IDEALIZED CSP:
Procedures + Processes

Stephen Brookes
Department of Computer Science
Carnegie Mellon University

July 1997

THE ESSENCE OF CSP
e Idealized CSP =

communicating processes

call-by-name A-calculus

e simply typed

0 = exp|r| | var|t| | chan|T]
| comm | (0 —0) | 6 x0
phrase types

T »=int | bool data types

cf. Reynolds: Idealized Algol
cf. Brookes: Parallel Algol

CONNECTIONS

e generalizes Hoare’s CSP

— fairness

— nested parallel

— dynamic process creation

— channel-based communication

— asynchronous output,
synchronous input

e generalizes Idealized Algol

— typed channels
— communicating processes

— local channel declarations

e generalizes Kahn networks

RATIONALE

e Programs can cooperate
— message-passing
— access to shared memory

e Procedures can encapsulate
parallel idioms

— bounded buffer

— communication protocols

e Local variables and channels
can limit scope of interference

INTUITION

Procedures and parallelism
should be orthogonal

BUFFERS

procedure buffi(in, out) =
new|r| = in
while true do (in’x;outlx)

procedure buff(in, out) =
newchan|7| h in

buffi(in, h) || buffi(h, out)

e Encapsulates common way to build
buffers

e Relies on locality of x and h

SIEVE

procedure filter(p, in, out) =
new|int| z in
while true do
(¢n?x; if z mod p # 0 then out!x);

procedure sift(in, out) =
newchan|int| A in
new|int| p in
begin
mnp; outlp:
filter(p, in, h) || sift(h, out)

end

SYNTAX

e Input and Output
mF h:chan|r| 7k E:exp|r]

7 hlE : comm

mF h:chan|r] 7+ X :var|7]
7~ h?X : comm

e Parallel composition

7 Pp:comm wF P :comm

mF Pi||P: comm

e Local channel declaration

m,¢: chan|r| - P : comm

7 - newchan|7] ¢ in P : comm

7

CATEGORY of WORLDS

e Objects are countable posets of
“allowed states”

Vix--xVex H{ x---H
ordered by prefix, componentwise
e Morphisms (f, Q) : W — X
— function f from X to W

— equivalence relation) on X

— f puts each ()-class into
order-isomorphism with W

Generalizes Oles’s category:
e channels as components of state

e morphisms respect queue structure

EXPANSIONS

e For each pair of objects W and V
there is an expansion

—xV: W-=WxV
oiven by
XV =(fst: WXV =W, Q)
(wo, v)Q(w1,v1) = vy =]

e Use — x V¥ to model local channel
declaration

e Flach morphism is an expansion, up
to order-isomorphism

e Some order-isomorphisms:

swap - W xV -V x W
assoc : W x (VxU)— (W xV)xU

but not rev : V. — V¥

9

SEMANTICS

e Types denote functors from worlds
to domains, [0] : W — D

e Judgements m + P : 6 denote
natural transformations

[P] : [=] — [6]
i.e. when h : W — X,

w IV g
[7]h [0]n
XX
commutes.

Naturality enforces locality

10

CARTESIAN CLOSURE

e The functor category DW is
cartesian closed

e Use ccc structure to interpret arrow
and product types

[0 x 6] = [6] x [0']
[0 — 0] =101 = [0]

e Procedures are natural and
therefore respect locality

11

PROCEDURES

A procedure of type § — 6" at world
W denotes a natural family of functions
p(—):
ifh:W —-Xandh': X =Y,

plx PR x
[0]1/ 0]/
1Y — 1Y

commutes.

Procedures can be called at expanded
worlds, and naturality enforces
locality constraints.

12

COMMANDS

[comm]W = o (W x W)>)
... as for shared-variable programs

e commands denote trace sets

e closed under stuttering
and mumbling

afect&weW = alw,w)fet
alw, wHw whbet = alw,wfFet

... with certain modifications
e message-passing as state change

e interference thus models
communication by environment

e unrequited input = busy wait

13

INTUITION

o A trace
(wp, wh) (wi, wy) ... {wn, wh) ...

models a fair interaction

e Each step (w;, w!) represents a finite
sequence of atomic actions

o [f(f,Q): W — X andc € [comm|WV
[comm](f, Q)c

behaves like ¢ on the W-component
of state, has no effect elsewhere.

14

CHANNELS

An “object-oriented” semantics:
e output = acceptor

e input = expression with side-effect

[chan|7||WW =
(Vr — [comm]W) x [exp|r||]W

lexp|7||]W =
o(W x W)T x V7 U (W x W)¥)

cf. Reynolds, Oles

15

PARALLEL COMPOSITION

Fair merge of traces

[P1][Po]Wu =
{cv ’ E|O41 S [[Pl]]Wu, a9 € [[PQ]]WU.

where

fairmerge 4 = both’y - oney U both%
bothy = {(c. 8, aB), (o, B, Bax) | v, B € AT}

ones = {(a,6,0), (6, a,0) | a € A%)

fairmerge is natural

16

INPUT and OUTPUT

In world Vj,,; x V5, and a suitable
environment

e h’x has traces

<(U7n/0>7 <nap>> (U n < ‘/;Jnta P < Zﬂt)
and

<(U07)7 (UO >> e <(U/€7 6)7 (U/cv €>> e
e h!(x + 1) has traces

((m,0), (m,o(m+1))) (m € Vips, 0 € Vigy)
e h’z||h!(x + 1) has traces

(v, np), (n, p)){(m,0), (m,o(m +1)))

and

W?OLW%dmﬂﬂDM@mmxmp»

((m,€),(m+1,¢€))

17

CHOICE

An external choice
(a?x — P)O(b7x — Py)
can
e input on a and behave like P;
e input on b and behave like P

e busy-wait while a and b are both empty

However, an internal choice
(a?r — P) M (b7x — Py)

can busy-wait if either a or b is empty

18

LOCAL CHANNELS
The traces of
newchan|r| h in P

at world W are projected from the traces

of P in world W x V* in which
e initially h is empty

e contents of h never change across step
boundaries

EXAMPLES

e newchan|7| hin (hle|h?x) = x:=e

e newchan|7| h in (hl0; P) = P
if h does not occur free in P

e newchan|7| h in (h?x; P)
has only infinite stuttering traces,
because of unrequited input

19

BUFFERS

In world V5, x V.5, and a suitable
environment

buff1(left, right)

has trace
((0,€), (€, €)) input 0
<(1,€), (1,0>> output 0
<(17O), (E,O)> input 1

Similarly

buff (left, right)
has trace
((0,€), (€,€)) input 0
<(1,€), (6, €)> input 1
<(2, 6), (2, 0>> output 0

20

LAWS

e Symmetry

newchan|7] h; in
newchan|m| hy in P
= newchan|m| hy in
newchan|r| hy in P

e I'robenius
newchan|7] h in (P||P) =
(newchan|7| h in P)|| P

provided h does not occur free in P

21

LAWS

e Local variables

newvar(r| ¢ in P’ = P’
newvar|r] ¢ in (P||P’) =
(newvar[r] ¢ in P)|| P’

when ¢ does not occur free in P’
e F'unctional laws

(Ar:0.P)(Q) = PlQ/d]
rec ..P = Plrec 1.P/i]

22

LOCAL LAWS

e Local output

newchan|r| h = p in Pi||hlv; P,
= newchan|7| h = pv in Pi||P

if h! not in Py

e Local input

newchan|r| h = vp in P||h7v; Py
= newchan|r| h = p in P|| P

if h? not in Py

... help when channels are used in
at most one direction by each process

23

FAIRNESS LAWS

e Fair prefix
If A not free in P; and

newchan|r| h = pin P

diverges, then

newchan|r| h = p in P||(P; P»)
= Pj;newchan|r| h = p in P|| P

e Unrequited input
If h not free in P then

newchan|7| h in (h?z; P)||(P; P,)
= Pj;;newchan|7| h in (h7x; P)|| P

24

CONCLUSIONS

e Transition traces are fundamental,
general and unifying

— shared-variable

— communicating process
e Fairness incorporated smoothly
e Deadlock = busy-waiting

— avoids need for failure sets
e Implicit treatment of channels

—no channel names in traces
— object-oriented model

— channels kept separate

25

FURTHER WORK

e Relational parametricity

— representation independence

— concurrent objects
e Full abstraction at ground types
— observing sequence of states

e Disjoint processes

[P || o] (W x Wa, H) =
[P](Wh, H) || [P] (W, H)

e Unreliable communication

— lossy channels

— bounded channels

e Synchronous communication

26

CONCURRENT OBJECTS

newchan|7| h in
procedure put(y) = hly;
procedure get(z) =
new|7| z in (h7x; z:=x);
begin
P(put, get)
end

newchan|7| h in
procedure put(y)
procedure get(z) =
new|7| x in (h?z; z:=(—x));

h(—y);

begin
P(put, get)
end

27

