an appropriate
notion of matching between the environments used in the M semantics and those used in
the N semantics. b T

Definition. The operation @ : M -+ N induces a function ® : 2 — Env by:
(@o)[p] = (2(plr]). 8).
The environments p and ®p can be said to match.
LEMMA 1. If P 1s a TCSP term, then for all p,

NIPI(®p) Tw ®(M[P]p).
15

THEOREM 2. If P ts a TCSP term and p an environment such that D[P]|(®p) = 0, then

N[P](2p) = S(M[P]p).

Many algebraic properties of processes and these operators can be proved. The
identities listed in Table 1 for the failures model are also true in this model (with =,
replaced by =), except that

P|| STOP =:y STOP

is valid only if P 5 _|, as we regard divergence as catastrophic. It is important tc
remember, then, that not all equivalences remain true in the passage from the failures
model to the extended model, because of the superior treatment of divergence in the new
model. Additional identities for the new semantics include the following.

POl=~ L
Pl l=n |
Pl L=y L
1;,@ =N |
d\e =n L
TABLT 2

The fixed point theorem also holds in the new model. We have the identity

pp.P =n [(up-P)\n]P.

Strictness.

It can be argued [4] that most of the operatois introduced so far ought: to be atrict, in
that they should preserve divergence. The identities listed in Table 2 reflect this property.
An exception is the prefixing operatioa (a —+ P), where divergence of P cannot manifest
itself until after the initial occurrence of a; a similar exception is the second argument of a
sequential composition, whose divergence cannot come into effect until the first component
- has terminated. Some further exceptions to strictness will be discussed in the next section,
where we define the semantics of some operations introduced in [2,4].

16

4, Turther operators.

It is possible to devise many uscful operations, notably some interesting forms of
parallel composition. In this section we revise the delinitions of a few interesting forms of
composition which were described in [3,4], bringing out certain inadequacies in the earlier
treatment of divergence and showing that a cleancr treatment is obtained with our new
definitions. By redefining the semantics of these operations in this way we achieve a better
match with operational intuitions.

1. Mized parallel composition.

We can define a parallel compositicn in which two processes operate with named
alphabets and are required to cooperate on events common to both of their alphabets, but
may progress independently on events belonging solely to their own alphabet. This mixed

parallel composition is less restrictive than the synchronous version and not as generous
" as the asynchronous form. It is closely related to the ‘gnoring operator of [3,4] and to the
mixed parallel composition of [2,23]. When P and @ are to run in parallel, with P using
alphahet A and @ using alphabet B, the resulting process is denoted:

[Palls @]

Its divergence sot and failuve scb, built up as usual from those of the consiituent processes,
are:

DiPalls@je = {wv | u € (AU B)* & cither ((ulA € D[P]le & ulB € traces(¥[Qf¢))
or (ulA € traces(F[[P[e) & ulB € D[Q]e)) }
FlPallp@fe = {{x,XUTUZ) |u€(AUB)", X CAY CBZCAUB,
(ulA, X) € #[P)e,wIB,Y) € 7[Qe } U {(u,X) | u € D[Paliz@]e}.

Here we introduce the notation ulA for the trace resulting from u after the removal of all
events outside of the set A. We also use C for the complement of a set C. According to
- this definition, the traces u of Pa||p @ are built up from events in A and B, and fltering
cut only those events which belong to A produces a trace ulA of P, while filtering out the
events in B produces a trace ullJ of Q. The compound process diverges after performing
the sequence u if either P can diverge after ulA or @ can diverge after /2. Events in A’
are refused if P refuses them, while @ chooses whethee or not to perform the events in B.
Events common to A and B can be refused by either process. Events cutside ot A and B
are always impossible,

It is easy to check, given the well-definedness of the synchronous parallel ceimposition
[5], that this construction produces a process when applied to processes, i.e. that conditions
(N1)-(N5) and (D1)-(D2) are preserved. The following associativity property can also be
proved; see [2] for details.

17

LEMMA 3. For all processes P,Q), R, and all sets of events A, B,C,

[Palluc (@8llc B]] =~ [[Palls Qlausllc R).

In view of this result, this notation generalizes to a parallel composition of more than
three processes. Given an indexed collection V' = {(F;,4;) |1 <7 < n} we will write

PAR(V) = ||Po, (£, As)

for the parallel composition. Using this notation the mixed parallel composition [Pa||p Q]
may be rendered (£, A) || (@, B). This type of composition can be useful in analysing the
deadlock behaviour of networks of parallel processes, as shown in [6].

Another interesting identity concerus the result of hiding an event which is involved
in a parallel composition. This identity did not in general hold in the cld model, in some
cases where hiding the ~vent introduces divergence.

LEMMA 4. Let A, B te subsets of 2, let ¢ & B, and let C = AU {c}. Then for all
processes P,Q),
[Fel

59 =y [(P\ehlla@]

This result is important in analysing the effect of hidiag internal comununications in
networks of communicaling processes. It enables us to move hiding operators (in some
cases) inside o parallel composition. This result is used in [8] to prove scrae useful results
on deadlock analysis.

If we wish to run P aad @ in parallel using alphabets A and B, we use the composition
[Pa|iB @] as above; events in the intersection A N B are synchronized and correspond to
communications between the two processes. These internal events may be concealed from
the environment by applying the hiding operation. Provided this intersection is fnite, we
can define the process in which these internal connnunications are hidden as:

[Pa

leQINANB).

This makes sense because hiding is associative. It is convenient to introduce a notation
for this composition: we will denote it [P o & g@Q]. Now if we wish to extend this to a
network of several processes we muy do so. The key associativity property is as follows.

Provided ANBNC =0, and provided each of ANB, BNC, and UM A is finite, we have:

([Pat BQluup)® cR] =n [Pae [su;;-') @B & ¢ R

This follows from Lemmas 3 and 4.

18

2. Chaining.

In [3,4] we also defined a form of “chaining”, a parallel composition P 3> @ in which all
outputs of P are fed into @ as inputs and hidden from their common environment. Assume
that all events are communications between processes along named channels. An event
consists of two parts m.t, where m is a channel name and ¢ a value. Normally, the channel
name “in” is associated with input, and “out” with output. We use the abbreviations

(?z:T — P(z)) for Ceer (int — F(¢)),
"t for (out.t —» SKIP).

It is convenient also to allow the abbreviated form ?t to stand for the correspeding event.
In order to cope with a form of channel naming, we also use the abbreviations:

(c?z:T — P(x)) for Ceer (c.in.t — P(¢)),
clt for (c.out.t — SKIP).

We also allow the abbreviated form ¢?t to stand fer the corresponding event. The construct
(e?z:T — P(z)) represents a process which initially inputs on channel ¢ a value for z from
the set T {a value of type T); similarly, ¢!t represents output of the value ¢ along the
channel. For example, a simple buffer of type T using inp.b channel 7 and output channel
out is: ;
By = pp.(in?x:T - outlz;).

The chaining operation can be defined by combining a renaming with the mixed parallel
operation and hiding. First we rename the output events of P and the input evenis of @
so that they become identica! events; then we run the renamed versions of P and @ in
parallel, using the renamed alphabets. This forces P to synchronize its outputs with the
inputs of Q. Finally we hide all events common to these alphabets, which are precisely
the internal communications between the two processes. Let o be a label distinct from #n
and out. Let swap(a, #) be the alphabet transformation delined:

z if z T UB.T
8.t fz=at (tel)
= at ifz=4»gt (el

I

swap(a, §)(z)

I

Then if we put A=in.T'U .7 and B = out.T U a.T, we can define
(P> Q) = [swap(out,a)(P) 4 & g swop(in, a)(Q)].

As an example of the use of the chainihg operation, the result of chaining two simple
buffers By together is again a buffer process, B; > By, capable of holding at most two
values. Several interesting properties of buffer processes Luilt from the chaining cperation
were discussed in [4]. Most of these carry over without problems to the new model. In
particular, we have the identities (B, >> B;n) = Bpim for all n,m > 0.

i9

Interestingly, the version of the chaining operation defined in the failures model can
fail to be associative: it is not always true that P > (@ > R) and (P > Q) > R denote
the same failure set. This property can fail to hold when divergence can arise between two
of the processes, so that either (P 3> @) or (@ >> R) diverges. Recall that in the failures
model divergence is represented by CHAOS; it is not generally true that

CHAOS >» @ =u P > CHAOS =), CHAGS.

Again, the use of CHAOS to represent divergence is unsatisfactory. In the new model the
chaining operation ic associative. The identities

(L>Q) =y (P>)=~ L

are true for all P and @.

LEMMA 5. For all processes P,Q, R,

P>»(@Q>R) =y (P>»Q)>R.

8. Master-slave operation.

In [3,4] we alio deflined a “master-slave” construction [P || ra:¢], in which the master

2 refers to its slave @ by the nswe m. The commnnicatious between master and

process 7
slave are hidden in this conztruction. The definition here is similar to the previous version,
except that we do not make the construction strict in the “slave” arguinent. The reason
for this is that we de not want a master-slave pair to diverge unless either the master is
diverging or the slave has been asked to perform some action and is diverging. In other
words, the master’s activity will only be affected by a divergence of the slave if the master
is actually waiting for a response from the slave. Let C = T U in.7 U out.T and let m
be chosen to be distinct from in and out. We define first, for traces u, v a compatibility
condition:
compaty, (¢,v) & v € C* & ul(m.C) = m.swap{in, out)(v).

If u is a trace of the master process, then ul(m.C) is the sequence of events iuvolving the
slave named m. If we interchange the roies of input and output in this sequence we should
get a trace of the slave process; this is the essence of the compatibility cendition. TFor
two compatible traces v and v, define {u || m:v] to be the trace u{(E — m.C). This is the
sequence of events performed by the master process which do not involve the silave. Then
we can define the mastec-slave operation on processes as follows:

DIP || m:Qfle = {[u || m:w]w | compat,, (u,v) & u € D[PJle & v € traces(F[Q]le) }
U {[u || mw]w | compat,,(u,v) & u € traces(¥[Plle) & v € D[Qle & v ()}
U{sw]|3I®°u,v).ué€ tr_a.ces(?'[[P]]e) & v € traces(7[[Q]e) & compat,,(u,v) &

8= [u || mw] }.

T'or the failure set we define:

FIP || m:Qe = {(5,X)|s € P[P || m:QJe}
U{([ull mw], X) | (u,U) € F[Ple & (v, V) € 7[Q]e &
compat,,(u,v) & U Um.swap(in,out)(V NC) =X Um.C }.

Thus, the traces of the compound process are built from a master trace and a compatible
slave trace; and an event not involving the slave process can be refused if the master
process refuses it and there is no possibility of an internal action. On the other hand, an
event involving the slave process may be refused if either the slave or the master refuses
it.

The version of master-slave operation used in the old failures model had some slight
problems, in particular in its behaviour in recursive definitions. For example, in the failures
model we have the identity

pp.[(?z — m!z) || mp] =m (?z — STOP),

although intuitively we can see that there is a possibility of divergence after the first input.
In the new model, with the above definition, we do indced get

pp. [Pz — mlz) [l mip] =n (Pz— 1)

Another problem was that in the failnires model, the order in whicl a master process binds
his slaves could make a difference in the behaviour of the system. In other words, the
following identity does not always hold in the failures model:

[P | m:@) | n:R] =ac [P | mB) | mi@) (n 5% m).

Again this deficiency appears when divergence can occur between the master and one of the
slaves. In the new model the order in which a master process binds his slaves is irrelevant,
and we do have

[| m:@] || n:fe] = [iP]| eR]]| m:@] (5% m).

5. Conclusionu.

The revised model of processes described here enjoys the mathematical properties
of a complete seini-lattice under the componentwise ovdering [introduced earlier.
All of the techniques used in [4] to specify and prove properties of processes may be
adapted with ease to this setting. In particular, it is possible to use the notions of
constructivity and non-destructivity in the analysis of recursively defined processes. Thus,
with minor modifications to fit with the revised delinitions of some of the operators, the

21

examples described in [4] and the proofs of their properties described in that paper can be
reformulated in the revised setting.

The failures model of communicating processes was introduced in [3,4]. This model
was itself an extension of IHoare’s carlier traces model of processes [13], which was incapable
of supporting any reasonable treatment of deadlock properties since it is impossible to
represent the ability to refuse to perform an action in a model based solely on sequences
of possible actions. Our motives in designing the failures model were therefore driven by a
desire to model deadlock satisfactorily. Several other authors have also discovered models
which can be related to failures. Milner’s CCS [18] iz founded on a rather different (more
discriminating) notion of observation equivalence, and his synchronization trees provide
an alternative framework in which our results can be formulated [2]. Qur development
of the failures model has clearly been strongly influenced by the work of Milner and his
colleagues.

As we observed earlier, a model based on failures alone is inadequate for reasoning
about the phenomenon of divergence. Problems related to this fact have been pointed
out by [23], [12]. This led to the inclusion in [2] and [23] of an explicit and distinguished
representation of divergence in the semuantics of processes, producing medals isumecphic
to the one used in this paper. In a similar vein, Hennessy and de Nicola have construched
several models based on synchronization trees angmented by scceptance sels, and they
have introduced the notion of representation trees [11,12,16,3¢]L [lonnessy fas pointed out
in [11] that the model known as RT2 is closely related to a submodel »f ours based on
extra assumptions on finite branching, although there are subtle differences between the
treatments of internal actions in their model and ours. In fact, this submodel with finite
branching can be thought of as containing all of the denoiable elements of our model.
Similar observations were made by de Nicola in [19,20], where he suggested an adjustment
to the failures model to handle divergence in a more subtle way than was done in that
model: this was the Bounded Refusal Sets model, and again this model can be seen as
an alternative presentation of a subinodel of ours. The full model N, as it stands, does
allow a (pessimistic) treatment of unbeunded nondeterminism, in the sense that many
unboundedly nondeterministic processes can be represented in this inodel but any process
will be identified with its closure. '

If one focusses solely on the finitely branching submodel of curs, it is largely a matter
of taste as to which presentation one prefers, as any theorem provable in one formula-
tion of the model will be adaptable to the alternative settings. This is an observation
due to Matthew Hennessy. He has proved in [11] some general results on the congruence
of denotational and operational semantics aud these can be adapted to our setting to
demonstrate that our semantics is indeed in accordance with operational intuitions. It is
possible to define an operational semantics for our language based on Milner’s synchroniza-
tion trees, extending the definitions of [2,23] and following the lincs of the presentations in

22

[11,12,20,23]. Essentially the idea is that a term denotes a synchronization tree whose arcs
are labelled by events or by a speccial symbol 7 denoting an internal event. Recursively
defined terms will in general denote infinite trees, and divergence corresponds to the
presence of an infinite path of 7 arcs. Each syntactic construct of our language then
corresponds to an operation on synchronization trees. There is a natural notion of im-
plementability of operations on these trees, and all of the CSI> operations turn out to be
implementable. Moreover, the denotational semantics of this paper can be shown to agree
with the operational semantics, a property that failed for the earlier model because of its
inadeyuate treatment of divergence.

Kennaway [15,16] described a model for processes from which failures can be derived
[2], but in which the underlying partial ordering is different because of his decision to regard
deadlock as disastrous. The notion of implementation sets, given in [2,4], is closely related
to Kennaway’s idea of a nondeterministic process as a set of deterministic processes. We
defined a notion of implementation for the failures model of CSP. A decterministic process
() is said to implement a precess P if P C j; @. For divergence—frce processes in the new
model the same ideas can be adapted. A divergence—free process can be identified with its
set of deterministic implementations,

In the absence of divergence, the CSP operations on processes arc fully determined by
their effect cn deterministic processes. Thus, if o is a binary CSP aperation (such as
b H u \ ¥

and if P, O are divergence-free processes, we have

FlPoRle = U{ FIP o Qe | P’ € imp(P), &' € imp(Q) }
D[PoQR]e = U{ D[P’ o Q'lle | P’ € imp(P), ' & irup(3)}.

Similar results hold for unary CSP operations. As stated here, these definitions and results
apply only to divergence-free processes. It is possible to extend these results to cover
all processes, by redefining the notion of an implementation to include only “minimal”
- divergent processes. We will not discuss this issue here.

Darondeatu [8] gave 2n “enlarzed definition of observatioii congruence” for finite processes
which essentially coincides with the failure equivalence [2] induced by focussing on failures;
Darondeau’s paper only considered finite terms. In [25] a model including acceptance sets
in addition to refusal sets was discussed, although this seems not to possess such elegant
mathematical properties as the failures model and appears as a result to be less well suited
to analysis of deadlock. Olderog [21] introduced a model involving “readiness sets”, which
are analogous to acceptance sets; again there are comnections with failure sets, since a
readiness set can be regarded as the dual of a refusal set. The readiness model is based
on a slightly different notion of equivalence than the one induced by failures. Broy intro-
duces in (7] a somewhat complicated model in which rather more distinctions between

23

processes are possible; in particular, he chooses not to regard the possibility of divergence
as necessarily catastrophic (so that, for instance, P[] | 7 | in general in his model). His
fixed point theory and operator delinitions are made more complicated by this and by the
intricate structure of his model.

There ate several directions in which we want to develop our techniques and results.
In the full version of this paper, proofs are given of some of the most interesting theorems.
In [6] we discuss some useful results pertaining to the analysis of deadlock behaviour in
networks of communicating processes. [t is possible to adapt our semantics to imperative
communicating processes such as Hoare’s original CSP, in which processes have disjoint
local states and can perform assienments Lo update their own state. An example in this vein
is provided by Roscoe’s semantics for occam [24], which arises from a failure set semantics
by adjoining local states and building a “hybrid” semantic model. We plan to adopt similar
techniques for CSP in a future paper. This should lead to a semantic model closely related
to the linear history model developed by Pnueli, Lehmann and Francez [9], which uses
ezpectation sets rather than refusal sets and is based on a different notion of equivalence.
Connections with earlier models such as the one described in [10] should also become
apparent. We also belicve that thic should lead us to a szrmantics supporting a partial
correctness analysis which takes deadlock fully and explicitly into account, unlike many
existing CSP seraantics which have served as the basis for paitial cotrectness reasoniag.
We hope to be sbls to make soms connections with exiating proof systems [or CSP, such
as these deseribed in [1,17], and with Plotkin’s structural eperational semantics for CSP

22].

Acknowledgements.

The authors would like tc thank C. A. R. Hoare for his many helpful suggestions and
discussions, and for his encouragement and guidance during the develcpment of this work.
We have been strongly influenced by the work of Robin Milner, Matthew Hennessy and
Rocco de Nicola. Discussions with them and with Bill Rourds and Ernst-Rudiger Olderog
have been very useful. '

6. RReferences,

[1] Apt, K. R, Francez, N., and de Roever, W. P., A Proof System for Communicating
Sequential Processes, ACM TOPLAS, Vol. 2 No. 3, July 1980.

[2] Brookes, S. D., A Model for Communicating Sequential Precesses, Ph. D. thesis,
Oxford University (1983). Available as CMU Technical Report CMU-CS-83-149 and PRG
Monograph.

24

[3] Brookes, S. D., Hoare, C. A. R., and Roscoe, A. W., A Theory of Communicating
Sequential Processes, Oxford University Computing Laboratory, Programming Research

Group, Technical Report PRG-16.

[4] Brookes, S. D., Hoare, C. A. R., and Roscoe, A. W., A Theery of Communicating
Sequential Processes, JACM July 1984.

[5] Brookes, S. D., and Roscoe, A. W., An Improved failures Model for Communicating
Processes (full version of this paper), to appeazr, CMU Technical Report.

[6] Brookes, S. D., and Roscoe, A. W., Deadlock Analysis in Networks of Processes,
to appear in Procecdings of the NATO Advanced Seminar on Concurrency, La Colle-Sur-
Loup, Springer Verlag LNCS (1985).

[7] Broy, M., Semantics of Communicating Processes, preprint, Institut fur Informatik,
Technische Universitat Munchen (1983).

[8] Darcndeau, Ph., An enlarged definition and complete axiomatization of observa-
tional congruence of finite processes, Springer Verlag LNCS vol. 137, pp. 47-62 (1982).

* [9] Francez, N., Lehmann, D, and Pnueli, A., A Lincar Hisbory Seinantics for Communicating
Processes, Theorctical Computer Science 32 (1984) 25-48.

10] Francez, N., Hoare, C. A. R., Lehiann, D., and de Roever, W. P., Scmaniics of
H H b] H] H H
nondeterminism, concurrency and communication, JCSS vol. 19 no. 3 (1979).

[11] Hennessy, M., Synchronous and Asynchronous Experiments on Processcs, Information

and Control, Vol. 59, Nes 1-3, pp. 36-83 (1983).

[12] Hennessy, M., and de Nicola, R., Testing equivalences for processes, Proc. ICALP
1983, Springer LINCS 154 (1983).

[13] Hoare, C. A. R., A Model for Communicating Sequecatial Processes, Oxford
University Computing Laboratory, Programming Research Croup, Technical Report PRG-
22. '

[14] Hoare, C. A. R., Communicating Sequential Processes, CACM 1978.

[15] Kennaway, J., Formal semantics of nondeterrinism and parallelism, D. Phil thesis,
Oxford University (1981).

[16] Kennaway, J., A theory of nondetcrﬁlinism, Springer LNCS vol. 85, pp 338-350
(1980).

