Electronic Notes in Theoretical Computer Science 20 (2008)
URL: http://www.elsevier.nl/locate/entcs/volume20.html 17 pages

Idealized CSP: Combining procedures
with communicating processes

Stephen Brookes!
School of Computer Science
Carnegie Mellon University

Pittsburgh
USA

E.N.T.C.S.

Elsevier Science B. V.

Abstract

Idealized CSP is a programming language combining simply typed, call-by-name
procedures with asynchronous communicating processes. The language also gener-
alizes Reynolds’ Idealized Algol by adding typed channels and the ability to spawn
parallel processes. Procedures permit the encapsulation of common communication
protocols and parallel programming idioms. Local variables and local channel dec-
larations provide a way to delimit the scope of interference between parallel agents.
The combination of procedures and communicating parallelism raises significant
semantic problems. We show—perhaps surprisingly, given the fundamental differ-
ences in underlying process model—that ideas used to model the combination of
shared-variable parallelism and procedures can be adapted to the communication-
based setting. This is further evidence in favor of the orthogonality of procedures
and concurrency, and also shows that the shared-variable and communication-based
paradigms have a lot in common, semantically. Our semantics introduces a gen-
eralization of “transition traces” and “possible worlds”, incorporating an “object-
oriented” treatment of channels. The semantics supports reasoning about safety
and liveness properties of processes at the same time as validating natural laws of
functional programming.

1 This work was partially supported by the Office of Naval Research, under grant number
N00014-93-1-0750, and by the National Science Foundation, under grant number CCR-
9412980.

(©2008 Published by Elsevier Science B. V.

BROOKES

1 Introduction

We introduce a programming language combining a simply typed, call-by-
name procedure mechanism with a generalized version of CSP[8], in which
parallel processes communicate by message-passing. Our generalization of
Hoare’s language follows familiar lines: we allow nested parallelism, while in
the original language each parallel component was required to be sequential;
and we use named channels, as in occam, rather than process names, since
this yields a more flexible communication mechanism. The inclusion of nested
parallelism makes the language more uniform and causes no extra difficulties
from a semantic point of view. We also allow recursive process definitions, so
that processes may be created dynamically. In contrast to the original CSP, in
which communication was assumed to be implemented by synchronized hand-
shake, we assume an asynchronous model for communication: output is non-
blocking, but an input request blocks until data is available. The synchronous
style of communication can, nevertheless, be simulated in the asynchronous
setting. To acknowledge the language’s intellectual debts to Idealized Algol
and CSP we call it Idealized CSP.

The combination of procedures and parallelism yields a language in which
CSP-like process definitions can be encapsulated and manipulated by means of
procedure declarations and calls. Procedures permit encapsulation of common
communication protocols, such as the alternating-bit protocol. Local variables
and local channels provide a way to delimit the scope of interference between
parallel agents. For example, the following procedures, written in a syntacti-
cally sugared notation, encapsulate a common way to build (integer-carrying)
buffers in CSP:

procedure buff1(in, out) =

newvar[int| z in while true do (in?z; out!r);

procedure buff(in, out) =
newchan[int] mid in buff1(in, mid) || buff1(mid, out);

In any call to buff, locality of the channel mid guarantees that the actual
parameters of the call are distinct from mid. The correct behavior of this
procedure depends crucially on the inability of the two calls to buffI to interact
except via the local channel. Intuitively, provided in and out denote distinct
channels, buff1(in,out) behaves like a one-place buffer and buff(in,out) behaves
like an unbounded buffer.

Combining procedures and communicating processes raises significant se-
mantic problems. Indeed, most existing semantic models for CSP-like lan-
guages do not incorporate procedures, and most existing semantic models for
procedures seem unsuitable for a process language like CSP. This paper shows
that, despite the fundamental differences in the underlying model of compu-

2

BROOKES

tation, the ideas behind our earlier work on shared-variable parallelism can be
adapted to the setting of communicating processes. In [3] we used “transition
traces” to build a simple fully abstract model for a shared-variable parallel
language. In [4] we showed how to incorporate a procedure mechanism based
on the simply typed call-by-name A-calculus, obtaining an idealized language
called Parallel Algol. Our semantics for Parallel Algol combined transition
traces with “possible worlds”[13,15,12] in a “modular” style, bringing out the
orthogonality of procedures and shared-variable concurrency. We will show
that with suitable generalization and adjustment, we can obtain a semantics
for Idealized CSP by similar means. In one sense, this is perhaps not so surpris-
ing: it also seems intuitive that procedures and communication-based concur-
rency should be orthogonal. The surprise is that transition traces, which seem
to be tailored for the shared-variable paradigm, and possible worlds, which
appear best suited for modelling imperative programming, can be adapted to
deal with communication-based programs. This also points out the fundamen-
tal role of transition traces as a common semantic basis for the shared-variable
and communication-based paradigms.

2 Syntax

The type structure of our language is standard, essentially as in [15] but with
the addition of typed channels. We use 7 to range over data types and 6 to
range over phrase types, as specified by the following abstract grammar:

0 = exp|r| | var[r] | chan[r] | comm | (§ —6) | 0 x¢
7 = int | bool

Data types represent sets of storable and communicable values.

Let ¢ range over the set of identifiers. A type environment 7 is a partial
function from identifiers to types. Let (m,¢ : 0) be the type environment that
agrees with m except that it maps ¢ to 6.

A type judgement of form m = P : 0 is interpreted as saying that phrase
P has type 6 in type environment 7w. The collection of wvalid judgements is
characterized as usual by a set of syntax-directed inference rules; Figure 1
gives a representative sample. The language contains the usual arithmetic and
boolean operations, together with the usual CSP-style constructs (including
input-output guarded commands, parallel and sequential composition) and
the simply typed A-calculus.

3 Semantics

The combination of procedures and communicating parallelism raises signifi-
cant problems: we need a semantics which clearly brings out the potential for
communication and interference between parallel commands while still sup-
porting naive methods of reasoning based on the laws of the A-calculus (such

3

BROOKES

7w F skip : comm

7k X :var[r] 7k E:exp|7]

7k X:=F : comm

7, ¢ var[t] - P : comm

7w F newvar(r] ¢ in P : comm

7k h:chan[r] 7k E:expl7]
7 hlE : comm

7wk h:chan[r] 7F X :var[r]
7 h?X : comm

Tk P :comm 7k P :comm

7w P||P;: comm

7, ¢ : chan[r| F P : comm

7 F newchan|7r] ¢ in P : comm

m when 7T(L) = 0

T 0 P:0
mhHrect:0.P:0
0P
TEX:0.P :(0—0)

TEP:0—60 wFQ:6
TFPQ) 0

Fig. 1. Some rules for type judgements

as the (-law, or fixed-point properties of recursive procedures). Our approach
generalizes transition traces[3] and possible worlds[15,13] to deal with chan-
nels and communication. We summarize briefly some of the key background
concepts.

3.1 Transition traces

A “transition trace” is a finite or infinite sequence of pairs of states,

(50, 80) (51, 87) « - - (Sny Shy) - - -

representing a generalized computation of a command during which the state
is changed as indicated: steps from s; to s, being caused by the command,
changes from s to s;;; being made by the command’s environment. This kind
of structure is very natural for modelling shared-variable parallelism, since

4

BROOKES

interference is captured precisely by state changes “across step boundaries”.
Transition traces have been used to give denotational semantics to a simple
shared-variable language, originally by Park[14], and more recently in [3] to
achieve full abstraction, by imposing certain closure conditions on trace sets.
In particular, a trace set T is said to be closed under stuttering if every trace
obtained from a trace in T by inserting steps of the form (s, s) also belongs
to T'; and T is closed under mumbling if every trace obtained from a trace in
T by replacing adjacent steps of the form (s, s')(s', s”) by (s,s”) is also in T.
The closure conditions are designed to ensure that each step (s, s’) in a trace
represents a finite (possibly empty) sequence of atomic actions. When 7' is a
trace set we write 7" for its closure, the smallest closed set containing T as a
subset.

3.2 Possible worlds

The main idea behind the extension to include procedures|4] is the realization
that possible-worlds semantics[15,13] and the more refined relationally para-
metric model of [12], used earlier to interpret a sequential Algol-like language,
can be adapted to the shared-variable setting.

Instead of assuming a global set S of states, we work with a category
whose objects, or possible worlds, represent states with a given store shape,
and whose morphisms correspond to the introduction of local variables, or
more abstractly to “expansions” of store shape. The trace semantics may
then be parameterized in terms of the underlying world: each type denotes
a functor from worlds into domains, and each well-typed phrase denotes a
natural transformation from an environment functor to the corresponding re-
sult type functor. Because of the nature of morphisms in the worlds category,
naturality imposes certain “locality” constraints, intuitively of the form that
a “global” entity cannot interfere with a “local” entity. The functor category,
whose objects are functors from worlds to domains, with natural transfor-
mations as morphisms, is cartesian closed; this provides a canonical way to
interpret the A-calculus.

3.3 Incorporating communications into state

In traditional accounts of the semantics of communicating processes channel
names (or process names, or some similar kind of communication label) play
a prominent role. For instance [5] uses “communication traces” of the form
(s,p,s"), where s and s’ are states and p is a sequence of labels of the form h?n,
h!n or e (indicating an “internal” action such as assignment). Yet from an
abstract point of view the reliance on channel names seems awkward. By anal-
ogy, in traditional storage-based models of sequential imperative programming
languages locations play a prominent role; yet the precise nature of locations is
irrelevant, and details concerning storage management may invalidate certain
natural laws of program equivalence. We therefore seek a semantics in which

bt

BROOKES

channel names are handled more implicitly than in traditional trace semantics.

The location problem is avoided in the possible worlds setting, because
locations are only dealt with implicitly: in essence, a location corresponds to
a component in the structure of a world. For instance, the world V;,; X Vioo
consists of states with two “locations”, one capable of holding an integer and
one of holding a truth value. The world Voo X Vipe is isomorphic to the
above world, and therefore essentially indistinguishable. In seeking a name-
free account of channels we will adopt a similar approach.

Each channel potentially carries a sequence of data values. Over the course
of an entire computation an individual channel may participate in an infinite
sequence of communications, but at each stage only finitely many actions have
occurred. It follows that we can regard the state as a collection of components
representing (ordinary) variables, together with a collection of components
representing channels, each holding a finite sequence of data values. For in-
stance, the world Vj,; X Vioo X Vi, represents states with one integer variable,
one boolean variable, and one integer channel. In a particular state the se-
quence of values in the channel component represents the values that have
been output to the channel and not yet taken off by an inputting process. By
embedding channel histories into states in this way, we pave the way for an
adaptation of the transition traces approach to the setting of communicating
processes. In outline, the meaning of a process at world W is a set of finite or
infinite sequences of pairs of states:

[comm]W = o (W x W)>),

exactly as in our earlier semantics of shared-variable programs. Again as in the
earlier model, we work with trace sets closed under stuttering and mumbling,
so that each step in a trace represents a finite sequence of atomic actions.
Now, however, since channels form part of the state, we can account properly
for message-passing between processes. A trace of the form indicated above
now represents a possible computation of a process assuming certain patterns
of communication with its environment (modelled as “state changes between
steps”). Assuming a fair scheduler, the behavior of a system of processes
can be built by fairly interleaving traces of the individual processes, using a
suitable form of interleaving that permits synchronization of matching input
and output.

3.4 An object-oriented interpretation of channels

A key ingredient in the possible worlds semantics of sequential Algol is an
“object-oriented” view of variables, originally proposed by Reynolds [15]: a
variable of data type 7 can be represented as a pair consisting of an acceptor,
which when supplied with a value of type 7 yields a command value whose
effect describes how to “update” the variable, and an expression value giving
the “current” value of the variable. A key innovation in our new set-up is the
realization that channels may also be given an “object-oriented” semantics.

6

BROOKES

A channel (of data type 7) has two capabilities: one can output a value
of type 7 to it, which will have the effect of enqueueing this value; and one
can input from the channel, which (when the channel sequence is non-empty)
yields a value of the appropriate type obtained by dequeueing. Both the de-
queueing and enqueueing operations can be modelled abstractly as command
values, since — with this incorporation of channels into the state — they cause
a state change. This suggests the following semantics for channel types?:

[chan|7]]W = (V; — [comm]WV) x ([exp[7]]W x [comm]IV)
In this paper we give a treatment of channels in which output is regarded as

asynchronous (non-blocking) but an attempt to input from an empty channel
will block. Alternatives are discussed briefly at the end of the paper.

3.5 FExamples

Because of space limitations, we omit the semantic details in favor of some
simple examples which illustrate the main ideas.

Suppose we have declared an integer variable x and an integer channel h,
corresponding to a world of form W = V,,,; x V*,. Let u be an environment
consistent with this set-up, so that x is bound to a variable corresponding to
the first component of the state, and A is bound to a channel value whose
input and output capabilities involve the second component of the state. We
will write n.p and p.n to indicate concatenation at either end of a finite list,
and we write € for the empty sequence.

The command h?x at world W and in environment u has traces of the
form

((v,n.p), (n, p))
The command h!(z + 1) has traces of the form

((n,p), (n, p.(n+1))),
and the command h?z||h!(z + 1) has traces including the following forms:

for v,n e Vi, pe V:

wnt*

* ((vo,n0-p0), (0, po)){(v1, p1), (v1, p1.(n1 + 1))), representing input followed
by output, possibly after a state change from the environment;

* ((vo, po), (vo, po-(vo + 1))){((v1,n1.p1), (n1, p1)), representing output followed
by input, again possibly after action by the environment;

e ((v,€), (v+1,€)), representing a synchronized input-output, which behaves
like a “distributed assignment”. This trace actually arises by mumbling
together an output ((v,€), (v,v+ 1)) and an input ((v,v + 1), (v + 1,¢€)).

Traces in which a state change occurs across a step boundary, such as the
first two cases above, reflect the potential for interaction with another process
executing concurrently.

2 An alternative formulation, ostensibly simpler but conveying the same semantic infor-
mation, is possible if we allow expressions with side-effects. In this case we could take
[chan[7]]W = (V; — [comm]W) x [exp[r]]W.

7

BROOKES

The above discussion did not cover the case when a process wants to per-
form input but the intended channel is empty. It seems reasonable to model
this situation as a form of busy waiting, since such a process will keep waiting
for an output to the channel by another process; while waiting, the process
never changes the state, and the waiting continues provided the channel stays
empty. In trace-theoretic terms this amounts to a form of infinite stuttering.
Thus, revisiting the above example, the traces of h7x also include infinite
stuttering traces of the form

<(UU> 6)’ (1}0, 6)><(Ula 6)7 (Ub 6)> s <(Un7 6)7 (Um €)> s

This is, of course, consistent with our view of output as non-blocking, input
as blocking when the intended channel is empty.

3.6 Semantic issues

The discussion above indicates how to model input, output, and parallel com-
position. As usual, sequential composition is modelled by concatenation of
traces. Assignment, conditional and while-loops may be handled in the stan-
dard way too, as in our earlier treatment of shared-variable parallelism. Re-
cursion and while-loops are interpreted via greatest fized points[16] in order to
deal appropriately with both finite and infinite traces.

As in CSP our language includes a form of “external” choice; however,
because of our assumption that output is non-blocking, it seems most natural
to permit the use of external choice only when the guards involve input. It is
then straightforward to model a combination such as

(a?x — P)O(b7x — By),

which can either input on a and behave like P;, or input on b and behave like
P,, or busy-wait while a and b are both empty. In contrast an “internal” choice

can busy-wait if either a or b is empty.

Local channel declarations can be handled rather simply using an exten-
sion of the idea used in our shared-variable model to deal with local variables.
The traces of newchan|r] h in P at world W and environment u are obtained
from traces of P in world W x V* and suitably adjusted environment u’, by
projecting onto the W-components in each step, assuming that initially the
V¥-component is € and that this component never changes across step bound-
aries. In other words, only the locally interference-free traces of P contribute
in this construction, where we say that a trace is locally interference-free if it
has the form

<(’LU0, E)a (w(/b p1)><(wl> pl)a (w/h p2)> cee <(wna Pn), (w:w pn+1)> st

(either finite or infinite). When applied to the example discussed above, this
shows that

newchan[7| h in (hle||h?z)

8

BROOKES

has the same traces (modulo stuttering and mumbling) as the assignment
xr:=e, as expected. Moreover, in this interpretation we also have

newchan|7r] h in (hl0; P) = P
if h does not occur free in P. Note also that
newchan|7]| h in (h?z; P)

has only infinite stuttering traces, because of the unrequited request for input.
Again, notice how these laws reflect our assumptions that an attempt to input
from an empty channel is blocked but output is asynchronous.

3.7 Category-theoretic issues

In Oles’ category a world is a countable set W, typically a product of the
form V} x -+ - x Vi, whose elements (states) specify values for the finitely many
variables currently in scope. A morphism from world W to world X is a pair
(f,Q) in which f : X — W is a function, @ is an equivalence relation on
X, and f puts each equivalence class in bijection with W. Intuitively, X is
a set of “large” states each extending a “small” state in W; f maps each
large state to the corresponding small state; and () identifies all pairs of large
states with identical “extra” structure. For each pair of objects W and V
there is a canonical “expansion” morphism from W to W x V of the form
(fst : W x V = V,Q), where (w,v)Q(w',v") <= v =1'. Every set-theoretic
isomorphism, such as swap : W xV — V x W, yields an isomorphism of worlds
when equipped with the obvious universal equivalence relation (so that there
is a single equivalence class). Oles showed that every morphism of worlds is
expressible as the composition of an isomorphism with an expansion.

In adapting the possible worlds approach to deal with channels we need
to generalize the nature of worlds and of morphisms. A typical world in the
above discussion had a structure, up to isomorphism, like

(Vi x oo x Vi) x (Hy x---x H))

where each V; and H; is the set of values for some data type 7. Expansion
morphisms still account for local variable declarations adequately, and it is
tempting to try to model a local channel declaration by means of an expansion
introducing an extra V* component to the state. However, we need to refine
the notion of morphism so that we only permit isomorphisms that respect the
queue structure of channel components. To show why this degree of care is
needed, consider the list-reversal function from V* to V. Even though this
is a set-theoretic isomorphism, it does not make sense computationally as a
morphism of worlds: it is not sensible to expect a command’s meaning to be
essentially unchanged if the contents of all channel queues are reversed. (For
example, consider an input command h?z.) The presence of such a morphism
of worlds would thus prevent us from interpreting input and output commands
as natural transformations, precluding the development of a functor category
semantics. Instead we must constrain our choice of morphisms so that the

9

BROOKES

only allowed isomorphisms between channels are those that respect the prefix
ordering on channel contents.

To generalize the Oles category in a satisfactory manner, building in enough
extra structure to permit an abstract treatment of channels, we therefore work
with worlds equipped with a partial order (based on the use of the prefix or-
dering on sequences). Without loss of generality we may restrict attention to
countable distributive posets W in which all elements are finite and dominate
only finitely many other elements. Posets formed as products of flat domains
and prefix-ordered sets of finite sequences have these properties, so that this
class of posets is general enough to include the worlds arising in our semantic
definitions. We take as morphisms from (W, <) to (X, <x) all pairs (f, Q)
in which f : X — W is monotone and induces an order-isomorphism with
W on each ()-class. This clearly generalizes the Oles category in a natural
way and does not permit morphisms that violate the queue discipline. Ev-
ery morphism can be expressed as the composition of an expansion with an
order-isomorphism.

Following the line of development in [13] we then show that, using our
category W of worlds and the category D of domains and continuous functions,

the functor category DW s cartesian closed. This then permits us to use the
cce structure to interpret the A-calculus fragment of our language. As usual,
each phrase type denotes a functor from worlds to domains, and each well-
typed phrase denotes a natural transformation from an environment functor
to a result functor. Naturality enforces certain locality properties, and as a
consequence the model validates laws of equivalence such as
newchan[r| h; in newchan|r] hy in P
= newchan|n| hy in newchan[r| h; in P,

expressing the property that the order of declaration of channels is irrelevant,
and

newchan[r| h in (P;||P,) = (newchan|r] h in P})||Ps,

provided A does not occur free in Ps.

4 Examples

4.1 Buffers

The semantics correctly handles the examples discussed earlier. Thus the one-
place buffer procedure buff1(left, right), when called at world V%, x V¥, in a

int mn
10

BROOKES

suitable environment, has the trace

((0,€), (e, €))
((1,€),(1,0))
((1,0), (¢, 0))
((2,0),(2,01))

representing input of 0, output of 0, input of 1, and so on. It also has a busy-
wait trace ((e,¢€), (¢,€))¥, representing its behavior when the input channel
is persistently empty. The unbounded buffer process buff{left, right) also has
these traces, but in addition has traces such as

((0,€), (€, €))
((1,€), (e €))
((2,€),(2,0))

showing the ability to input two items before outputting one. Note that
the unbounded buffer process cannot accept input forever without eventually
yielding an output; this liveness property is captured by the use of fairmerge.

4.2 Prime numbers

Another traditional example is the Sieve of Eratosthenes, involving a proce-
dure sieve of type expint x chan[int] — comm and a procedure filter of
type expl[int] X chan[int] x chan|int] — comm:

procedure filter(p, in, out) =
new|int] x in while true do (in?z; if z mod p # 0 then out!z);
procedure sieve(p,c) =
(c!p; newchan[int] & in filter(p, h,c) || sieve(p + 1, h));
If ¢ is an integer-carrying channel variable the call sieve(2,c) results in the
outputting of the prime numbers in ascending order on this channel. Note
that each recursive call to sieve introduces new parallel processes sharing a
local channel, and each call to filter makes use of a local variable to hold the

integer currently being tested for divisibility. Actually this implementation of
the sieve method is rather inefficient, creating a “filter” even for non-prime

11

BROOKES
numbers. Here is an alternative version in which this inefficiency is avoided:

procedure sift(in, out) =
newchan[int] / in
new/int] p in
begin
mn?p; outlp;
filter(p, in, h) || sift(h, out)
end
procedure nats(k, ¢) = (clk; nats(k + 1, ¢));
procedure primes(c) =

newchan[int] h in nats(2, h) || sift(h, c)

*

The phrase sieve(2,c), evaluated in world V*, with ¢ bound to the obvious

channel, has the trace
(€, 2)(2, 2.3)(2.3, 2.3.5) ...

as expected, corresponding to the ability to output the prime numbers in
ascending order. The alternative version primes(c) also has this trace.

4.3 Concurrent queues

The following examples illustrate two isomorphic implementations of a “con-
current object” that represents an integer queue equipped with methods for
enqueueing and dequeueing. Each implementation involves the use of a lo-
cal channel. The second implementation uses integer negation to “code” and
“decode” all transmitted items.
newchan(int] % in

procedure put(y) = hly;

procedure get(z) = new[int] x in (h?7z; z:=x);

begin

P(put, get)
end

12

BROOKES

newchan[int] / in
procedure put(y) = hl(—y);
procedure get(z) = new[int] z in (h?7z; z:=(—x));
begin
P(put, get)

end

These two phrases, in which P is a free identifier of type
(exp[int] — comm) x (var[int] — comm) — comm,

are semantically equivalent. This can be established by appealing to naturality
of [P] with respect to the obvious isomorphism built from idy x map(An.(—n))
on W x V»

wnt*

4.4 The Sleeping Barber

Next we give an example of a solution to one of the classic synchronization
problems from the literature, the so-called Sleeping Barber Problem [7,1].
Imagine a barber’s shop in which a solitary barber repeatedly cuts hair, one
customer at a time, and sleeps when not busy. If a customer enters the
premises and finds the barber sleeping he wakes the barber and takes his place
at the barber’s chair for a haircut, after which the barber gets paid and the
customer leaves; if another customer is waiting the barber continues operating,
otherwise he goes back to sleep. A customer arriving while the barber is busy
will wait. We can model this set-up in Idealized CSP as follows. Since the
local channels used here are intended purely for synchronization, we use a
slightly abbreviated form of syntax for input and output (writing enter? and
hello!, for example). The procedure visit represents the protocol followed by
a customer; the argument c represents what the customer intends to do while
having his hair cut. Similarly the procedure cut models the protocol used
by the barber, and its argument represents the task to be performed by the
barber during haircut:

newchan enter, leave, hello, bye

procedure visit(c) = (enter?; hellol; c; leave?; byel);
procedure cut(c) = (enter!; hello?; c; leave!; bye?)
in P(visit, cut)

13

BROOKES

For instance, if P is instantiated as
A(visit, cut).
(while true do cut(b)
|| while true do visit(cy)
| while true do wvisit(cy))
then the above phrase becomes semantically equivalent to

while true do (b || (co or 1)),

where ¢y or ¢y is a command that chooses, non-deterministically, to behave
either like ¢ or like ¢;.

Note that this program structure does not prevent individual starvation —
there are fair executions of this program in which ¢; never occurs, so that the
second customer never gets his hair cut. To avoid starvation one can modify
this example to make use of “tickets”, so that on entering the barber shop a
customer must take a numbered ticket, at the same time incrementing a local
counter to prevent multiple uses of the same ticket number. We then modify
the customer definition to include a wait until the assigned ticket is “next”.
One way to achieve this employs a “counter” maintained by the barber. We
leave the details to the reader.

4.5 A sorting network

Here is a well known way to construct a network of merge processes for sorting
a sequence of integers [1]. We suppose that the sequence to be sorted is
presented along a channel in, terminated by the special value E0S. When
n > 0 and in and out are distinct integer channels, sort(n,in, out) reads in
2" integers from channel in and outputs the corresponding sorted sequence on
out, followed by the EOS signal. First we specify the merge procedure, of type

chan[int| x chan[int] X chan[int] — comm,
as follows:
procedure merge(a,b,c) =
new|int] vy, vy in
(a?vy; b7vg;
while v; # E0S & v, # EOS do
if v; < vy then (clvy; a?vy) else (clvg; b7vy);
while v; # EOS do (clvy; a?vy);
while vy # EOS do (clug; b7vy);
c|E0S)
14

BROOKES

The sorting procedure, of type exp[int] x chan[int] x chan[int] — comm,
is then:

procedure sort(n, in, out) =
if n = 0 then newlint] v in (in?v; out!v; out!E0S) else
newchan|int] in;, in, in

sort(n — 1, in, iny) || sort(n — 1, in, ing) || merge(iny, ins, out)

Correctness of this procedure can be shown by induction on n.

5 Related and Future Work

The semantics outlined above is, when restricted to the CSP-like subset of the
programming language, close in spirit to the “communication traces” seman-
tics described in [5]. This earlier semantics was fully abstract with respect to
a simple notion of program behavior. It seems likely that, at least at ground
types, full abstraction can be achieved for Idealized CSP by imposing certain
reasonable closure conditions on trace sets, akin to the use of “stuttering”
and “mumbling”[3], and ensuring that the language includes a suitable form
of conditional atomic action.

Our semantics treats channels in a more implicit manner than earlier trace-
based approaches such as [5]. Indeed, these earlier semantics assume that a
network of processes behaves as if it really executes in a step-by-step manner
according to some interleaving of atomic actions, since a trace typically repre-
sents an interleaving of the histories of all channels. However, when modelling
a network of processes it seems natural to want to reason about the histories
of separate channels as separate entities, rather than reasoning about a single
combined history. A transition trace does not blend the histories on separate
channels into a single sequence, and the internal sequencing of a trace can
accurately reflect information about the relative order of activity on different
channels during computation. Thus our semantics is closer in spirit to “true
concurrency’ than traditional trace models.

Our treatment of deadlock was rather straightforward, but might be crit-
icized on the grounds that we equate deadlock with busy-waiting. Neverthe-
less such a busy-wait interpretation is consistent with an operational notion
of behavior in which we are allowed to observe the state periodically during
execution, as well as to observe (successful) termination. A process waiting
for input would then be indistinguishable from one executing a busy loop. It
would be interesting to see if the “fair failures” semantics[6,10] of CSP can
also be adapted to the procedural setting.

Our framework appears to be robust enough to handle a variety of paradigms
of communicating process, ranging from synchronized communication (as in

15

BROOKES

CSP) to asynchronous communication using unbounded buffers (as shown
here); with suitable adjustments, it should even be possible to model asyn-
chronous communication with bounded buffers. In this paper we have allowed
processes to share state. Our framework can also handle the case where pro-
cesses are required to have disjoint states, as in the original CSP. The main
difference is that when states of parallel processes can be assumed disjoint it
makes sense to combine states in a tensor-like manner when forming a parallel
composition, rather than assuming that the component processes share the
same state. It is also worth noting that our rather abstract object-oriented
view of channels is general enough to model a wide variety of communication
mechanisms, such as “lossy” channels which may lose or duplicate data. This
suggests again that the ideas presented here may prove to be more widely
applicable.

The trace semantics given here for Idealized CSP may also be recast into
a parametric setting, taking account of relations between worlds[12]. This
permits an elegant generalization of the principle of representation indepen-
dence, familiar from the use of abstract datatypes and modules in sequential
programming, to the CSP-like setting. Recent work of Lazic and Roscoe[11]
has shown that relational parametricity can be used to tame the combina-
torial explosion inherent in applying model-checking techniques to networks
of communicating processes. Their use of parametricity seems fundamentally
different from our use of possible worlds and relations between worlds; we
plan to investigate the connections between their approach and ours. A re-
lated issue is polymorphism; it is obvious that some of our examples, such
as buffer procedures, may be given a sensible polymorphic type, in this case
V7.(chan[r] X chan[r] — comm). We plan to examine the consequences of
allowing polymorphic types, at least permitting quantification over datatypes
as shown here. The use of this form of type indicates a “data independence”
property of the phrase in question: a buffer behaves the same way regardless
of the type of its contents.

Our examples involving concurrent queues illustrate a methodology for
using local variables and channels together with procedures that operate on
them to achieve an “object-oriented” style, in which the rest of the program
is only permitted to interact with the local data by calling one of the supplied
procedures. In the concurrent setting, this technique can be used to mimic the
use of “monitors” [9,2], originally proposed as a concept for structuring the
design of operating systems. Thus our semantics can be used to reason about
the correctness of classic algorithms from the operating systems literature.

References

[1] Andrews, Gregory R., Concurrent Programming, The Benjamin/Cummings
Publishing Company, Inc. (1991).

16

BROOKES

[2] Brinch Hansen, P., Concurrent programming concepts, ACM Computing
Surveys, Vol. 5, No. 4, 223-245 (December 1973).

[3] Brookes, Stephen., Full abstraction for a shared-variable parallel language,
Information and Computation, Vol. 127, No. 2, 145-163 (June 1996).

[4] Brookes, Stephen, The essence of Parallel Algol, Proc. 11th IEEE Symposium
on Logic in Computer Science, IEEE Computer Society Press (1996) 164-173.

[5] Brookes, Stephen, Fair communicating processes. In A. W. Roscoe, editor, A
Classical Mind: Essays in Honour of C. A. R. Hoare, Prentice-Hall
International (1994), 59-74.

[6] Brookes, Stephen and Older, Susan, Full abstraction for strongly fair
communicating processes, Proc. 11th MFPS (1995), ENTCS vol. 1, Elsevier
Science B. V.

[7] Dijkstra, E. W., Cooperating sequential processes. In F. Genuys, editor,
Programming Languages, Academic Press, New York, 43-112 (1968).

[8] Hoare, C. A. R., Communicating Sequential Processes, Comm. ACM, 21(8):666—
677 (1978).

[9] Hoare, C. A. R., Monitors: an operating system structuring concept, Comm.

ACM, 17(10):549-557 (1974).

[10] Older, Susan, A Denotational Framework for Fair Communicating Processes,
Ph.D. thesis, Carnegie Mellon University, (January 1997).

[11] Lazic, Ranko and Roscoe, Bill, Using Logical Relations for Automated
Verification of Data-independent CSP, Proc. Oxford Workshop on Automated
Formal Methods (1996), to appear, ENTCS, Elsevier Science B. V.

[12] O’Hearn, P. W. and Tennent, R. D., Parametricity and local variables, J. ACM,
42(3):658-709 (May 1995).

[13] Oles, Frank. J., A Category-Theoretic Approach to the Semantics of
Programming Languages, Ph.D. thesis, Syracuse University, 1982.

[14] Park, D., On the semantics of fair parallelism. In D. Bjorner, editor, Abstract
Software Specifications, Springer-Verlag LNCS vol. 86 (1979), 504-526.

[15] Reynolds, J. C., The essence of Algol. In van Vliet and de Bakker, editors,
Algorithmic Languages, North-Holland, Amsterdam (1981), 345-372.

[16] Tarski, A., A lattice-theoretical fizpoint theorem and its applications, Pacific
Journal of Mathematics, 5 (1955).

17

