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Introduction

Hoare’s CSP or Communicating Sequential Processes [H], provides a basis for the study
of concurrent computation. In recent years, a number of theoretical studies have been
made of it and semantic models proposed for it. One of the most successful has been
the “improved failures” model of [B,R,BR,BR1] which was adopted as the main model
in [H]. In the present paper this is referred to as the “failures-divergences” model. This
model is a member of a hierarchy of abstract models, each of which is suitable for the
study of certain problems associated with concurrency. The earliest of these models
were the “traces” model of [H1] and the original “failures” model [HBR, BHR], each of
which captures less detail than the failures-divergences model. An excellent survey of
equivalences will be found in [OH]. Recently, a related model has been introduced to deal
with real-time concurrency [RR].

Each of the models mentioned above was constructed by regarding a process as an
agent which may communicate with its environment by performing certain atomic actions
drawn from an alphabet, and by reasoning about the possible behaviour of, and possible
means of combining, such agents. It was then used to give a denotational semantics to
the language. This operationally oriented approach is explicitly analysed in [BR] where
a formal structural operational semantics in the style of Plotkin [P] for the language of
CSP is proposed, and it is asserted that this operational semantics corresponds exactly to
the denotational semantics provided by the failures-divergences model. It is the purpose
of this paper to substantiate that claim.

Operational semantics for various subsets of CSP have appeared, with varying degrees
of formality, in several papers in recent years. Among the more relevant analyses of
operational semantics have been those of Hennessy and de Nicola [Hen,HN] who showed
how the essentially operational CCS semantics could be related by testing to the models
above. The work most like that in the present paper forms part of [OH], where an
operational semantics for a small subset of CSP is proved congruent to a denotational
model.
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As we shall see, there are structural difficulties in proving operational and denota-
tional semantics congruent arising from the quite different mathematical models used,
but more importantly from the different interpretations of recursion (the copy rule versus
least fixed points). In [OH] a difficult but direct proof of congruence is given. Unfortu-
nately this seems to rely on the simple subset of CSP chosen, and it may not be possible
to extend it easily to the full language. In the present paper we modularise the problem
by introducing an intermediate semantics which uses a model similar to that underlying
the operational semantics (synchronization trees) but which is denotational and uses an
abstract fixed point theory (that of complete metric spaces). This provides a natural
decomposition of the proof; extending the proofs to deal with any further operators that
one might wish to add to CSP should prove easy.

The work reported in the present paper was begun several years ago by Brookes and
Roscoe [B,R,BR]. It was completed by Roscoe and Walker while the latter was studying
in Oxford during 1986.

The remainder of this introductory section contains brief descriptions of the language of
CSP, the failures-divergences model and the formal operational semantics, together with
an outline of the proof that this operational semantics is congruent to the denotational
semantics provided by the model. The motivation underlying the construction of both
the model and the formal operational semantics are fully described in the references
cited, and relatively little attempt is made here to provide such insight.

A communicating process is regarded as an agent which may interact with its envi-
ronment (which may itself be regarded as a process) by performing certain atomic actions
drawn from an alphabet A. CSP provides a formal language suitable for describing pro-

cesses. The syntax of the language considered in this paper is given by the following
informal BN F-style description.

P:= X|PnQ|POQ|PskbQ|PIIQ]| P;Q|
P\a | f[P]| f'[P] | z: B— P; | pX.P.

Here P, Q and P, range over the set E of terms of the language of CSP, X over a
denumerable set Var of variables, a over the alphabet A of atomic actions, B and C over
Pow(A) and f over the set AT = {f : A = A | Va € A. f~'({a}) isfinite A f(a) =
V iff @ = /} of alphabet transformations. The intended interpretation of the closed
terms (i.e. those terms in which every occurrence of a variable X is within the scope
of an occurrence of an operator uX.) is as follows. P M Q denotes a process which may
behave, independently of its environment, as P or Q. POQ denotes a process which
may behave as P or @ and is such that the environment may influence the choice of
which provided that such influence is exerted on the first occurrence of an action of the
composite process. P gl Q denotes a process which behaves like the parallel composition
of P and Q with the restrictions that any action performed by the composition must lie
in BU C, and the composition may perform an action a only if a € B — C and P may
perform a, or a € C — B and @ may perform a, or a € BN C and both P and @ may
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perform a. P ||| Q denotes the parallel composition by unrestricted interleaving of P and
Q. P;Q denotes the sequential composition of P followed by Q, and P\a the process
which behaves like P except that all occurrences of the action a are rendered invisible
to the environment. The processes f[P] and f~![P] derive their behaviour from that of
P in that if P may perform the action a then f[P] may perform f(a) while f~'[P] may
engage in any action b such that f(b) = a. The process denoted by z : B — P; may
engage in any action b € B and thereafter behave as the process F,. (In the body of the
paper a slightly different syntax is used for these “guarded choice” constructs.) pX.P
denotes a solution of the equation X = P.

The CSP terms STOP, SKIP and a — P of [H] are special instances of the guarded
choice construct: STOP is obtained by taking B = 0, SKIP = z : {/} — STOP, and

a —» P =z : {a} = P. Here |/ is a special action used to denote termination of a
sequential process. s

In the failures-divergences model a communicating process is modelled as a pair N =
(F, D) where F C A* x Pow(A) and D C A* (satisfying certain conditions described in
Section 1). F is the set of failures of N and is such that a pair (¢, B) is in F if and
only if N may perform the sequence of actions ¢ and then refuse to engage in any of
the actions in the set B. The set D of divergences of N is such that ¢ is in D if and
only if N may perform the sequence of actions ¢ and thereafter diverge, that is engage
in an infinite sequence of internal “changes of state” invisible to its environment, and
never again communicate with its environment. The set N of all such processes, together
with a natural partial order C, which may be interpreted as “is less deterministic than,”
form the failures-divergences model. The model is a complete partial order with a least
element L.

To each operator symbol of the language of CSP there corresponds a continuous
function on (some Cartesian product of) (N, C) and this fact, in conjunction with the
fixed-point theorem for complete partial orders, may be used to construct a mapping
N :E — Env — N, where Env = Var — N is the set of (process) environments, which
provides a denotational semantics for the language of CSP. For each P € P, where P
denotes the set of all closed terms of the language, N[P] is a constant function and we
use N'[P] to denote also its constant value.

The operational semantics, fully described in Section 2, is based on the idea that the
behaviour of a process may be described in terms of the “state transitions” which it may
undergo. Such a transition may or may not be observable by the environment. An occur-
rence of a change of state invisible to the environment is described in the formal system
by a special symbol denoted 7. The axioms and rules of the system encapsulate the
operational understanding which informed the construction of the denotational model.
A term P can diverge when, and only when, there is a sequence of terms (P; | i < w)
such that Py, = P and for each i, P; may undergo a 7-transition to become Pjy;.

Let P == Q denote that the term P may, according to the transition system, perform
the sequence t of actions, possibly with occurrences of T-transitions interleaved with the
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occurrences of the actions in t, and thereby evolve into the term @Q . Let Q ref B denote
that Q may not perform any action lying in B and may not undergo any 7-transition. Let
Q 1T denote that Q may diverge as described above. The operational semantics of closed

terms of the language of CSP may then be defined by means of a mapping P : P — N
as follows.

PIP] =4 ({(t,B)|3Q.P=5Q A Qref BYU{(st,B)|3Q.P=3Q A Q 1},
(st|3Q.P==Q A Q1}).

Let Sub =4 Var — P denote the set of all substitutions. Each substitution o may be
extended to a mapping (also denoted) o : E — P so that o[[P] denotes the term obtained
by substituting o[ X] for each free occurrence in P of each variable X. Define a mapping
. Sub — Env by setting for o € Sub

& =4 AX.Plo[XI]].

Then the mapping P may be extended to a mapping (also denoted) P: E — Sub —- N
by setting

P[P]o =4 Ple[P]].

That this semantics is congruent to that provided by the model is expressed as follows:
for P € E and o € Sub

P[P0 = N'[[P]]Er.

This fact is the main result of this paper. To help the reader to follow its proof, which
is given in Section 3, an outline is given below.

As indicated above, rather than attempt to prove this result directly we introduce .
an intermediate denotational semantics in terms of synchronization trees. The transition
system determines for each term P a labelled transition diagram D[P], a tree with nodes
labelled by terms and arcs labelled by elements of A U {7}, which describes exactly the
behaviour of the term P. Thus P == Q if and only if there is a path u through D[P]
from the root to a node labelled Q with ¢ = u|A (i.e. t is obtained from u by deleting
all 7s), Q ref B if and only if there is no arc from any node labelled Q which is labelled
with an action lying in BU {7}, and Q 1 if and only if there is an infinite path from any
node labelled Q through D[P] each arc being labelled 7.

By deleting the labels from the nodes of a labelled transition diagram, a synchroniza-
tion tree is obtained. Let R : D — T denote the “deletion mapping” where T denotes
the set of all synchronization trees, and let T = R o D. Then defining M : T — N by
imitating the definition of P : P — N, we obtain that for P € P

M(T[P]) = P[P].

Now let Tre =4 Var — T be the set of all iree environments and define 7: Sub — Tre
by



7 =4 \X.T[o[X]]
and define -* : Tre — Env by setting for p € Tre

o = AX.M(pX]).

In broadest outline the proof consists in establishing the following identity (of which
the result is an immediate consequence — note that & = @, where & is as defined above):
for P € E and o € Sub

M(T[o[P]]) = N[P]7".

This identity is proved by means of the construction of a mapping (the intermediate
semantic function)

S:E—=Tre—T
such that for P € E and o € Sub

Tle[P]}= S[P]lz
and for P € E and p € Tre

M(S[P]p) = NTP]p".

The construction of the mapping S and the proofs that it has the properties described
above are presented in the section 3.

Notation

Throughout this paper standard set-theoretical and logical notations are employed.
Thus Ord denotes the class of all ordinals and w denotes the set of all natural numbers.
If B and C are sets, B — C denotes the set of all mappings of B into C, and [B — C]
the set of all mappings of B into C which are (in the sense determined by the context)
continuous. If f € (B — C),b € B and c € C then f®{b+ c} denotes that g € (B — C)
such that g(b) = ¢ and g(a) = f(a) for @ € B — {b}. Let B be a set. The power set
of B is denoted Pow(B) and t he set of all finite sequences over B is denoted B*. ¢
denotes the empty sequence, (b, ...b:) a sequence of length k, st the concatenation of
the sequences s and ¢, s\b the sequence obtained from s by deleting all occurrences of
b, and s|B the sequence obtained from s by deleting all members of s not lying in B.
merge(s,t) denotes the set of all sequences which may be obtained by merging s with
t. s < t denotes that s is an initial segment of ¢t and b in s that b occurs in s. s b-free
abbreviates —(b in s), and bs abbreviates (b)s.



1. The language of CSP and the failures-divergences model

Let A denote a set of symbols containing a distinguished symbol /. A is referred to as
the alphabet and the symbols of A as actions. An alphabet transformation is a mapping
f: A — A such that for a € A, f~*({a}) is finite and f(a) = / iff a = /. The set of all
alphabet transformations is denoted AT.

In order to give a rigorous treatment of the “guarded choice” constructs z : B — P
for B C A, we define the set E of CSP-terms as follows. Let Var = {X; | i < w} be
an infinite set of variables, and let 1, O, slk, |ll,;, \a (a € 4), f[](f € AT), f7'[]
(f € AT), pX. (X € Var) and B — (B € Pow(A)) be function symbols. Then define
sequences (E, | @ € Ord) and (C2 | a € Ord) for B C A by setting

Eg =df Var .

Eot1 =4 Ea U {P1Q|P,Q€Est€{N0, &b, Illl,;}}
U{P\a| P € Eq,a € A}
U {f[P]| P € E,, f € AT}
U{f'[P]|P€E,f€AT}
U{pX.P|P€EsXE€E Var}
U{B—g|BCA,geCH

E, =4 Us<iEa for limit A

and
CB=4{92|9:B—Ed.}

where for each triple (B, a,g) such that B .(; A a€ Ordand g: B — E,, g8 isa
distinguished auxiliary constant symbol. Then

E =df U Ea.
a€0rd
Note that although, in general, this definition involves transfinite recursion, since each
term may be assigned an ordinal rank, the obvious “is a subterm of” relation is well-
founded. Let C =4 {g8 | B C A,a € Ord}.

The standard notions of a free occurrence and of a bound occurrence of a variable
in a CSP-term are assumed, and fu(P) denotes the set of variables which occur free in
the term P. A term P is said to be closed iff fu(P) = 0. Let P denote the set of all
closed terms. If P,Q are terms and X € Var then P[Q/X] denotes the term obtained
by substituting Q for all free occurrences of X in P with change of bound variables if
necessary. A substitution is a mapping o : Var — P. Let Sub denote the set of all
substitutions. Each o € Sub determines a mapping (also denoted) ¢ : E — P such that

for P € E, o[ P] denotes the term obtained by substituting o[ X] for each free occurrence
in P of each variable X. ‘
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In what follows unless it is stated to the contrary it is assumed that ¢,b € A,
B.CCA,ste A", fe AT, X e Var, g€ C,P,Q,REE and o € Sub.

In the failures-divergences model a process is a pair N = (F, D) such that FF C A" x
Pow(A) and F#0, D C A*, and

(P1) (st,0) e F = (s,0) € F
(P2) (t,Bye FACCB = (t,C)eF
(P3) (t,By e FAVa€ C.(t(a),0) ¢ F = (t,BUC)€EF
(P4) (VB' C B.B'finite = (t,B'Y€ F) = (t,B)€F
(P5) seED = steD

(P6) seD = (st,B)eF.

Let N = (F, D) be a process. Define
faélure.s(N ) = F
divergences(N) = D
traces(N) = {t|(¢,0) € F}
initials(N) = {a|(a) € traces(N)}
refusals(N) = {B|(¢,B) € F}
and for s € traces(N) define

Nafter s = ({(t,B) | (st, B) € F},{t| st € D}).

Note that for s € traces(N), N after s is a process. Let N denote the set of all processes.
Define a binary relation C on N by setting for N = (F, D), N’ = (F',D")e N

NCN =F CF ADCD.
Note that (N, C) is a partial order. Define

L =4 (A* x Pow(A), A").

Note that L is a process and that L © N for N € N. Let U be a directed subset of IN.
Define '

LU =4 (O{F | (F,D) € U}, \{D | (F, D) € U}).

Note that N = U is a process, M C N for each M € U, and if N e Nand M C N'
for each M € U then N C N'. Hence (N, C, L, 1), the faslures-divergences model, is a
complete partial order.

Define operators B — on B — N, M, 0, gk, ||l and ; on N x N and \a, f[]and
F-'[] on N as follows. Let N = (F,D), N' = (F',D’) and for b € B, Ny = (Fy, D) be

processes. Then
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(FQ, Bo) where
{bt | b€ B A t€ Dy}
{{,C) | BNC =0} U {(b,C) | be B A (t,C) € Fi}

o

(Fl, Dl) where
DuD’
FUF'

(Fy, D;) where

DuUD'

{le,B) | (e,By e FNF'}U{(t,B) [t#¢€ A (t,B) € FUF'"}
U{(t,B) | t € D1}

o

(F3,D3) where

{st|se(BUC)* A ((silBeD A s|Ce traces(N')) V
((s|B € traces(N) A s|C € D)}

{{(t, AUB'UC") |te(BUC)" AB'CBAC'CC
AA'CA-(BNC) A (t|B,B) € F A (t|C,C") € F'}
u{(t,A’) | t € Ds} “

(Fy4, D4) where

{r| 3s,t.r € merge(s,t) A

((s€D A tetraces(N')) V (s€D' A tE traces(N))}

{{r, B) | 3s,t.7 € merge(s,t) A (s,B) € F'A (t,B) € F'}U{(r,B) | r € D4}

(Fs,Ds) where

{st|s tick—free A s€D A te A"}

U{st | s tick — free A 8(y/) € traces(N) A t€ D'}

{(s,B) | s tick — free A (s, BU {{/}) € F} U {(st, B) | stick — free A
s{+/) € traces(N) A (t,B) € F'}U{(t, B) | t € Ds}

(Fs, Dg) where
{(s\a)t | s € D}U {(s\a)t | Vn.s(a)" € traces(N)}
{{t\a, B) | (t,BU {a}) € F}U{{t, B) | t € D}

(F7, D7) where
{f(>)t|s € D}
{(f(t), B) | {t, f(B)) € F} U{(t,B) | t € Dr}

(Fs, Dg) where

{t|£() € D}
{{t, B) | {f(¢), f(B)) € F}U{(t, B) | t € Ds}.
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Lemmal. B —is a continuous mapping of B — N into N. Each of M, O, glk , lll, and
. is a continuous mapping of N x N into N. Each of \a, f[] and f~'[] is a continuous
mapping of N into N.

Proof: For a proof of this lemma see [BHR,B,R]. O(Lemma 1)

Let Fiz : [N — N] — N denote the least fixed point operator. A (process ) environ-
ment is a mapping v : Var — N. Let Env denote the set of all environments. Define

N : E — Env — N by recursion by setting for { € {1, 0, s, st e {\a fILFUD
and v € Env

N[Xlv = v[X]
NP1Ql = (N[PI)t(VIQW)
NltPlv = 1(N[P]v)
N[B — glv = B = (AbN[g(b)]v)
N[pX.Plv = Fig(AN.N[P](v& {X — N})).

Note that if P € P then N[P] is a constant function. It is convenient also to write
N[P] for its constant value.

2. An operational semantics for CSP

The operational semantics is given in terms of a family {—=5| z € At} of binary “tran-
sition relations” on terms, where At = AU {r} with 7 a symbol not in A. The intended
interpretation is that P —— Q iff the process represented by P may evolve by perform-
ing the action a into the process represented by Q, and that P -2 Q iff the process
represented by P may evolve in a manner invisible to, and outwith the control of, its
environment into the process represented by Q. (cf. Milner’s use of the symbol 7 in CcCSs
M].)

The transition relations are the family of relations {——| z € A*} on terms defined
by the following syntax-directed transition rules. To reduce slightly the number of rules
required it is convenient to extend each alphabet transformation f to a mapping (also
denoted) f : At — At by setting f(r) = 7. The transition rules are as follows.

be B
(B = g) —> g(b) res

PNQ - P PNQ - Q

WX.P > PpX.P/X]
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P P

Q- Q"

POQ - P'OQ
P= P

POQ — POQ’
Q=

POQ = P!
PP

POQ = Q'
Q—Q

Pelb @ = P'5lb Q
P2 P

Pglb Q — Pk @

Pk Q> Pk Q

Q—q

(a€e B-C)

(a€C-B)

Pplb Q = Pslb @
Q—Q

P=Pp

(ae BNC)

Pglk @ = P'5lc @

P> P

Q—Q

PMQ = PlQ
P= P

P;Q = P4Q

Plle = PlllQ’
(z #V)

pYLp
P;Q 5 Q

P=P

P\a = P'\a

(z # a)

PP

P\a - P'\a

P= P

fIP] = f[P]
P= P

(y = f(=))

(f(y)==)

7P 7P

Lemma 2. Let P € E and z € A*. Then the multiset whose elements are those @ such
that P —= Q, with the multiplicity of Q being the number of ways in which P —=— @
may be inferred from the transition rules, is finite.

Proof: The proof of this lemma, which is a simple induction on structure, is omitted.

O(Lemma 2)
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It is convenient to abbreviate 3Q. P - @ by P ——. Let == denote the reflexive
and transitive closure of —— and let =% =4 ==>—+==> where juxtaposition denotes

relational composition. Then define =t for t = as € AT by recursion by setting

P=Qif IRP=>R A R==Q.

P is stable iff ~(P ——). Define the refusal relation ref C E x Pow(A) by setting

P ref B iff P isstable A Va € B.~(P —).

Define the divergence relation TC E by setting
PT 1ff3(P. I‘l < w).Pg =P A Vi.P,‘ —T—r P.'+1.
Now define Py : P — Pow(A* x Pow(A)) and P, : P — Pow(A*) by setting

PPl =4 {(,B)|3Q.P=5QAQref BYU{(st,B)|IQ.P=-QAQT}
PIP] =4 {st|3Q.P=5QAQT).

Lemma 3. For P € P, (Po[P], Pi[P]) is a process.

Proof: Of the clauses (P1)—(P6) in the definition of “process” only (P4) is not immedi-

ately obvious. In establishing this condition, and in other contexts, the following lemma
is useful.

Lemma 4. Let Q € E and ¢t € A*. Then
(a) 3s<t.3R.Q=>RARTor
(b) {R| Q@ = R} is finite.

Proof: This result is most easily established by considering the representation of the be-
haviour of Q as determined by the transition relations as a “labelled transition diagram.”
This concept is defined formally in the Appendix. Informally, the labelled transition dia-
gram representing the term @Q is the tree T with nodes labelled by terms and arcs labelled
by elements of A* such that the root node is labelled Q, and such that there is an arc
labelled z from a node labelled R to a node labelled R’ if and only if R -+ R'. By
Lemma 2, T is finite-branching. With each node n in T is associated a sequence r € A™:
if w € A" is the sequence of labels on the arcs comprising the path in T from the root
node to n, then r = u | A. Let T' be the tree obtained from T by deleting every node
whose associated sequence is not a subsequence of ¢ and deleting every arc leading to
such a node. Then T” is itself a finite-branching tree. If T" is finite then (b) holds, while
if T' is infinite then by Konig’s Lemma there is an infinite path through T, and hence
(a) holds. O(Lemma 4)
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Returning to the proof of Lemma 3, let Po[P] = F and suppose that VB’ C B. B’ finite =
(t, B") € F and that B is infinite. By Lemma 4, either 3s < ¢.3Q. P = QAQT, in
which case (t, B) € F by the definition of Py, orT' = {Q | P == QAQ is stable} is finite.
In the latter case let (@ ... Q) be an enumeration of the stable terms in I’ with & > 1.
If Vi. ~(Q; ref B) then Vi.3a; € B. ~(Q: ref {a:}), when setting B’ = {a; | 1 <i < k},
Vi.—~(Q; ref B'). But (t,B’) € F, a contradiction. O(Lemma 3)

For P € P set

PLP] =4 (PolP], PALP])-

Then by Lemma 3, P : P — N. Define a mapping (also denoted) P : E — Sub — N by
setting

P[P]o =4 Plo[P]]-

Note that if P € P then P[P] denotes both a constant function and its constant value.

3. The congruence of the semantics

Define a mapping ° : Sub — Env by setting
o[ X] =4 PlolX]].

The congruence of the operational and the denotational semantics of the language may
be stated as follows: for P € E and o € Sub

P[P]o = N[P]s.

To establish this identity we introduce an intermediate semantics which uses a model
similar to that underlying the operational semantics (synchronization trees) but which
is denotational and uses an abstract fixed point theory (that of complete metric spaces).

The concept of “synchronization tree” was introduced by Milner [M]. Informally, a
“synchronization tree” (over A%) is a tree whose arcs are labelled by elements of A*. An
example of the pictorial representation of such a tree is the following:
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where the vertical dots indicate that the tree is of infinite depth and exhibits the regular
structure apparent from this picture.

The standard way of constructing a class of synchronization trees would be to use
multiset powerdomains and a recursive domain equation. By exploiting the fact that in
the present proof we need consider only synchronization trees in which the number of
identically labelled arcs from any node is finite, a more direct construction is sufficient.
The main points of this construction, which is presented in the Appendix, are as follows.

There are a set T of synchronization trees and operations z. (z € A%), + and &
as follows. The operations z. (z € A*), which insert a single initial arc labelled z, and
+, which joins its arguments at a common root, may be represented pictorially as follows.

x. L
T >
= \
4 + TANN
Y U e L 4% S

The operator T is such that if I is a set, {T} | i € I} C T and (z; | i € I) is such that for

i eI, z; € At and for z € A*, {i € I | z; = z} is finite, then ¥ ;c;z:.T; € T. It may be
represented pictorially

. . < LT
/ ‘/\, : . -
o -\, 7 Il._..——-—‘-
(‘\j_‘r_-l.t(': l) /;1".\ T\\ 14‘\ /'T\'
. e &. b LD

Conversely, if T € T then there are a set I, {T} | € I} € T and (z; | ¢ € I) such that
fori € I, z; € A*,and forz € A*, {i € I | z; = z} is finite, and such that T = 3 ¢, .. T
Hence every synchronization tree may be expressed in the form Yier T + Lies 7.T;
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where for i € I, a; € A, T; € T, J is finite and for i € J, T; € T, and for a € A,
{i € I | a; = a} is finite.

For each n < w there is an operation | n : T — T which corresponds to truncat-
ing the synchronization tree at the nth level and inserting the infinite synchronization tree

&
T
7

i G —— —— —

as the successor of each n'* level node. For example

5 ¥
N
R A

N
.:r"-"l \\ 1 2

; _/' \\L _

7]
TN 7
o i

N =

~

These operations provide a standard representation of each possible “n-step behaviour”
which is closely related to the notion of approximation in the failures-divergences model.
Finally, defining dp : T x T — [0, 1] by setting

dp{(S,T) =4 inf {2 | S In=T |n}

we have:
Lemma 5. (T,dt) is a complete metric space.
Proof: See the Appendix. O(Lemma 5)

This completes the present summary of the material contained in the Appendix.

In order to establish the existence of certain operators on synchronization trees we
define metrics dy and bpon U =T - Tand B=TxT - T respectively and
use Banach’s fixed point theorem to establish the existence of fixed points of certain
mappings on the complete metric spaces (U, dy) and (B, dp). These fixed points will be
the desired operators.
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Let J be any no.empty set. Define
dy:(J—=T)x(J—T)—[0,1]
by setting for o, 8 € J — T

ds{a, B) = maz{dr{a(s), B()) | 1 € J}.

Lemma 6. If J # 0 then (J — T,d;) is a complete metric space.

Proof: The proof is straightforward and is omitted. O(Lemma 6)

The development and general results which follow will be applied to the spaces (U, dy),
(B,dg) and {(B — T) — T,d(g~1)~T) for BC A. .

Let (M,d) be a metric space. A mapping G: M — M is contractive iff there is a c
with 0 < ¢ < 1 such that for X, Y e M

dG(X), G(Y)) < c.d(X,Y).
The following standard result is known as Banach'’s fixed point theorem or the contrac-

tion mapping theorem.

Lemma 7. If (M,d) is a complete metric space and G : M — M is contractive, then G
has a unique fixed point Y. Moreover if X is any point of M then setting Xo = X and
for i < w, Xiy1 = G(X;), (Xi|i < w) convergesin M to Y. O(Lemma 7)

Weakening slightly the condition in the preceding definition, we obtain the following.
A mapping G : M — M is nonezpansive iff for X, Y € M
d(G(X),G(Y)) < d(X,Y).

Now let J be any nonempty set and set M = J — T andd =d,. Forn <w define
In:M — M by settingfor X € M and j€ J

(X Ln)(5) =4 X(7) Ln.
A mapping G : M — M is nondestructive iff for X € M and n < w
G(X)In=G(X |ln)ln.
Furthermore a mapping G : M — M is constructive iff for X € M and n < w
C GX)In+1=G(X ln)ln+1. |

15



The following lemma establishes some useful relationships among the above concepts.

Lemma 8. Suppose that J#0, M =J - T,d=d;and G: M — M. Then
(a) G is nonexpansive iff G is nondestructive, and :
(b) G is contractive iff G is constructive.

Proof: (a) Suppose G is nonexpansive and X € M. Then forn < w,sincefork <n,X |
=X In)lk,

d(G(X), G(X Ln)) < d(X, X Ln) S 27 -
Hence d(G(X) | n,G(X L n) [ n) =0, and so G(X) ln = G(X ln) | n. Hence G
_is nondestructive. Now suppose that G is nondestructive and X,Y € M. EX=Y

then d(G(X),G(Y)) = 0 = d(X,Y). So suppose that X # Y and n is least such that
X|n+1#Y ln+1,sothat d(X,Y) =2"". Thenfor k < n

G(X)lk=G(X Lk) Lk=G(Y Lk) Lk =G(Y) Lk

so d(G(X),G(Y)) < 27" = d(X,Y). Hence G is nonexpansive.
(b) Suppose G is contractive. Then for X,Y € M, d(G(X),G(Y)) < }.d(X,Y) by the
definition of the metric. Let X € M. Then for n < w, since for k < n k

n) Lk,

.d(G(X),G(X In)) £ -lé-.d(X,X In) € 2-(n1),
Hence d(G(X) ln+1,G(X |n) ln+1) =0so GX)Iln+1=GX |n) ln+1

Thus G is constructive. Now suppose that G is constructive. Then certainly G 1is
nondestructive and hence nonexpansive. Hence if X,Y € M with X # Y and n is least
such that X | n+1 # Y | n+1 so that d(X,Y) = 27", then by the proof of (a)
d(G(X),G(Y)) £ 27" and hence '

G(X) In+1=G(X in)ln+1=G(Y ln) In+1=G(¥) ln+1,
and so d(G(X),G(Y)) <€ 1.2 = L.d(X,Y). Hence G is contractive. O(Lemma 8)

The following proposition is an immediate consequence of Proposition 7, Lemma 8(b)
and the fact that a closed subset of a complete metric space is complete.

Lemma 9, Let © be a predicate defined on M such that I' = {X € M | O(X)} is a

nonempty closed subset of M. Let G: M — M be constructive and such that I is closed

under G. Let ¥ be the unique fixed point of G. Then Y € T'. O(Lemma 9)
Now define M € B by setting

snT =df r.S+r.T.
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For B C A define B —€ (B — T) — T by settingfor G€ (B—-T) - T

B — (G) =4 5. b.G(b).

beB

Note that M and B — are nonexpansive (in fact contractive) on B and (B —» T) — T
respectively. The preceding general results may be exploited to establish the existence of
operators on synchronization trees corresponding to each of the remaining constructors
of the language of CSP.

Lemma 10. There are nonexpansive operators O, plk , |ll,; € Band \a, f[], f7}[] €U
such that whenever $,T € T and S = Y a;.5; + £ 7.5; and T = L b,.T; + £ 7.T; then

SOT = Ya.S;+ Y b.T:+ X 7.(5:0T)+ X 7.(SOT;)

Selb T = Taep-cai(Sisle T)+ Thec-s bi-(:s sl To)
o Ea.-:b_,-eBnC a;.(S; sl T;) + r7.(S; sl TY+ X 7.(S sl T:)

SIT = Tau(SINT)+ o (ST + (S NT) + =7 (SIIT)
ST = TapyanlSuT)+2 .(S;T)+ SIS i 4
S\a = Tapaai(SA\a) + T7.(S\a) + Tai=a 7(Si\0)
fIS] = T f(a)-fISi] + Zr.fISi]

S = EiTip=adfIS+Z i A

Moreover the operators are uniquely determined by the above equations.

Proof: The “defining equation” of each of the operators determines a contractive func-
tion on U or B as appropriate. For example, given any binary operators O; and Oy,
substitution into the right hand side of the defining equation of O yields operators O}
and O/ such that dp(04,03) < (dB(01,02))/2. Hence by Lemma 8(b) and Proposition
7, each of these functions has a unique fixed point which is the required operator. That
each of the operators is nonexpansive follows immediately from the fact that it satis-
fies the appropriate equation by Lemma 9: each of the defining equations determines a
function which preserves the property of “nonexpansiveness” and the latter represents a
nonempty closed subset of U or B as appropriate. O(Lemma 10)

Now define the set Tre of tree environments by Tre =4 Var — T, and let dr,. be
the metric defined >n Tre by taking J = Var in the definition immediately preceding
Lemma 6. We now define an intermediate semantic function § : E — Tre — T which
plays a central role in the proof of the main result.

S:E — Tre — T is defined by recursion on structure by setting
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S[X] = XeplX]
S[P1Q] =~ Xp(S[Plp)(S[Qle)
S[tP] = Xe.t(S[P]p)
S[B—g] ~ M.(B —)(Ab: B.S[g(b)]p)
S[uX.P] =~ theunique fixed point of H : (Tre — T) — (Tre — T)

where H = M Ap.(.S[P)(p® {X — Rh(p)})).

That S is a total function is a consequence of preceding results. First note that S[X]
is nonexpansive on Tre — T. Note also that if S[P] and S[Q] are nonexpansive on
Tre — T then since t and t are nonexpansiveon TXT and T respectively, S[P{Q] and
S[tP] are nonexpansive on Tre — T. Furthermore if for b € B, S[g(b)] is nonexpansive
on Tre — T then since B — is nonexpansive on B — T, § [B — g] is nonexpansive on
Tre — T. Finally if S[P] is nonexpansive on Tre — T then H, as defined in the final
clause of the definition of S, is constructive on T're — T, since for h,j € Tre - T

drre—T(H(h), H(7))

maz {dr{r.S[Pl(p ® {X — h(p)}), .S[P)(p ® {X = i(p)})) | p € Tre}
L maz {dr(S[P)(p® {X — h(p)}), SIPNe ® {X = j(0)})) | P € Tre}
1. maz {d1(h(p),i(p)) | p € Tre}

AN

using the nonexpansiveness of S[P] on Tre — T. Note that {K € Tre — T |
K is nonexpansive} is a nonempty, closed subset of Tre — T. Hence by Lemma 9,

H has a unique fixed point which is itself nonexpansive. This completes the proof that
S is a total function.

For n < w define | n : Tre — Tre by setting

p Ln =4 AX.p[X] |n.
Of course the metric that can be defined using these operators is identical to drve-

Lemma 11. Let P € E,p € Tre and n < w. Then

(8[P]p) Ln = (S[P]p Ln) Ln.

Proof: This is an immediate consequence of Lemma 8(a) and the fact that S[P] s
nonexpansive on Tre — T. O(Lemma 11)

For z € A* define —*+C T x T by setting for S,T € T with § =3 a:i.5i + 2 S,

S Tifdi.(z=aAT=S5)V(c=7AT=S5))
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It is convenient to abbreviate 37.5 —= T to § ——. Let == be the reflexive and
transitive closure of —— and let =%»=4==>——==>. Then define =% for t = as € A* by
recursion by setting

S= TifWV.S=>U AU=T.
T is stable iff, ~(T —). Define the refusal relation ref €T x Pow(A) by setting

T ref Biff T is stable AVa € B.~(T —).

Define the divergence relation TC T by setting
T1 iff Vk <w. I To,...,Te1).To=T A (0Si<k—1 = T; — Tip1)-
Now define Mo : T — Pow(A* x Pow(A)) and M, : T = Pow(A") by setting

© MofS) =4 {(t:B)|3T.5=T A T ref B}u{(st,B) |3T.S==T A T 1}
Mi(S) =4 {st|3T.S=T A T1}

Lemma 12. Let S € T and t € A*. Then
(a)Is <t.IT.S==TAT T or

(b) {T' | S = T } is finite.

Proof: Similar to that of Lemma 4. O(Lemma 12)

Lemma 13. Let S € T. Then (Mo(S), M1(S)) is a process.

Proof: Similar to that of Lemma 3. ' O(Lemma 13)

For S € T set
M(S) =4 (Ma(S), Ma(9)-
Then by lemma 13, M : T — N. Note that it follows from the definition of M that for
SeT,(M(S|n)|n<w)isachainin (N, C).

Lemma 14. Let S € T. Then M(S) = U{M(S ln)|n <w}.

Proof: Let M(S) = (F, D) and for n < w, M(S | n) = (Fa,D,). From the definition of

| n, it follows immediately that if S => T AT ref B then 3k.Vn 2 k. 3T,.5 | n ==

T.AT, ref B, and if S == T AT T then 3k.Vn 2 k. IT,..S |n=> T, AT, 7. Thus by
the definition of M, L{M(S In) |n < w} E M(S). '
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Suppose that r € N D, Then {T | 3s < r.S == T} is an infinite finite-branching
tree and hence by Konig’s Lemma has an infinite path, so r € D. Also if 3k.Vn 2
£ 3T..S Ln =t T, AT, ref B, then from Lemma 12 it follows that (¢, B) € F. Thus
M(S) TL{M(S In)|n <w}. O(Lemma 14)

The transition relations determine for each term P an unique synchronization tree
T[P], obtained by simply deleting the terms from the nodes of the labelled transition
diagram. (For the details of the construction of the mapping 7 : E — T see the
Appendix.) The mapping T is such that

P2, Q if T[P]- TIQ]
Pref B iff T[P]ref B
P1 iff T[P]T-

Hence for P P
M(T[P]) = P[P].

We now establish some properties of the mapping T required for the proof of Lemma 16
below. _

Lemma 15. Let P,Q €E, 1€ {0, slc, Ill,;} and t € {\a, f{], [ 1}. Then

71P1Q] = TIP11TIQ
TItP] = {TIPL.

Proof: Note that two elements § = Tier @i-Si+Lies r.S;iand T = Tiep bi Ti+ Lier r.T;
of T are equal if and only if there are bijections a : I « I’ and B :J « J' such that

a) bagi) = ai and S;(il = S;foralli el
b) Té{,-} =T foralli € J.

Let T[P] = § = La:iSi+ 7.5, TR =T = b, T+ 27T, and let U =
YU+ DU =T[PiQ] or T[tP] as appropriate. Then there are P, P;,Q:,Q; such
that P % P. and S; = T[P], P == P} and S; = T[P], Q: b, Q: and T: = T[Q:],
and Q —— Q; and T, = T[Q]. Also there are R;, R, such that T[R;] = U, T[R] = U:
and P1Q 2 Riand P1Q 4 R, or {P = R; and {P -T» R; as appropriate.

We prove by induction on n (for all P, Q simultaneously) that forn < w

(TIPtQD In (TIP11 TIQD) LIn
(T[HPD In (TP Ln.

For n = 0 these equalities are trivial. Assume the equalities for n and let m = n + 1.
We present the proof only for the operators O and \a; those for the other operators are
similar.
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(SOT) lm
S a..(S; Ln) + Sbi(Ti Ln) + £7(S{0T) In+ L 7.(SOT;) In
= Tau(T[P]In)+ Tb(TIQ] In) + E7(T [P1eT(el) I~
+X T—(T[[P]]DTEQ.']]) ln
= Y au(T[P]ln) + T0:(T[Q:] In) + T(T[POQ] in) + Z7(T [POQ] In)

by the induction hypothesis. It will be seen that the action/process pairs in the last
line above correspond precisely to those deducible from POQ by the transition relations:

each pair being there exactly as often as there are ways of deducing it. The definition of
T thus implies U |m = (50T) | m.

(S\a) lm |
= Tuzeai(TIPNa) In+ E7(T[FN\a) In + Taima m.(T[P]\a) In
= Taeai(T[P\a]) in+ = (TP \a]) Ln + Taima (T [Pi\a]) In-

Again there is exactly one summand for each way of deducing a transition of P\a from
the transition relations. The definition of 7 then implies U | m = (S\a) | m.
This completes the sketch of the proof of Lemma 15. O(Lemma 15)

Define T : Sub — Tre by setting

7= A X.T[o[X]].

Lemma 16. Let P € E and o € Sub . Then
T[e[P]] = S[PJz.
Proof: By induction on structure. First note that
T[o[X]] = 7[X] = S[X]e. .
For the nondeterministic choice operator

Tle[PNn Q] r.T[o[Pl] + . T[o[QIl
.8[PJ7 + 7.S[QlF

S[P N QJz.

Suppose { € {0, slk , Ill,;}. Then by Lemma 15

TloP QI T[o[PI11 T(oQI]
S[Plzt S[Rle
S[P i Q]z.

o

Also for t € {\a, f[ ], [ ]} by Lemma 15
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t7[o[PI]

T[o[tPl =
= {S[P]e
= S[tP]e.
For the guarded choice constructs
Tlo[B — g1l = TienbTolg(d)]]
= Tiend.So(d)]l7
= S[B— ¢gf7.

Finally suppose that P = pX.Q. We prove by induction on n that forn < w, (T[o[P]]) |
n = (S[P]7) L n. For n = 0 the equality is immediate. Assuming the equality for n and
_ setting m = n + 1 then using Lemma 11

(Tle[PID) im = (rTl(e®{X — o[PINIQ]D) I m

r.(T[(c ® {X — o[PIN[Q]] In)
r(S[QI@® {X — T[o[PII}) in)
r.(S[QI@ Ln @ {X — (T[o[PID) Ln}) Ln)
.(S[QI(@ Ln® {X — (S[P]7) Ln}) in)
r.(S[QN(@ ® {X ~ (S[P]?)}) In) Ln)
r.((S[QIET @ {X ~ (S[P]7)})) Ln)
(r(S[QlF & {X — (S[PIF)})) im
(s[P]@) L m.

| VO 1 | O 1

This completes the proof of lemma 16. | _ O(Lemma 16)

We now establish some properties of the mapping M required for the proof of Lemma
18 below.

temmal?. Let 5T €T, € {0y0,8lks llssh 1"6 {\a, f{ 1, f~{ ]} and suppose
g: B — T. Then
M(SIT) = M(S)tM(T)
M(1S) = tM(S)
MB—g) = B (ObMb).

Proof: We do prove this result in complete detail. Rather we prove the assertions in
the cases $ = O and t = \a and state a list of properties of synchronization trees from

which the remaining cases may be established by similar arguments. First consider the
case { = 0O.

Lemina 17.1. (1) SOT == U iff 35, 7.5 == §', T = T' and U = 5'0T".
(2) Ifs#cthen SOT = U if S=U or T ==VU.
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(3) SoT ref B iff S ref B and T ref B.
(4) SOT1iff STorTT.

Proof: The proof is straightforward and is omitted. O(Lemma 17.1)

Now let N = (F,D) = M(S), N’ = (F", D'} = M(T), No = (Fo, Do) = M(SOT)
and Nl = (F],Dl) = NDN,.

Lemma 17.2. No = MNi.

Proof: We first prove that Do = D;.
Note that, by (2) and (4) above, 3U. SOT == U and U T if and only if either JU.S=U
and U T or 3U.T == U and U 1. Since D; = D U D', the result is proved.

Now we prove that Fy = F. .
Since we already know that Do = D, it is sufficient to prove this result for refusals on
non-divergent traces s. First suppose ¢ ¢ Do. If (¢,B) € F'N F' then by by Lemma
17.1 and the fact that if S’ ref B A T' ref B then S'OT' ref B, (e, B) € Fo. If
SOT =% U A U ref B then by Lemma 17.1,35",T".S = §' A T = T' AU =80T,
so since then S’ ref B and T ref B, {¢,B) € F N F' so (¢,B) € F\.

Ift#candt & Do. If (t,B) € FU F' then by Lemma 17.1 (2), (t,B) € Fo. If
SOT =5 U A U ref B then by Lemma 17.1 (2), {t, B) € FUF so (t,B) € Fi. Fo=F;
now follows from Dy = D;. O(Lemma 17.2)

We now consider the case { = \a.

Lemma 17.3.

(1) S\a== U iff3t.3T.S =T, U =T\a and s = t\a.
(2) S\aref Biff S ref BU {a}.

(3) S\atlifIn.3T.S=5T A TTorVn.3U.5=U.

Proof: The proof is straightforward and is omitted. O(Lemma 17.3)
Now let N = (F, D) = M(S), No = (Fo, Do) = M(S\a) and N, = (Fy, D;) = N\a.

Lemma 17.4. Ng= N;.
Proof: We first prove that Do = D;.

(C) Suppose that s is minimal in D. Then there exists U such that S\a == U and
U 1. By Lemma 17.3, 3U.S\a == U and U 1 if and only if there exist ¢t and T such that
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t\a = s, U = T\a and either T 1 or /n.3V.T 2% V. In the first case t € D and in the
second Vn.t(a") € traces(N). In either case s € D,.
(2) If t is minimal in D, then there is a minimal s such that s\a =t and either s € D
or ¥n. s{a™) € traces(N). In the first case there is T such that S == T and T T, so that
¢ € Do. In the second case, an application of Konig’s lemma to a suitable subtree of S
yields T such that § == T and ¥n.3U.T <% U. Again it follows that s € Do.

We now prove that Fo = Fi. As in the case of O it is sufficient to consider only
non-divergent traces.

(2) fS==U A U ref BU{a} then by Lemma 17.3, (s, B) € Fp.

(C) If S\a == U A U ref B then by Lemma 17.3,30'.3t.5 = U At\a=s AU\a=
U. Since U is stable, U’ ref {a}, and hence (s, BU {a}) € F and so (s, B) € F1. Fo = Fi
now follows from Do = Dy. - O(Lemma 17.4)

By similar arguments the remaining cases may be established using the following
observations.

Lemma 17.5.

(M) SNT==>Uiff (s=¢ A U=SNT)orS=UoxT=U.
(M2) =(SNT ref B) for any B.
(n3) SNTTif StorTT.

(e 1) Sl T=U 38, T.3r,t.r=3|B A t=3|C A S=S"A
TT AU=54HLT.

(8l 2) S Bl T ref B’ iff S is stable, T is stable, S ref B'N(B—C), T ref B'Nn(C-B)
and BBO,Bl.BgUBl=B’ﬂBﬂC,Sref Bo and T ref B,.

(lb3)Selc TTiff STorTT. ‘

(1) ST =2 U iff35,£.35, T".§ =2 §', T =5 T', u € merge(s,t) and U = S'lllT"
(1112) ST ref B iff S ref B and T ref B.
(N3) SNTTifESTor TT.

(;1) S = S’ A s tick — free = S;T = 9,T.

(:2) S 2% & A s tick — free = S;T =% T.

- (;3) S;T == U => (s tick — free, 35".5 =2y S’ and U = S"; T) or (3r, t.r tick — free,
Cs=rt, S5 §'and T =5 ).

(:4) S;T ref B iff S ref B or S =% and T ref B.
(:5)S:TTifSTorS=5 and T 1.

(FI11) fIS] == U iff 3t.3T. f(t) = s, f[T]=U and § == T.
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(FL11) fIS] == U if 3t.3T. f(t) = s, f[T)=U and S = T.
(f[12) f[S] ref B iff S ref f~(B).
(f[13) fISITifEST.

(F~M ) fUS) == U iff 3¢.3T.S =t T, f(s)=tand f}T]=U
FY12) f7(S] ref B iff S ref f(B).
(F7M13) fHSITiES T,

(B — 1) (B—=)(G) =T iff T = (B =)(G).

(B—v2)(B—t)(G):rTa,ndsaéslﬂ'abeB3t3—bta,ndG(b)=>T
(B —3)(B—)(G)ref Cif BNC = 0.

Proof: The proofs are straightforward and are omitted. O(Lemma 17.5)

This completes the sketch of the proof of Lemma 17. O(Lemma 17)

Define -* : Tre — Env by setting
6" =4 AX.M(p[X]).
Lemma 18. Let P € E and p € Tre. Then
M(S[P]p) = N[P]p"-
Proof: By induction on structure. First note that

M(S[X]p) = M(p[X]) = p"[X] = N[X]p".
Let + € {M, 0, sl , lll,;}. Then by Lemma 17

M(S[P1Qlp) M(S[P]pt S[Qlp)
M(S[P]p) t M(S[Qlp)
NP]p* t NQ)e*
NP1 Qlp"

Let t € {\a, f[ ], f7*[]}. Then by lemma 17

M(S[tP]e)

M(1S[P]p)
tM(S[P]p)
tNP]p"
N1t P]p.

For the guarded choice constructs again by Lemma 17
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- M(S[B - glp) M(B — (2b.S[g(b)]p)
B — (Ab.M(S[9(b)]p))
B — (Ab.Ng(b)]p")

NIB = glp".

noun

Finally suppose P = #X.Q. Then N'[P]p" is the least fixed point of H: N — N defined
by i

H =4 ANN[QI(P" ® {X — N}).

Now by the definition of S and the fact that M(r.T) = M(T) forany T € T

M(r.5[Q1(p® {X — S[P]p}))

M(S[QI(p ® {X — S[PIp}))

NQI(p* ® {X — M(S[P]m})
- H(M(S[P]p)).

M(S[P]p)

Hence N[P]p* C M(S[P]p). For the reverse inequality it suffices by Lemma 14 to show
by induction on n that for n < w, M((S[P]p) In) C N[P]p*. For n = 0 the inequality is
immediate. Assuming the inequality for n and settingm =n+1, then by the induction
hypothesis and the monotonicity of N[Q] :

M((S[P]p) i m) M((r.S[Q1(p & {X — S[P]p})) I m)
M(r.(S[QI(p ® {X — S[FP]p}) Ln))
M(S[QI(p ® {X — S[P]p}) Ln))
M(S[QI(p ln @ {X — (S[P]p) Ln}) In)
M(S[QI(p Ln® {X — (S[Plp) in}))
NIQI(p Ln) & {X = M((S[Plp) L n)}))
NIQI(r* ® {X — N[P]p*})

H(NTP]p") -

NP]p*.

Hence M(S[P]p) = N[P]p". O(Lemma 18)

o 1 L I 1

We may now establish the congruence of the operational and denotational semantics
stated at the beginning of this section.

Theorem 19. Let P € E and ¢ € Sub. Then
P[P]o = N[P]o.
Proof: Note that since for Q@ € P, M(T[Q]) = P[Q], ¢ =7 and
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Plo[P]]
M(T[e[P]D)
M(S[P]7)
N[P]z".

P[P]e

by Lemmas 16 and 18. O(Theorem 19)

Appendix

In this appendix we give formal definitions of the notions “labelled transition diagram”
and “synchronization tree” and establish all the results about them assumed in Section 3.
A labelled transition diagram is a nonempty set K of pairs (u, P) such that P € E and u
is a finite sequence of pairs (z,¢) withz € A* and i <w such that for P,Q € E, z € A%,
i,j <wand u,v € (AT x w)*

(D1) w,PYeK Av<u = IR(nR)EK
(D2)  (u((z,i)),P)€K A j<i = 3R (u((z,))),R)EK
(D3) (u,PYe K A ye At = {k|(u((y,k)),R)€ K} is finite

(D4  (P)eK A (u,Q)eK = P=Q.

Let D denote the set of all labelled transition diagrams. The transition rules determine
for each term P a labelled transition diagram D[P] as follows. For P € E let init(P)
be the multiset with elements those £ € A* such that for some Q, P =4 Q, with the
multiplicity mult(P, z) of z being the number of ways in which such transitions may be
:nferred from the transition rules. Note that by Lemma 2, mult(P,z) is finite for P € E
and z € A*. Then define D : E — D by setting ‘ '

D[P] =4 U Kn

n<w

where

Ko =4 {{e,P)}
Kop1 =4 {(ul(z,9)),Ri(Q,2)) |z € AT, i <w, 3Q. (4, Q) € Kn A 0<j < mult(Q,z)}

where for Q@ € E and z € At, (Rj(Q,2)|0=<j < mult(Q, z)) is an enumeration of the
multiset whose elements are those R such that @ -Z4 R, the multiplicity of R being the
number of ways in which such a transition may be inferred.

Note that in the construction of K,4; from K, the choice of the enumerations
(Rj(Q,z)) determines which one of a family of “equivalent” labelled transition diagrams
‘s associated with the term P. This notion of equivalence will be made explicit later.
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Indeed a “synchronization tree” will be defined as an equivalence class of a certain family
of trees (called “skeletons”) under an appropriate equivalence relation.

A skeleton is a nonempty set L of finite sequences of pairs (z,i) with z € At and
i < w such that for z € A%, ,j < w and u,v € (A* x w)"

(S1) u€E€L Av<u = veEL
(52) uw((zi) €L Aj<i = ul(zj) €L
(S3) ueLl A ye At = {k|u((y,k)) € L} is finite.

Let S denote the set of all skeletons. There is a simple map R : D — S, informally
deleting the terms from the nodes of the labelled transition diagrams, defined by setting

R(K) =4 {# |3Q- (4, Q) € K}
Let L € S. For z € A* define A(z) =4 {i | {(2,4)) € L} and note that by (52), (S3),
A(z) = {0,1,...,m — 1} for some m 2> 0. Let init(L) =4 {z | 3i.((z,1)) € L} and for
z € init(L) and i < Ar(z) set
L after (z,i) =4 {u | ((z,i))u € L}.
Note that L after (z,i) € S. For n < w define

Lln=¢ {ulu€L A length(u) <n}U {u((r,0))* |u € L A length(u) = n A k<w}
For z € A* define z.: S — S by setting |

z.L =4 {e} U {{(=,0))u | u € L}.
Define +: S x S — S by setting

L+ I' =g LU {{(z,1 + mazAr(z) + iu | {(z,0))u € L'}.
Define
> =y {¢}
i<0
and forn < w
S Li=4 (3 L;)+ La
j<n+1 i<n

Define an operation & as follows. If I is a set, {L; |1 € I} € S and (z; | ¢ € I) such that
foricl, z;€ Atandforz € A*, {iel|z:i= z} is finite, then

Z::B;.L,' =df U ( Z .I',-,..L"’-)
iel €A+ j<n(z)

where for € A*, (io, ... in(z)) is an enumeration of {iel]|z; =z}
.Now define an equivalence relation ~ on S by setting ~=4f Nn<w ~n where ~g=4 SxS
and forn < w
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L~n L' iff Vz € A*. A (z) = Ap(z) A Ve € init(L). 3 : Ag(z) & Ap(z).
Vi < dr(z). L after (z,1) ~n L after (z,t)

~ is a suitable equivalence relation on account of the finite branching property of skele-
tons. Let [-] denote the projection mapping and let T =4 {[L]| L € S}. The elements
of T are called synchronization trees. '

Note that ~ is a congruence relation with respect to the operations z. (z € At), +,
¥ and | n (n < w). Hence we may define operations z. (z € A*), +, £ and |n (n < w)
on synchronization trees by setting

z.[L] =4 [z.L]
L]+ (L] =4 [L+L]
Yierzi[Li] =a {Zierzi-Lil
(L] In =4 (L Ln]

" Each synchronization tree may be represented in the form ¥;e; a:. Ti+ Yied r.T; where
each T; and each T is a synchronization tree, since each skeleton may be expressed in
the form Y ier@i-Li + Lies r.L; where each L; and each L; is a skeleton.

Let T=df[]oRoDsothatT:E-—rTand

P-=,Q iff T[P]-= TIQ]
Pref B iff T[P]ref B
Pt iff T[P]T.

Finally it remains to prove the following result.

Lemma 5. (T,dt) is a complete metric space.

Proof: That dr is a metric is immediate from its definition. Note that if S,T € T
and n < w with § | n = T | n then by manipulating enumerations it is easy to show
that VL € S.3L' € T.L | n = L' | n. Hence if (S; | i < w) is a Cauchy sequence
in T then there is a sequence (L; | i < w) which is a Cauchy sequence in S and such
that for i < w, [Li] = Si. Then setting L =4 {u]| 3kVi 2 kuc L}, L €S and
inf {d1(S;,[L]) | i <w} =0. O(Lemma 5)
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