POSSIBLE FUTURES,
AND COMMUNICATING PROCESSES

REFUSALS,

ACCEPTANCES,

W.C. Rounds* and S.D. Brookes

computer and Communication Sciences
University of Michigan

Programming Research Group
oxford University

Abstract

Two distinct models for the notion of communi-
cating processes are introduced, developed and
related. The first, called the possible-futures
model, is a generalization to nondeterministic
systems of the familiar derivative (Nerode equiva-
lence class) construction. The second, called the
acceptance-refusals model, is a slight strengthen-
ing of a model introduced by Hoare, Brookes, and
Roscoe. The PF model can be mapped onto the AR
model homomorphically, and the equivalence classes
of this map can be characterized by imposing a very’
natural equivalence relation on the PF model. The
resulting quotient algebra admits a complete partial
order structure in which the algebraic operations
are continuous.

I. Introduction

We propose two mathematical models for the
algebra of communicating sequential processes
introduced by Hoare [H]. We think of CSP 'programs’
as expressions denoting processes with concurrent
and nondeterministic behavior, and assign meanings
to these expressions using the methods both of
formal language theory and denotational semantics.
Starting with the primitive notions of event and
sequence of events, we are able to define certain
features of nondeterministic transition systems
without having to introduce the notion of states.
This makes it possible to introduce recursive
expressions into the language and to assign them
meanings as well.

Our first model is called the possible-futures
model. It is intended to abstract a nondetermin-
istic transition system, and was invented as the
result of an attempt to define the so-called Nerode
equivalence for nondeterministic systems. The
second model, called the acceptance-refusal machine
(ARM) model, was directly inspired by the refusal
machines of Hoare, Brookes, and Roscoe [HBR] . ARMS
are a slight strengthening of refusal machines and
arose as the result of investigating the connec-
tions between refusal machines and possible futures.
The results of that investigation will appear in a

companion paper [BR].

*pesearch supported in part by sabbatical leave from
University of Michigan and NSF Grant MCsi-8102286.

CH1695-6/81/0000/0140$00.75 © 1981 IEEE

140

The most interesting results from a theoreti-
cal point of view are, of course, the connections
between the two models. We spend some time
developing the first one, whose elements, called
processes, are defined as certain relations on
prefix-closed sets of strings. An algebra of
processes is introduced based on the operations in
csP. 1In particular, we study the operations of
autonomous choice, controllable choice, guarding,
parallel composition, renaming, hiding, sequential
composition, and inverse image. The possible-
futures model, however, does not lend itself well
to the general solution of recursive equations in
these operators. A method is needed to introduce a
partial ordering on processes which is complete in
the sense of denotational semantics, and for which
the operations are continuous. This we do by
defining an equivalence relation-called testable
equivalence-on the possible-futures model, which
is a congruence with respect to the algebra of
processes, and which induces a (complete) partial
order on the quotient space in a very natural way.

at this point, the ARM machines are introduced.
We show that each equivalence class of testable
equivalence is naturally respresented by 2 machine.
In fact, we demonstrate that testable equivalence
is a congruence by constructing a homomorphism from
the set of processes onto the set of machines. The
algebra of machines is very much the same as that
given by Hoare, Brookes, and Roscoe. This paper
thus vindicates their definitions by showing how
they can be derived from a more general model.

several authors have attributed meanings to
csp([FHLD] , [FLP1). The present work, as well as
that of Hoare, Brookes, and Roscoe, focuses on an
abstract version of the language, which has no
jdentifier conventions, labeling conventions,
provision for variables, or scoping rules. We have
attempted rather to make the mathematical semantics
as universal and precise as possible, in hopes that
it can be adapted to particular language designs.

We should also contrast these models with
other models of parallelism in the theoretical
literature.

We make a general distinction between the
notion of a state-based and an event-based model.
The former have been well-studied (see Keller [K]
for a good representative) and are useful for many

correctness properties. The latter models are
newer (see Milner [M] for the most comprehensive
treatment)} and are oriented toward algebraic and
denotational methods. Our models are of this
second kind.

Event-based models of parallelism consider the
notion of action or event, and sequences thereof,
to be primary. The temporal ordering of actions,
and the occurrence of non-occurrence of certain
events are the central idea which they try to
capture. In contrast, the notion of shared vari-
ables or shared storage is primary for the state-
machine models. There is an emphasis on the values
computed by the program, and consequently on the
notion of internal state, which is explicitly given
for these models. This fact implies that the tech-
nigues of program correctness can be used (or at
least generalized) to deal with properties of con-
current programs, and that theoretical construc-—
tions, like nondeterministic automata, can be used
to understand behavior.

This paper is organized as follows. Section
II develops the possible-futures model; Section III
presents the relevant algebraic operations, and
Section IV makes the connection between the two
models.

II. The Possible-Futures Model

To begin, let us assume that a universal set I
of events is predefined. The elements of L are
presumed to be individual actions which are
indivisible and observable in the outside world.

As in automata theory, events may be the names of
functions on an internal state space. More gener-
ally, they may contain explicit information about
values-for example, transmission of a value along a
wire might be considered an event. The set E
should be regarded as large.

If we assume that a system has internal states,
it becomes a problem to define them or to discuss
them using only the notion of event. Fortunately,
however, the problem has already been treated in
automata theory. Suppose that L is a regular sub-
set of I . We can define the Nerode equivalence
relation on I determined by L as follows:

xS, ¥ if and only if L after x = L after Y.

where L after x = {z|xz € L}. The equivalence
classes [x] of this relation serve as internal
states for a minimal machine accepting the language
L. 1If q and q' are states, and s € 1*, we denote

by 9 = q' the passage from state g to state q'
by applying the input string s- Phrased in terms
of equivalence classes, this passage is written

[x] = 5 [xs]

from which it follows that the transition relation
is a function.

141

Now consider another way of writing this
function. Each string x such that L after x # 9
determines an egquivalence class, which can be
represented by L after x. The strings w such that
L after w = § form one extra class which is a dead
state in the minimal machine. The set of pairs

£ = {<x, L after x>| L after x ¥ g}

is a partial function on £* whose domain is the
prefix-closure of L. The set L after x represents
the future behavior of the machine on its way to
accepting some extension of x.

since nondeterministic choice should be cap-
tured in our model, we will replace the function
EL by a relation. This relation will now assign a

set of future behaviors, each itself a prefix-
closed set of strings, to each string in the domain
D of the relation. If T is a future behavior
assigned to the string x in this way, then we want
T ¢ D after x. 1In addition, certain consistency
constraints must be met between futures assigned to
strings x and to extensions xy of x: these should
generalize the equation L after xy = (L after x)
after y. These constraints will be precisely
stated later on.

2.1 Notation

2an event is an element 0 € %, where I is a
universal alphabet (generally infinite). A trace
is an element of $*, the set of all finite strings
over L. M is the null string. Variables X, ¥ S
t... range over traces. A tree is a nonempty
prefix-closed subset of $* .~ variables S, T..-
range over trees. The set of all trees over L is
denoted TREES (). Concatenation of strings and
sets of strings is denoted as usual in formal
language theory:

= {xy|x e L, v € M}s xT = {zy|y € T}.

There is a special symbol / which can only occur at
the end of traces, in any set used in the defini-
tion of process. We define the semicolon operator
on strings as follows:

x/;y = xy
X3y = X

where x contains no occurrence of /. For languages:

LM = {ziylz e L, Y € M}.

(in this case z may end in Y.) Thus
L:M = {xy|x/ € L, y € M, and x is /-free)
vix|x € L, x is /-free, and x/ ¢ L}

In the case that L and M are trees, the semicolon
operator is actually a substitution operator,
replacing occurrences of at the ends of paths by
a tree.

We define for L € I* and x € Z*
L after x = {y|xy € L}.
Let h be a function from L to I*. we write

hih] = (h(x) |x € L}, and h (L] = {z|n(z) € L}.

The function h is a homomorphism if hixy) = hix)h(y)
for x,y € £*. We stipulate that for homomorphisms,
h(o) = V iff 0 =

2.2 Dpefinition of Process

A process is a nonempty relation £ on L* x
TREES (L) satisfying

(1) Consistency. For all x, ¥ € £*, and
U € TREES(Z)., if <xv., U> € f then 3T & TREES(L)

such that <x¢, T> € £ and YU & T.

(2) Persistence. For all x, ¥ € Eg. and
T ¢ TREES(L), if <x, T> € f and ¥ € T, then
3U € TREES(L) such that yU € T and <x¥, u> e f.

The figure below shows the relations batween x, T,
y, and U.

1f <x, T> ¢ £, we say that T is a possible
future for the process f after executing . The
jdea is that at subsequent stages, all execution
- traces will lie in one of the sets T such that
<x, T € £. In a sense, the set T is a prediction
about the behavior of the process, given that some
noendeterministic choices may occur (internally)
after the execution of s. BAxiom 1 then states that
each "later" prediction must be somehow anticipated
at all earlier stages. BAxiom 2 is a sort of
converse property which states that if t is a
predicted trace, in a set T, then after execution
of st, there will be other predictions made,
consistent with the earlier prediction T. These
jdeas can be clarified with the aid of an example;
the one which follows is a modification by W. Ogden
of an example due to Hoare. '

Imagine a soft-drink machine which communicates
with its environment (a customer) using three types
of event: insertion of a 25 cent piece (quarter) ,
denoted by "q"; pushing the coin return button,
denoted by "r", and pushing the "goda” button,
denoted by "s". We are thus using the 3-letter
alphabet I = {q, r, s}. 1In the initial state, the
machine will always accept a quarter, but will
respond to no other event. after the "g" event
has occurred, one of two possibilities may occur
nondeterministically and without being subject to
control by the customer. The quarter may fall into
a coin-return slot, in which case the machine will
only respond to the we" ayent, or the coin may fall
into the "give soda" slot, in which case the

142

machine will only respond to the "s" event.
Following any of these possibilities, the machine
enters a permanent state of breakage.

The situation can be described by the
following process:

soM = (<A, (A, g, ar, as}>,
<, {-'\.r r}>,
<q, {A, s}>,
<qri{A1>f
<gs,{A}>}.

since no autonomous nondeterministic choices are
made in the initial state, there is just one future
prediction made after execution of the null trace
A: the entire set of possible traces. Notice,
however, that there are two possible predictions
about the future made after executing g. Finally,
the only predictions made after executing gr or gs
are null; no further execution is possible.

This machine should now be contrasted with a
more friendly machine which will always respond to
the "r" or "s" event after execution of "g". This
machine is subservient to, or controllable by, the
customer. It can be "graphed" as follows:

F sou = {<A, {A, q, ar, as}>,
<q, {A, £, sl>,
<qr:,{:'l_'r>,
<gs,{A}>}.

Notice that F_SDM is a function; only one predic-
tion is made at any stage. Such processes are said
to be controllable or deterministic. We may intro-
duce a whole class of such processes, which corres-—
pond to the Nerode machines at the beginning of
this section.

2.2.1 Dpefinition

If T is a prefix-closed set (tree) let
proc(T) = {<x, ™ after x?> | x e T}
A process is contrqgiable if it is proc(T)
for some tree T. A controllable process has only
one possible future at any stage; it has a minimal

degree of autonomous nondeterminism.

2.2.2 Further Examples

(<A, *>} (where °* is the null tree)

sToP = (<A, *}. {<p, =>}

This is the process which does nothing at all.

CHAOS = L* x TREES(I).

CHROS exhibits the least amount of controll-
ability of any process.

RUN = {<x, £*>|x e E*}.

RUN is a controllable process which never
refuses to continue.

CHOOSE = (<, 0+I*> | x ¢ I*, o € I}

where ¢ + I* is the tree {A} U o Z¥

CHOOSE is a process which at any step can
choose to doexactly one action and refuse any other
events besides the one it has chosen to do.

STOP

skIp = {<A, />, </, *>}L
SKIP does nothing but terminate successfully.

2.2.3 Restriction

Let S be any tree, and let f be a process. We
wish to restrict f to the set S: This is accomp-
lished by the definition £] s ="

{<x, T N (S after x)>|x € S and <, T> ¢ f}.

It is easy to check that £ 1 S is a process.
The processes CHAOS 7] s, RUN | s, are relativised
versions of CHAOS, RUN, etc. Clearly STOP | S =
sTOP for any S.

2.2.4 A Two-Person Game

Define
ALTERNATE = {<x, L*>]
vi<x, o+L*>

x
x

is oddl
is even}

ALTERNATE mixes controllable with uncontroll-
able steps, with an uncontrollable step happening
first. We can use this definition together with
the notion of restriction to describe the play of a
game.

ILet C be a set of board configurations. (If
the game board is infinite then C will be infinite
in general.) Let cp € C be the initial configur-
ation of the board. We wish to model the play of a
game G from the point of view of the first player
to move. Thus the first move will be an autonomous
choice by the first player, but the second will be
determined by the second player, and so forth. We
definesa move m = <c, d>, where c and d € C, and 4
follows from ¢ by the rules of the game. A move is
an event.

A sequence My M,...M is legitimate if
m0 = <c0. d> for some d, and for each i <k, if

mi = <g, d> then my = <1, e> for some e. Now

+ 1
let T, be the tree {A}ulu|u is a legitimate move
sequence}.
The tree TG is the game tree of G, and the
required process has the simple definition
ALTERNATE | Tg-
The familiar alternating Turing machines of

[CKS] can be defined as a special case of such a
game.

III. Operators

We introduce several operators On processes,
with examples, and develop an algebra of these
operators. The particular operators we have
defined were suggested both by Hoare in CSP and by
analogous operators in Hoare, Brookes, and Roscoe.
The definitions we give, however, were chosen to be
natural with respect to the possible-futures model.

143

The next section vindicates our definitions by
establishing that our operators map homomorphi-
cally into the corresponding operators for the ARM
model .

3.1 Autonomous choice

Let f and g be processes. Define

fmng=fu g= {<s, T>|<s, T> € f or <s, T> € g}

Example. We will use a graphical representa=
tion for trees, or prefix-closed sets:

L"{

ab denotes {M, a, ab}

an
a

denotes {A, a, ab, ac}

denotes {A, al
. denotes {A}.
Let £ = {q, z, s}.
£ = (<A, gr>, <4, £>, <ar, >}

g= {<h, g_s_>r <q., E:' <gs, =>}

Then £ g is a (non-controllable) version of the
soft-drink machine discussed earlier, where the
autonomous choice is made before insertion of the
quarter. In some sense this machine is equivalent
to SDM; the equivalence relation will be defined in
Section IV. We will be ordering processes by
increasing controllability, so the 'meet’ symbol M
is used to show that fr g is less controllable
then either f or g.

We wish to have another choice operator which
will allow the environment to resolve choices
created by alternatives in the component processes,
instead of having those choices resolved autonom-
mously as stated earlier. This will make it
possible to define guarded commands in which
selection of a guarded alternative can be made by
the environment.

£0g=1{<A, TU W | <A, T> € £;<h, V> € g}
Ul«, v» | «, ¥> e fu g and x # A}

The meaning of this ‘definition is perhaps clearest
when £ and g are controllable. f (1 g has then one
future at stage A, and is otherwise like £fm g.
The environment has a chance to resolve choices
only at the first step.

Example. Let f£ and g be as in 3.1; then £0 g
is exactly SDM.

3.2 Guarding

We wish to define a process which must perfom
a single event "a"™ € I and then behave like a given
process £. The process a * f is defined as:
a+f={<h, a+T> | <h, T> € £}

ufax, y> | «, y> ¢ £}

where a » T = {(AtyuaT prefixes a to every string
in T.

3.3 Intersection (pure parallel product}
£|] g={s, TV | <s, T € £ and <s, U> € g}
The product £ l| g should have traces in
common to both processes, and both processes should
agree on their common future. .
Example. consider the process

El(h) = {EE: ﬁ}

£,@ = (b}

£, (ab) £ (ac) = {-}

b
and the process £, = proc (-9—411:). Let g be the
c

b
process Pproc (2-). Then

]
~—
]
-3
[+]
)

(g |1 £ M

(g |l £) @ =& -}

[}
——
.
—

g || £,) (ap)

whereas

@ |l £ = {a b}

g |l £ @ = &}

(g || £,) () = {*}

This example shows that running g in parallel with
the autonomous process fl can result in a deadlock

after a, but that no such deadlock can occur when
g runs in parallel with the controllable process
£

2

3.4 Inverse Image

Let h be a string homomorphism. The process
hﬂlf is supposed to be able to execute a trace Y
whenever £ could have executed h(y). A future of

h-lf at y will then be the inverse image of a
future of £ at hiy). If h maps events to A, then
this future will in general be infinite.

wle = (<, K Hm> | @y), T € £}.

3.5 Direct Image

An admissible homomorphism is one which maps
a subset of L to A, and otherwise maps symbols to
symbols. A typical class of admissible homomor-
phisms are the characteristic homomorphisms of
subsets A & E:

g if o e &
A (o) =

hNif o £ A

—
ok S

Let M £ E. The characteristic homomorphism of
£ - is said to be the hiding of I.

If h is admissible, and f is a process., then
we define

ne(s) = (hix} | Jz. h(z) =sand X € £(z)}

We call this the fair direct image of £ under h.
There is another operator taking into account
potential infinite executions of hidden symbols,
which replaces these by a null future; this is
discussed in the full version of the paper.

3.6 Seguential Composition

We want to define a process from £ and g which
will start the process g at every point in a trace
where f could have terminated successfully, and
then maintains the execution of g. In addition, if
f had the choice of terminating or continuing, we
wish to make sure that £ can still continue: in
the picture £ could have the futures ¥ and T after

v/

T

executing s. g should start at this point, and £
should continue in the future T. We have a situa-
tion, in this case. where we need something like
the nondeterministic machine accepting the
concatenation of two regular sets.

The definition we give is a simple one meeting
the above criteria. More complicated definitions
are possible.

£;g = (<s, wiv> | </, w € EA <A, ¥> € g}
Uil<st, x> | s/ e dom(f) A <t, X* € gl.

The first line says that a future for fig
after execution of the trace s can be obtained by
'gubstituting' ¥ (initial for g) for occurrences of
/ in the future W which f has after s. The second
line maintains execution of g once it has started.
It also allows g to start autonomously (when t=A).

Example. Let
2
r=af/by and T' =b.c

f =proc(T, g = proc(T')
Then £;g assigns the following futures:
A+ {a b? b c} = {aom(£ig)}
a + {bc, bb.c}
ab + {¢, bel
abc + {*}
abb + {c}

abbe + {°}.

AR v,wmg-_—u_:,-v o A

T T

3.7 Ordering

It is natural to consider the set inclusion
relation on the space of processes, which then
becomes a poset. For technical reasons, the
reverse inclusion relation

fCqgiff g€t

will be considered in the rest of the paper. The
relation £ £ g should be interpreted as "g is more
controllable than f" or "f is more autonomous than

gll.
If 'Fis an arbitrary nonempty family of
processes, then the union u'dis a process, which

is the greatest lower bound of the family under
reverse inclusion. Thus

nd=u<E

In case F is the set of all processes,
PROCESSES (L)) we have

(denoted

|ﬂ'a-= CHACS .

Unfortunately, suprema do not exist in general in
the set PROCESSES (), even for linearly ordered
families. This fact is shown by the following
example.

Let I be the countable alphabet

Example.
M define the tree

M u{a,b}. For each n €

= {A, a, ab} U {j!j < n-1}

b
Let £ = (<A, T;> | i > n)

uf{<i, > | i ent}
v{<a, b>, <ab, o>}

It is easy to check thatlgf , which contains the
supremum of the f.'s, does not contain A in its
domain, so the supremum could not be a process.

In order to use the least-fixed-point method
to solve recursive equations, it is necessary to
establish existence of such limits, in addition to
showing that operators are continuous or monotonic
in a given partial ordering. We are not able to
give a general method for solving recursive
equations in the possible-futures model. However,
we will find a way to remedy this situation in the
next section.

IV. Relations Between Machines and Processes

We show in this section how to collapse the
large space PROCESSES(L) into one where we can
solve recursive equations. We do this by intro-
ducing an equivalence relation on processes in such
a way that processes are identified if no finite
'test' can distinguish them. We then introduce
machines - our version of the processes defined in
Hoare, Brookes, and Roscoe - and an onto map

145

M: PROCESSES -+ MACHINES

which is such that if £ is testably equiv-
alent to g, then M(f) = M(g) and conversely.
map M is shown later to be a homomorphism with
respect to the algebra defined in IITI, and an
analogous one on machines directly taken from Hoare,
Brockes, and Roscoe.

The

4.1 The Relation of 'Testable Equivalence'

We can define our eguivalence relation direct-
ly in terms of processes and the operators already
given. The proof that the relation has the desired
properties relies on the machine characterization,
which we will develop after stating the main
theorem.

Our definition is based on the idea of indis-
tinguishability by means of finite tests, and can
be viewed as equivalence in all finite environments
of a strictly limited kind; a test consists of
running a given processes in parallel with a finite
test process.

The class of test process we use is called the
class of probes. A probe is a controllable process
of the form proc(s -+ X) where X is a finite subset
of £, s € £*, and s + X is the tree formed by
taking the prefix-closure of the set s(X U {Al) .
The tree picture of a probe looks like

x

We will run probes in parallel with a given
process f, and obtain test results by observing
the result of intersecting the finite set X at the
'tip' of the probe with the futures that f offers
at s. No other information about earlier steps
will be used in the test.

We need a preliminary definition: if s € %,
and £ is a process,
€ after s = {<t, T | <st, T> ¢ £}.

Since s is not required to be in dom(f), £ after s
can be empty and therefore not always a process.

pefinition. £ is testably equivalent to g.
written £ = g, iff for all probes s =+ X,

(£ || (s » X)) after s = [g || (s + %) after s.
The"after s" part of this definition corresponds
to looking only at the tip X of the probe.

We can now state the main result.

Theorem 4.1

The relation of testable equivalence is a
congruence relation on PROCESSES (L) with respect to
the operations of autonomous choice, conditional
choice, guarding, intersection, and sequential
composition. If homomorphisms map £ to I, the same

holds for inverse images. The induced ordering on

equivalence classes

(f] © [g] iff [fr g] = [f]
makes the guotient algebra into a complete partial
order such that all the induced operations are

continuous.

4.2 Refusals and Acceptances

Theorem 4.1 will follow from a concrete
representation of the equivalence classes of test-
able equivalence, in the same way that £0; 1y 25
3, 4} is a representation of congruence modulo 5 on
the integers. Each equivalence class will be rep-
resented by a machine, which is a strengthened
version of the model proposed by Hoare, Brookes,
and Roscoe. The class of machines admits algebraic
structure; we generalize the algebraic operations
in [HBR] in a straightfoward manner. We then show
that testable equivalence is a congruence relation
by exhibiting a homomorphism from the "futures"
model onto the "machine” model such that testable
equivalence is exactly the equivalence determined
by this homomorphism. (The analogous situation in
the integers is the mapping i + i mod 5.)

It turns out that the "collapsed" version of
the partial ordering & from Sec. 3.9 makes the
space of machines complete in the sense of deno-
tational semantics. The relevant operators then
can be shown to be continuous in this ordering, and
so we may apply the fixed-point theory appropriate
to showing existence of machines defined
recursively.

pefinition. Let pI denote the set of finite
subsets of L. A machine is a relation M on
I* x{pl x pI) satisfying

(1) dom(M) is nonempty and prefix-closed;

62y <s, A, R e M AN R=§;

(3) faect | sacedomm}=ui{a] 3R
<s, A, R> € M}; this set is denoted
I(M, S).

(4) <s, A, R> ¢ M, BE A, S € R imply
<s, B, 5> & M;

<s, A, R> € M, 0 € I imply either
<s, Av {0}, R> € M or <s, A, Ru{d}> e M.
(Both these conditions could hold.)

(5)

The sets A and R such that <s, A, R> € M are
called acceptance and refusal sets respectively.
We may justify the above definition as follows.
Imagine that a machine M can execute the trace s,
after which it could act like a machine N. We may
formalize this using the notation

s
M —> N.

This is of course just another way of expressing
the state transitions of a nondeterministic machine,
with A-moves allowed. MNow define

init(N) = {a e L | 32, N —>P}.

The set init(N) is the set of events in which N
could participate on its first step. If

A & init(N), and RE€ L - init(N), we say that N
may accept A, and refuse R. That is, N may
progress on any events from A, and deadlock on
events from R.

The reasons for conditions (3), (4) and (5)
should now be evident. Since M can evolve into
several machines after exeaiting s, and since we
want I(M, s) to be the totality of events in which
M could participate after executing s, we must have

IM, s) = ulinit(N) | M —=> N}.

Condition (3) states that the union of the A sets
must be this same union. The meaning of (4) is
easily understood, because B = A & init(N) and
SE€ RC I - init(N) imply B < init (N) and

s € I - init(N). Condition (5} follows because

if A € init(N) and RS & - init(N), then one of

ay {0} or R Vv {o} must again have the same
property. Since M could evolve to another machine
0, it might be that <s, A, Ry {o}> and

<s, A u {0}, R> were both allowed triples.

We now identify the nondeterministic state -
transition system with the set of triples
<s, A, R*>. The system is now specified by a
collection of finite entities which represent
possible observable aspects of its behawvior.
may define

We

dom(M) = {s |3a, R. <s, A, R> € M}
and

M after s = {<t, A, R> | <st, A, R> € ML

4.3 Mapping "futures" to Acceptances and Refusals

lLet £ be a process. 1If <s, T> e f, then the
initial segments of T of length 1 should represent
a collection of initial events from some state
reachable by s. That is, TN L is a set of the
form init(N) as in 4.2. Accordingly, we define

M(f) = (<s, A, R> | A& I, R& L,
|a v R|<®, and AT. <s, T> € £, with
AL Tand RE L - T).

The following two theorems are stated without
proof.

Theorem 4.3.0

1f £ is a process, then M(f) is a machine.
Theorem 4.3.1

f is testably equivalent to g <=> M(f) = M(g).

The mapping Af. M(£f) is going to be the homo-
morphism mentioned in 4.1. We need to show that
M maps onto the space of machines, and that it

preserves the operations of 4.1. The latter result
is straightforward (once we have defined the

relevant operations on machines.) First we

establish that M is surjective.

4.4 Mapping Machines to Processes

We show that every machine is M(f) for some
process f, thus establishing a 1-1 correspondence
between equivalence classes and machines. We do
this by defining a map F(N) from machines to
processes such that for all N, M(F(N)) = N. The
definition of F(N), due to S. Brookes, has indepen-
dent interest.

pefinition. Let N be a machine.

(T ¢ TREES(L) | M(proc(T)) & N};

Inp (N) =
= {<s, T™> | T € Imp(N after s)}.

F(N)

The set Imp(N) is the set of deterministic processes
(thought of as trees) such that their own accept-
ances and refusals agree with those of N. So these
processes are in some sense implementations of N.

By definition of the map M(£),

T ¢ Imp(N)<=>(¥t e T) (VX € pL): <t, X n (T after t),
XN (£ - (T after t))> € N.

We must show that F(N) is a process; it turns
out that the most difficult job is showing that
F(N) = @. This is of course entailed by Imp(N) # @,
so we turn out attention to this task.

If s £ dom(N), then the sets <A, R> such that
<s, A, R> € N satisfy properties (2), (4), and (5).
A collection 7 of such finite pairs will be called
an approximate split of I: if v # @ and
T € pI x pL, then 7 must satisfy

(i) <A, R enm = ANR=4 (disjointness)
(ii) <a, R> e TABC AASSR= <B, S> €T
(left-closure)
(iii) <A, RP e T 0 € L = <A y {6}, R" € 7 or

<p, RU {0}> e 7 (additivity).

Lemma 4.4.1

Let m be an approximate split of I, and let
<A, R> € 7. Then there is a set U € I such that
ACS U, RCI - U, and for all finite X € L,

wnX (Z=-U)NX> e

The conclusion of this lemma justifies the
term "approximate split". If <A, R> E W, then A
is obtained as a finite subset of a set U, and
R € L - U, in such a way that if A' and R'are any
other finite subsets of U and I - U, then
<p'", R'> € 7. Furthermore every <A, R> £ T deter-
mines some U like this; conceivably, different
<a, R> pairs could determine dif ferent U sets.

Proof. Extend the definition of inclusion to
pairs of sets by <X, ¥> < <z, W iff X& 2 and
Y< W. A pair of (not necessarily finite) sets
<X, Y> is a full extension of the finite pair
<A, R> if <A, R> £ <X, Y> and for all finite

147

<B, 5> € <X, ¥>, <B, 5> & mW. Let FE(A, R) be the
collection of all full extensions of <A, R>. Since
<A, R*> € FE(A, R), the collection is nonempty, and
is partially ordered by pairwise inclusion. We
will apply Zorn's lemma to FE(A, R).

To do this, let C be a subset of FE(A, R)
which is a chain: 1linearly ordered byc. ILet
x =ulx | G <, ¥> ecl, and ¥,

ulY | (30 <x, ¥> € C}. Then <X, Y > € FE(A, R).
Suppose <B, 5> & <xc, YC>. Then B xc and B is

finite. Since the X sets in C are inecreasing,
there must be an xl such that B & le

and a Yl such that <xl. Y1> € C. Similarly

cy,.

there must be an <x2. Y2> in C such that 5 & 2

s Y 7 or

Since C is a chain, either <X,. ¥, < XK, ¥,

the reverse. 1In the first case, which occurs with-
out loss of generality, we have BC xl < xz, and

sc ‘iz; so <B, S> £ T because <x2. Y2> e FE(A, R).

We have shown that every chain in FE(a, R) has an
upper bound in FE(A, R).

let <U, S> be the maximal element of FE(A, R)
guaranteed by Zorn's lemma. IE T € UM S,
then <{t}, {t}> e 7, souNn 5 = @. We claim that
§ = T - U; this will prove the lemma.

suppose not; then there is an element
o £ UU S, because UN s = @. The pair <xg U {0}, &
properly extends <U, 5>, sO cannot be in FE(A, R)
by maximality of <U, S>. This implies the
existence of a finite pair of the form
<Alu {a}, Rl> g m, where A € Uand Rj & 5.

Similarly, <U, § y {o}> isnot maximal, so there is
a pair <A,, R, U {o}> ¢ m. Now the pair

<a,U By, R U R, is finite and included in

<y, S>, so must be in w because <y, 5> € FE(A, R).
By additivity, «mlu AZU {c}, Rlu R >-€ Wy OF

else <A

LY By BRIV R, U {o}> € n. But by left

closure, either of these two cases gives a contra-
diction.

The set U of symbols given by 4.4.1 can now
be used in the construction of Imp(N). It will
form the initial events in a deterministic process
implementing N.

Lemma 4.4.2. Let N be a machine and
<A, A, R> € N. There is a T € Imp(H¥) such that
ACTand R SL - T.

The proof constructs the desired tree in
inductive stages, using the sets guaranteed by
4.4.1.

Let N be a machine, and

Corollary 4.4.3.

<s, A, R> g€ N.
and RC I - T.

Proof. N after s is again a machine; apply
4.4.2 to N after s.

Theorem 4.4.4. If N is a machine, then F(N)
is a process.

Proof

By definition, dom(F(N))< dom(N). By 4.4.3,
the reverse inclusion holds. Since dom(N) # @, we
have F(N) # #. It remains to show consistency and
persistence.

U> € F(N). Then so0 € dom(N) and
By condition(3) in the
definition of machines, there is an <A, R> with

o e A and <s, A, R> € N. By Cor. 4.4.3, there is a
T' with <s, T'> ¢ F(N), AC T', and RC L - T'.
Let T= (T' - g * E*)yd U. Then TUL=T'N L;
if T # o, then T after 1t = T' after Tt; and T
afterou = U after u. These facts imply T € Imp(N
after s), so <s, T> € F(N), and by construction

ou © T.

Suppose <s0,
s € dom(N) as well.

Persistence is easy: T € Imp(N after s) and
t € T imply T after t € Imp(N after st).

We are now ready for the last theorem of this
section.

Theorem 4.4.5. For all N, M(F(N)) = N.
We already know dom(F(N)) = dom(N),
= dom(N) as well. Let
<s, A, R> ¢ M(F(N)). Then 3X € pI and T such that
<g, T™> e F(N) and A=Tn X, R= (L - T) N X. But
<s, (T after M) n X, (- (T after K) N X> € N by
definition of F(N), so <s, A, R> € N. For the
other inclusion, let <s, A, R> € N. By 4.4.3, 3T
such that <s, T> ¢ F(N) and AC T, RC I - T. Let
X =AU R. Then <s, A, R> = <s, TN X,
(Z - T) N X> € M(F(N)).

Proof.
so dom (M(F(N)))

Corollary. The map £ - M(f) is onto, and the
map N + F(N) is one-to-one.

4.4.5 Algebra of Machines

The space of machines over I admits an
algebraic structure similar to the space of
processes. Here we show that it is in fact a
homomorphic image with respect to a reasonably
large set of operations. We have chosen the
operations defined in Hoare, Brookes, and Roscoe
and have strengthened their definitions to handle
acceptances as well as refusals. We have not,
however, treated the hiding operator in this
section. 1In the companion paper we will show a

continuity result, but the homomorphic property does

not hold of this operator.
Definition 4.5.

(1) stop = {<A, @, R> | R € pI}

Then T € Imp(N after s) with AC T,

148

STOP is the machine which can accept
nothing and must refuse everything.

RUN = {<s, A, @#> | s € £*, A e pL}
RUN can refuse nothing and must accept
everything.

(2)

cHAOS = {<s, A, B> | s e £*, AN R = @)
CHAOS may make any choice whatsoever.

(3)

(4) Autonomous choice.
MIMN=MU N.
{(5) Controllable choice.

mOnwn =

(<A, A\UB, RN S> | <A, B, R> € M, <A, B, S> € N}
Ul<s, X, v> | s # A~ <s, X, ¥> e MM N}
(6) Guarding.
a-—+M= {<A, {a}, R - {a} | R e pL}
y f<ax, &, B | <%, a, o e M}
{7) Synchronized parallelism.
M || n=1{<s, ar.8, RS> | <s, A, R> ¢ M and
<s, B, S)EN}
(8) Seguential composition.
M:N = {<s, A, R> | <5, A, RU{/}> e M

Ui<s, AuB, RAX> | Y¢Z A4, <5, AUV}, R eM,
and <A, B, X> & N}
ul<st, B, x> | s/ € dom(M) A (t, B, X) € N}
(9) 1Inverse renaming. Let h: I = L.
h"lim) = {<s, A, B> || AU R|<® and

<h(s), h[al, h[R]> & M}

The mapping £ - M(f) from processes to
machines provides the required homomorphism. Since
this map is surjective, establishing its homomor-
phic properties also shows that the space of
machines is closed under operations (4-9).

Theorem 4.5.1.

(1) M(STOP) = STOP
(2) M(RUN) = RUN

(3) M(CHAOS) = CHAOS

(4) M(fmg) = M(£)m M(9)
(5) M(£0D g =mne)0d mig)
(6) M(a~ £) =a > M(f)

(1) mM(£ || 9) = M) || M@
(8) M(£f:q) = M(£); M(g)
@ mmwre = nhmE).

The proof is straightforward, except for (8),
and is omitted here.

4.6 Continuity

We close the paper with a discussicn of the
limit properties of machines and continuity of
various operators. This section completes the
proof of Theorem 4.1 as well, since the ordering
defined on machines is derived from the same one on
processes.

Definition: ME N iff N M.

The 'reverse' ordering makes the space of
machines into a complete partial order with bottom
element CHAOS, as we now check.

Clearly CHROS E 4 for any M. If G is a non-
empty set of machines, then U is a machine which,
under reverse ordering, becomes an infimum for the
set. We must show that if <Mi> is a chain with

respect to E, then A{Mi | i € I} is a machine,
which will then be a least upper bound.

Theorem 4.6.0. If M, . & M. for i =1, 2...
e L .I.+1 i

then (F\ M, is a machine.
1 e 1

Proof. This theorem is straightforward
except for the additivity condition, so we include
the proof that the intersection machine has this
property.

Let <s, A, R> € Mi for every i, and let 0 € L
be arbitrary. For each i, either
<s, Ay {0}, R> e M, or <s, A, R U {o}> e M.
i + @, one of these two possibilities occurs
infinitely often. Suppose without loss the first
occurs. Then <s, A U {dgl, R> & M, for infinitely

As

many i. But Hi 2 Mj if i £ j. Therefore
<s, A v {0}, R> e M; for all i, which is what we
needed.

Theorem 4.6.1. The operations autonomous
choice, controllable choice, guarding, parallel
composition, sequential composition, and inverse

renaming are continuous in all their arguments.

Proof. We show the result for parallel
composition. We are to show first: if Mi is a

decreasing sequence of machines (in the subset
ordering then

oM |l m=nu [

The inclusion from riaht to left is again easy, so
suppose <s, A, R> Q1 (M, || N). Then for each i

i i i
<s, A, R> = <s, A, 31 (v} R2> where <s, A, 21> € Mi
i i - P
and <s, A, R2> g N. Now R = RI\J Rz is a finite

149

[H]

. i i
set, so among the pairs <R1, R2>i ehJ' one must
occur infinitely often, and so J<s, A, R1) £ Mi

for each i, and <s, A, R2> e N with R = R1\J Rz' by

the chain property. Therefore <s, A, R> €N Mill N.

Our proof of 4.1 can now be said to be
complete, and we have established all the
connections promised between the two models. We
have not, however, investigated all the possible
operators on processes and machines. nor have we
shown how to connect the HBR model itself to ours.
This latter job is not difficult, and we plan to do
it in a companion note. The other investigations
will be reported in future papers.

Acknowledgements

Professor Tony Hoare was directly responsible
for making this paper possible. The PF model
represents Rounds' efforts to understand his latest
ideas. A special debt is owed to Jim Bodwin, who
suggested the elegant additivity condition on
machines. The Programming Research Group at Oxford
was the site of much of this work, and Rounds
found conversations with Bill Roscoe, Cliff Jones,
Gordon Plotkin, and Robin Milner very helpful.
Finally, credit is due to Roxianne Carbary for
excellent typing.

References

Brookes, S. and Rounds, W. Refusals and
possible futures (in preparation) .

[BR]

chandra, A., Kozen, D., and Stockmeyer, L.
Alternation. JACM 28, 1, January 198l.

[CKS]

Francez, N., Hoare, C.A.R., Lehmann, D.J. s
and de Roever, W.P. Semantics of nonde-
terminism, concurrency, and communication.
Jcss 19 (1979).

[FHLD]

Francez, N., Lehmann, D., and Pnueli, A.
A linear history semantics for distributed
languages. Proc. 2lst Focs, 1980.

[FLP]

C.A.R. Communicating sequential
Comm. ACM. 21, 8, August

Hoare,
processes.
1978.

Hoare, C.A.R., Brookes, 5., and Roscoe,
A.W. A mathematical model of communicating
processes. T. Mon. PRG-20, Programming
Research Group, Oxford University., 1981.

[HBR]

Formal verification of
CACM 19, 7, July 1976.

Keller, R.M.
parallel programs.

[K]

A calculus of communicating
Lecture Notes in CS, Springer,

Milner, R.
systems.
1981.

M]

