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ABSTRACT

This paper discusses some fundamental issues related to the construction of
semantically based axiomatic proof systems for reasoning about program behavior.
We survey foundational work in this area, especially early work of Hoare and
Cook on while-programs, and we try to pinpoint the principal ideas contained
in this work and to suggest criteria for an appropriate generalization (faithful
to these ideas) to a wider variety of programming languages. We argue that
the adoption of a mathematically clean semantic model should lead to a natural
choice of assertion language(s) for expressing properties of program terms, and to
syntax-directed proof systems with clear and simple rules for program constructs.
Hoare’s ideas suggest that in principle syntax-directed reasoning is possible for all
syntactic categories (declarations, commands, even expressions) and all semantic
attributes (partial correctness of commands, aliasing properties of declarations, L-
or R-values of expressions, proper use of variables, and so on). Semantic insights
may also influence assertion language design by suggesting the need for certain
logical connectives at the assertion level. This point is obscured by the fact that
Hoare's logic for while-programs needed no assertion connectives (aithough of course
the usual logical connectives are permitted inside pre- and post-conditions), but an
application of our method to a class of parallel programming languages brings out
the idea well: semantic analysis suggests the use of conjunctions at the assertion
level. We argue that this method can lead to proof systems which avoid certain
inclegant features of some carlier systems: specifically, we avoid the need for “extra-
logical” and “non-compositional” notions such as interference checks and auxiliary
variables. We also discuss the author’s applications of these techniques to other
programming languages, and point to sorne future research directions continuing
this work. Although we do not have a completely satisfactory general theory of
semantically based axiomatization, and conscquently some of our techniques may
seem rather ad hoc to the reader, we hope that our ideas bave some merit.
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INTRODUCTION

Our main point in this paper is to develop the argument that axiomatic reason-
ing should be semantically based, one of the important ideas behind Hoare’s early
work on proving partial correctness of programs. Although this may sound obvious
and in fact most existing proof systems could be claimed to be based on some more
or less explicit semantics, we believe that previously proposed proof systems for
program properties have sometimes failed to take full advantage of the benefits of
well chosen semantic bases. If the underlying semantics is unnecessarily complex, it
is more likely that an attempt to design a proof system based upon it will result in
errors or undesirable features such as very complicated inference rules with complex
side conditions on applicability (or, worse still, unsoundness). We argue that the
adoption of a mathematically simple semantic model should lead to a natural choice
of an assertion language for expressing program properties, and then to a syntax-
directed proof system with clean and simple rules for program constructs. The
semantic structure should influence the choice of assertion language, and may even
suggest the need for logical connectives such as conjunction at the assertion level,
although this is not needed in Hoare’s original proof system for while-programs
because of their especially simple semantics.

To be more precise, we mean that firstly, when desiring to reason about a cer-
tain class of program properties (e.g. partial or total correctness, deadlock-freedom,
etc.), one should begin by formulating a semantic model for the programming lan-
guage which is adequate for that program property. By adequacy we mean that the
semantics must be able to distinguish between program terms which can be used in
some program context to induce different program behaviors. This is one half of the
full abstraction definition [17]: full abstraction requires that the semantics should
distinguish between terms if and only if they can induce different program behaviors
in some program context. Thus, a fully abstract semantics would certainly be ade-
quate; however, full abstraction may be difficult to achieve for certain languages
and classes of properties (see [15,23] for instance), while adequacy is rather easier to
achieve and suffices for accurate support of syntax-directed reasoning, since it per-
mits the replacement of semantically equal terms inside a program without affecting
the overall properties of the program.

Sccondly, the semantic modcl should have a clean mathematical structure. For
instance, the standard partial function semantics for while-programs is certainly
clean and simple and is at the right level of abstraction to be adequate for partial
correctness or, for that matter, for total correctness. Thirdly, the very structure of
the semantic model should guide the choice of assertion language(s) for expressing
properties of program terms. We illustrate this last idea with examples, although as
yet we do not have a completely worked out general theory which would describe for




an arbitrary semantic model how to construct a corresponding assertion language.
We have more to say on this in the conclusion, where we also draw attention to
other work in this direction.

A particularly important facet of this last idea is that the structure of a
semantics may necessitate the use of logical connectives in an assertion language;
while it may seem trite to a logician to argue for the inclusion of logical connectives
in what is, after all, a logical formalism, Hoare’s logic for while-programs contained
no explicit connectives. In that case, there was actually no need: a simple semantic
justification can be given that shows that one does not need to form (for instance)
conjunctions of Hoare logic assertions in order to obtain a complete proof system.
However, this property need not hold for more intricate programming languages,
and it certainly fails with parallel programs. Again this point is brought out fully
by our example. We also point to some directions for further investigation. Firstly,
however, we give some historical remarks to set the scene.

HOARE’S LOGIC

The ideas of using axiomatic techniques to reason about program behavior go
back to the pioneering work of Floyd [13] and Hoare [14]. In 1966, Hoare proposed an
axiomatic basis for computer programming, in a paper of that title. The main idea
was very simple but powerful: to use partial correctness assertions (pca’s) to specify
program properties, and to design a proof system in which pca’s about compound
programs can be deduced from pca’s about their syntactic constituents. In popular
terms, Hoare proposed a “syntax-directed” logic for partial correctness. A partial
correctness assertion takes the form { P }C{Q }, where P and Q are conditions and
C is a program. This is intended to be interpreted informally as saying that if C is
executed from an initial state satisfying P, then if execution terminates, it does so
in a final state satisfying @. The conditions used by Hoare were drawn from a first
order logical language for arithmetic, a natural enough choice since the expressions
of his programming language denoted integers and boolean values.

In Hoare’s proof system there are axioms for each atomic form of program
(e.g., assignment) and inference rules for cach program construct. For instance, the
following while-rule from [14] is well known by now:

{F&B}C{P}
{ P }while Bdo C{P & -B}

This rule allows us to deduce a (special type of) pca about a while-loop from a
(special kind of) pca about the loop body. In addition, and what might seem
incongruous if one is looking for a purely syntax-directed proof system, Hoare's
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proof system included a so-called rule of consequence:

PP=P {P}C{Q} @=¢
{P}C{Q'}

This rule, applicable to all while-programs C' (not just to loops), allows us to
“strengthen” a pre-condition and “weaken” a post-condition. Note also that some
such rule is necessary in any case because of the special restrictions on the asser-
tions deducible from the syntax-directed rules; without some general rule like this,
one would only be able to prove assertions about loops with the fixed format
{ P & B}while Bdo C { P & —B}, and one would be unable to manipulate condi-
tions inside assertions.

Thus, it is sometimes stated that Hoare’s proof system has two parts: a syntax-
directed part containing the axioms and rules for the programming constructs, and
a “logical part” containing (at least) the rule of consequence. A “logical” rule is
applicable to all programs in the programming language, whereas a syntax-directed
rule is only applicable to programs built using a specific construct.

SOUNDNESS AND COMPLETENESS

Cook [11] established the soundness of the Hoare system, and also gave what is
now a standard definition of completeness for program logics (“relative complete-

ness”). It is useful for our purposes to summarize the essential ideas. Fuller details
are in (2] and [11].

Firstly, one needs to make the reasonable assumption that the condition lan-
guage be chosen to be sufficiently powerful to contain all intermediate conditions
needed during a proof. Cook therefore defines an “expressivity” criterion. Bearing
in mind that the programming language in question here (while-programs) has a
partial function semantics, expressivity boils down to the following property: for
every condition P in the condition language and every program C, there must be
a condition @ in the condition language characterizing the set of states

{8 | M(C)s is defined and satisfies P},

where M(C) is the partial function denoted by C. Loosely speaking, expressivity
amounts to closure under (semantic) weakest pre-condition (Dijkstra [12]). An
equivalent formulation can be given in terms of strongest post-condition (Clarke
[9,10]). The first order Janguage for arithmetic used by Hoare is certainly expressive
for his application, and we will not focus on this issue further at this point.

Completeness in the standard sense is clearly impossible, given the well known
fact that the validity problem for pca's is undecidable ([2]): there is no effective
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procedure for testing the validity of partial correctness assertions. This holds even
if the condition language is trivially small, as long as it contains true and false,
so that halting problems become expressible as pca’s. It is therefore impossible to
obtain a complete proof system in the usual sense of completeness, since the set of
provable assertions would then be recursive, while the set of valid pca’s is recursively
enumerable and not recursive, Cook wanted to isolate any incompleteness due to the
syntax-directed proof rules and axioms. Correspondingly, he specified that Hoare’s
logic should be regarded as “relatively” complete if the following condition holds:
for every valid pca there is a proof of that pea in which we are allowed to use as
axioms or unproved assumptions any valid condition. The idea is to allow the proof
system to access an “oracle” able to answer validity questions about conditions (and
implications between conditions). The primary place where this oracle is useful, of
course, is the rule of consequence.

Cook proved the following completeness theorem: for any expressive condition
language, Hoare’s proof system for while-programs is relatively complete. The
proof given by Cook is itself illuminating. He showed that, for every valid pca
{P}C{Q}, we can find an assignment of pre-conditions and post-conditions to
the subterm occurrences of €' which can be used in a natural, syntax-directed
manner, to prove { P }C{ @ }. Since a particular subterm may occur several times
inside a given program, and in general each occurrence serves a different purpose
semantically, one needs to be able to say something different about each occurrence;
hence the reference to subterm occurrences rather than simply to subterms. [This
preoccupation with subterm occurrences rather than subterms will recur throughout
this paper.] Let < denote the relation “is an immediate subterm occurrence of”; the
transitive closure of this relation is the subterm occurrence relation, denoted <*; at
the moment we will only refer to subterms which are commands, although of course
subterms may be expressions or declarations. If we let pre and post be the functions
mapping subterm occurrences of C to pre- and post-conditions respectively, the
idea is that the set

{{pre(C") }C'{post(C) } | €’ <* C}

can be used in a syntax-directed manner to build a proof of {P}C{Q}. The choice
of the functions pre and post obviously depends on P, C, and Q.

To be precise about the requirements on these pre and post functions, and
explain exactly what is intended by “using” this set of pca’s in a syntax-directed
manner, one would need to provide a collection of constraints. Typical of these is
the constraint imposed by a subterm occurrence built by sequential composition: if
C'" = Cy; Cy is a subterm occurrence of C we require that
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pre(C') = pre(Cy)
post(Cy) = pre(Cy)
post(C2) = post(C").

These constraints allow a proof of

{pre(C") }C'{ post(C") }

from the pair of assertions

{pre(Ci)}Ci{ post(Cy)}, i=1,2

by using Hoare’s rule for sequential composition and the rule of consequence. There
are similar constraints on pre and post for the other program constructs. In each
case, the constraints allow the deduction of the assertion { pre(C’)}C'{ post(C') }
from the corresponding assertions about the (immediate) syntactic subterms of ¢’
and the rule of consequence. This formalizes the notion of a “standard” method of
syntax-directed proof.

The assignment of pre- and post-conditions to the subterm occurrences of C in
order to prove { P }C{ @} is known as a “proof outline”, for obvious reasons. It is
important that a single pca suflices for each subterm occurrence; this is the crucial
property that enables us to achieve (relative) completeness with a proof system
in which each inference rule has a single premise for each immediate syntactic
component of the program appearing in the conclusion to the rule: i.e. the rules
have fixed finite numbers of premises whose structure directly corresponds to the
syntactic structure of the conclusion.

Because of the close connection between the idea of weakest pre-conditions
and the construction of the pre and post functions in Cook’s theorem, Cook’s
proof of relative completeness can be paraphrased as showing that weakest pre-
conditions can be used in a straightforward way to prove any valid pca, provided
we assume that all necessary reasoning inside the condition language can be carried
out. Dijkstra [12] showed that a syntactic definition of weakest pre-conditions can
be given for while-programs. Clarke [10] established the connection between Cook’s
notion of expressibility and the ability of the condition language to contain weakest
pre-conditions and/or strongest post-conditions.

LOGICAL RULES AND CONNECTIVES

To a logician there might appear some ad hoc features in Hoare’s “logic” for
while-programs. If pca’s are the objects of proof (¢f. formulas or theorems), where
are the logical connectives? One never forms the conjunction of two pca’s in Hoare’s
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logic, nor the disjunction, and certainly not the negation of a pca! Apart from
the so-called logical rules, traditional logical connectives appear to play a very
minor role in Hoare’s proof system. Certainly logical combinations of conditions
are manipulated (e.g. in the rules for loops and conditionals, and in the rule of
consequence), but the same is emphatically not true for pca’s.

The role of the rule of consequence in the completeness property for Hoare’s
logic is crucial. Other sound logical rules, such as

{PL}C{@:} {P}C{Q:}
{PL&P}0{Q: &£Q2}

(or, for that matter, the similar rule involving V) are not needed to achieve com-
pleteness, although it could be argued that they are useful pragmatically. Note
also that this rule is not really related to the familiar &-introduction rule of natural
deduction, despite its superficial resemblance in that it introduces conjunction in
both pre- and post-conditions: the assertion { Py &P, }C{Q,&Q5 } does not behave
logically as a conjunction of assertions, since the fact that C satisfies it does not
logically imply that either of the assertions { P; }C{Q;} is also valid. Of course,
in propositional or predicate calculus each of ¢ and ¥ is a logical consequence of
@ &1). Thus, even rules such as this which superficially seem to involve connectives
used with assertions about the same program are not truly treating assertions as
objects of a boolean algebra.

Yet the rule of consequence is in reality a disguised form of modus ponens. If
we define the obvious notion of implication for pca’s, i.e. that

{P}C{Q} = {P'}C{Q'} & (P=2P&Q@=Qq),

the connection with modus ponens becomes clearer. Note, nevertheless, that this
“implication” is not a true logical connective on peca’s, becausc it only applies to
pca’s about the same program. If we reformulate Hoare’s ideas without using sugar,
writing
Ck(P,Q) for {P}C{Q}
and writing (P,Q) = (P',Q') for (P’ = P) & (Q = @'), we have for the rule of
consequence:
CE(P,Q) (P,Q=(PQ)
CE(P,Q)
This merely syntactic reformulation of the rule involves less syntactic sugar and, I
feel, emphasizes better the logical structure of the rule. We will see later that this
version generalizes to other settings,

The reason that no logical connectives (other than implication) on assertions
were necessary is summarized as follows. In order to prove a (single) pca about a
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program C, we can find an assignment of pca’s to the syntactic subterm occurrences
of C from which a proof can be constructed. This is the content of the “proof
outline theorem” as described earlier. If, on the contrary, one might have needed
several assertions for each subterm of C, it might have been necessary to allow
conjunction of pca’s (rather than allowing rules with arbitrarily many premises).
Crucially for while-programs, we can get by with a single assertion about each piece
of a program.

However, there is no reason why this should hold when we move to more
complicated programming languages. Firstly, if a language has a more complicated
semantic model (than partial functions from states to states) there is no particular
reason to suppose that the pca format should lend itsclf naturally to syntax-directed
reasoning. Essentially, the problem is that pca’s may no longer have a structure
that “fits” the semantic structure adequate for partial correctness. For example,
in (8] we reported on a syntax-directed proof system for a simple block structured
language with aliasing introduced by declarations, and we found indeed that the
pca format needed to be modified to allow a good fit with semantic structure.

In addition, there may be quite different notions of program correctness which
are of interest, and then it is not always most natural to use pca’s to express program
properties. By way of example, again from [8], when reasoning about the correctness
of block structured programs in a setting where aliasing may occur among program
variables, it was found necessary to axiomatize the (purely declarative) aliasing
properties of declarations in addition to their imperative effects; although the
aliasing properties were conveniently expressed in a notation which superficially
resembles that of pca’s, the “pre- and post-conditions” were drawn from a very
simple language solely chosen to allow succinct descriptions of aliasing relationships
and did not need the full power of a language for arithmetic. For another example,
in which a much more radical departure from the pca format is suggested by the
semantic structure, see the application to parallel programs in the next section of
this paper.

Finally the need for connectives on assertions should be re-examined for an ap-
plication to more complicated languages. Again, the parallel programming example
brings this out well, and we now examine this in more detail.

AN EXAMPLE

To illustrate our points more concretely, we summarize the application of our
ideas to a simple parallel programming language, essentially the language discussed
by Owicki in her thesis [19] and in the paper [20]. We provide here a condensed




development of this work; a full presentation appeared in [6]. Many of the details
are suppressed to avoid excessive duplication of effort.

The programming language is a standard while-loop imperative language to
which we add a parallel composition C; || C2 and a conditional critical region
await B then C, in which the body C must be executable as a single atomic unit.
We regard assignments and boolean expression evaluations as atomic. [In fact, it
is reasonable to constrain the body of a critical region to be a finite sequence of
assignments, although this is not crucial to our discussion.] The interpretation of
parallel composition will be nondeterministic interleaving of atomic actions of the
two parallel processes C; and Cs until both have terminated. A conditional critical
region await B then C can only be executed when B is true, and its effect is to
perform all of C without allowing interruption from any other (parallel) process.
When its test condition is false, an await command is unable to progress and must,
as its name suggests, wait for the state to be changed (by another program executing
in parallel) to one satisfying the condition. When a command is unable to progress
but has not yet properly terminated (typically because of an await) it is said to be
deadlocked. Thus, for instance, the effect of

z:=0;[(await z = 1 then y:=2) || z:==1]
is to (finally) set z to 1 and y to 2; on the other hand, the effect of
z:=1;[(await z = 1 then y:=2) || z:=0]

is either to deadlock (with z set to zero) or to terminate with z = 0 and y = 2.
Full semantic details appear in [6].

It is well known that for a treatment of partial correctness and deadlock this
language requires a more sophisticated semantic model than the obvious modification
of state-transformations to relational semantics. Using the operational presentation
of Hennessy and Plotkin [15] it is convenient to describe the semantics of this lan-
guage in terms of the computations of an abstract machine whose configurations
have the form (C, s) (where C is a command and s is a state), and whose transitions
(one-step of a computation) involve a single atomic action and are described by a
family of transition relations —+ (where o ranges over the set of atomic actions).
A transition of the form (C,s) —° (C’, s') represents the ability of C, in state s,
to execute the atomic action o and that immediately afterwards the state is s’ and
the remaining command is C’'. There are two types of configuration from which
no transition is possible: deadlocked and successfully terminated configurations. A
full semantic description of the language gives definitions of the transition relations
and of two sets DEAD and TERM of configurations. The partial correctness and
deadlock behavior of a program C can then be described as a function

M(C): S — (P(S) X P(9))
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which is itself presentable in the following form, by means of two auxiliary functions

S(C): S — P(S)

$(C)s = {&'|(C,s) =" (C',¢') € TERM}
p(C): S — P(S)

p(C)s = {&'|(C,s) =" (C',s') € DEAD}
M(C)s = (8(C)s, D(C)s)

Here — denotes the one-step transition relation, so that (C,s) — (C’, s’) represents
that for some a we have (C,s) =% (C’',s'). We use —" for the transitive closure
of this relation. Thus, $(C)s is the set of states in which some finite sequence
of transitions may terminate from the initial configuration (C,s). However, it
is impossible to construct this function in a purely denotational, syntax-directed
manner. The reason is that we are ignoring intermediate states and the potential
for interference between parallel processes. As Hennessy and Plotkin established,
it is necessary instead to use a semantics based on a more intricate structure
(resumptions). Ignoring for the moment the fact that the resumptions are recursive
objects from a recursively defined domain, we can design a semantics

R:Com — R
R=[S— P*(R X S)]
R(C)(s) = {(R(C"), 8"} | (C,s) = (C', 5"} }

We use here P* to denote a simple variant of the finite powerset constructor in
which there are two versions of the empty set, which we denote e and o, representing
respectively termination and deadlock. Thus, if R(C)(s) = e we say that C has
terminated in state s, and similarly for deadlock. In this structure it is important
to note that the sets R(C)(s) are always finite, and indeed that each member of
such a set is the result of a unique atomic action (occurrence) from the text of C
which is “enabled” in state s. Again, we refer the reader to [6] for more details.
The rigorous mathematical justification for the use of recursively defined domains
here is not germane to the paper, although of course justification is necessary for
the semantic definitions to make sense.

Now, in the same way that Hoare’s syntax for pca’s “fits” the semantic structure
[S — S], once we have chosen a syntax for conditions describing S, we may design
an assertion language for the structure R. Lect ¢ be an assertion describing a
resumption r. We need in ¢ to be able to describe, given some information about
an initial state s (i.e., given a condition P), whether or not (the command whose
resumption is) r deadlocks or terminates, and if not, some information about each
of the possible results of the atomic actions enabled in s. BEach of these results
requires another assertion about a resumption (describing the resulting command)
and a “post”-condition describing the resulting state. Thus we are led, with some
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syntactic sugaring, to the following “grammar” for ¢:

¢ = Po | Pe | PZ:}-,—P@;

i=1

We have chosen to include atomic actions in the syntax of assertions purely for
ease of relation to other proof systems, and we have chosen a linear notation for
the general form of assertion because it resembles very closely Milner’s format for
synchronization trees [16]; in fact, it is convenient to think of an assertion as a
synchronization tree with conditions before and after each of its arcs. Our aim will
now be to produce a proof system for establishing properties of the form C = .
The interpretation of such a property is, of course, closely based on the semantics.

Now that we have an assertion language whose structure closely models the
semantic structure of the objects it describes, it is clearly going to be possible to
reason about these objects in a syntax-directed manner, just as the denotational
semantics builds meanings of commands in a syntax-directed manner. In fact, just
as there is a semantic operation || on resumptions such that

R(C1 |1 C2) = R(Cy) || R(Co)

we can introduce a “semantic connective” || on assertions with the intended property
that whenever ¢, describes C; and ¢, describes Cy, then also ¢, [| ¢2 describes
Ci || Og. The required definition, taken from [6], is for the “base cases”:

(Po) || (Qe) = {P&Q}e
(Pe) || (@) = {P&Q}o
(Po) || (@) = {P&Q}o.

For ¢ = (P Y| aiPi¢s) and ¢ = (Q LT, B;Q,4;),

I

I

v = (PERUS wPildi 4] + S 5,056 1| wy]).

i=1 =1

Given this definition, which we regard as constituting a logical characterization
of || as a connective on assertions, we can use the following proof rule for reasoning
about parallel programs:

CilEd1 Cal=¢o
[C1 || Co] = [¢1 || 2]
Although we have not given the details here, the soundness of this rule is obvious,
because the definition of @ || 4 is essentially a rephrasing of the semantic clause
defining R(C || C2) from R(Cy) and R(Cj). Since the assertion language and rules
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are semantically based, the soundness proofs are made by appeal to the semantic
definitions.

Using syntax-based rules of the above kind for the programming constructs, it
is straightforward to design a simple proof system for properties of the form C k= ¢,
in which the premises in each rule involve assertions about the principle subterms
of the conclusion.

At this point, one might ask if the assertion language and proof system are
sufficiently powerful. The answer is no, if we want to achieve the desired complete-
ness properties. The first reason is that, as with Hoare’s logic for while-programs,
we need an analogue of the rule of consequence to allow us to manipulate condi-
tions. There is in fact a very natural generalization of the rule of consequence,
which we will embody as a form of modus ponens. Firstly, it is possible to define
an implication on assertions: implication = is characterized by the properties:

(Pe) = (@) & (@=P)
(Po) = (@) & (@=P)

(PY aiPigs) = (@D Qi) & (@=P)&
i=1

=1

ALB = Q) & (¢ = )

=1

Note that we use = to denote assertion implication and the usual implication on
conditions; the context makes it clear which is intended. It should be clear that this
definition of implication is the obvious extension to our more highly structured
assertion language of the (implicit) notion of implication for ordinary pca’s as
described earlier. The analogue in this setting to the rule of consequence is:

Ck¢ (6=4)
Ckvy

Even with the inclusion of this rule, there is not yet any analogue of the Cook proof
outline property. There is a second reason for incompleteness. There are simple
examples of commands C and assertions ¢ such that C' | ¢ is valid, but is not
deducible by first proving a single assertion for each syntactic subterm occurrence
of C. A rather elementary example is:

[mi=z+1 | zi=2 + 2].

No pair of single assertions (one each) about z:=z+1 and z:=z+2 can be combined
to prove (the assertion which states) that this program increases z by 3. Instead, in
this case, we need to be able to make two assertions about each subterm occurrence
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(one for use when the term is executed before the other, and one after). The
general scheme is that one needs in principal to allow arbitrary finite conjunctions of
assertions about each subterm occurrence. Thus, we can recover the “one assertion
for each subterm” property by throwing in conjunction at the assertion level! (This
also necessitates a careful axiomatization of the interaction of conjunction with
parallel composition of assertions, as discussed in [6]. It is also necessary to specify
the obvious implicational properties of conjunctions.) If we do this, as shown in
[6], we obtain the expected results: a sound and relatively complete proof system.
The point to emphasize here is that semantic considerations have led us to include
conjunction in the assertion language.

The analogue of Cook’s proof outline theorem is then: for every valid assertion
C'|= ¢ there is an assignment assert of assertions to subterm occurrences of C such
that C = ¢ is deducible in a standard manner from the premises

{C'F assert(C’) | C' <* C}.

Again, the assignment of assertions to subterms must satisfy certain requirements
for this standard deduction to be possible. For instance, given a subterm occurrence
C1 || Cz of C, we require that

(assert{C,) || ascert(Cs)) = assert(C, || Cs).

As with the proof outline constraints, each type of syntactic construct imposes a
constraint on the assert assignment. Fuller details will be given in an expanded
version of [6]. The main point is that assertions about a compound command should
be deducible from assertions about its immediate subterms.

It should be noted that the use of conjunction means that we do not need
recourse to auxiliary variables; and that the careful definition of parallel composition
of assertions was made in order to avoid the need for interference-freedom checks
[19,20]. Both of these points are elaborated in more detail in (6] and [7]. It is in
avoiding recourse to these rather extra-logical features that we see the principal
advantages conferred by our approach.

GENERALIZING HIOARE’S LOGIC

We have surveyed early developments in axiomatization and given an example
which we believe generalizes the important ideas appropriately to a significantly
more complicated programming language. Although we would not claim to have
worked out a complete theorv of semantically based axiomatization applicable to
all possible programming languages and classes of program properties, we feel




that several essential ideas are suggested by our experience. The following points
sumimarize these ideas well.

e Assertion language(s) should be designed to fit semantic model(s).
o Syntax-directed reasoning is (in principle) feasible for all syntactic classes.

e Logical connectives should be included in an assertion language if the semantic
properties imply their utility.

The first point was, as we have already remarked, certainly satisfied by Hoare’s
choice of syntax for peca’s, in that a pca contains two conditions, one for the
initial and one for the final state. The other two points are perhaps not so clearly
visible in Hoare’s while-program logic, since the principal topic of his work was the
axiomatization of the partial correctness properties of commands alone; there was
no need then to axiomatize expressions or declarations, and no need for conjunctions
of assertions. Indeed, to some extent, the syntactic sugar used in the pca format
obscures the logical structure.

As a point often taken for granted, note that even the choice of condition
language ought to be influenced by semantic properties. In particular, we know
that while-programs suflice to describe all partial recursive functions on the integers
(assuming that all expressions are integer-valued). Moreover, if a condition language
contains the usual logical connectives (a natural enough property!) and contains
conditions of the form I = E, where I is a program variable or identifier, and E
is an (integer-valued) expression, any finite state (i.e., any finite function from a
finite set of identifiers to integers) can be described uniquely by a “characteristic
condition”, of the form

Il=U1&Ig=v-2&...&fk=vk.

Since programs describe partial recursive functions, the (sets of states described by)
conditions must be closed under image and pre-image of partial recursive functions
if we are to be able to express all necessary intermediate conditions. This conclusion
is obviously related to the results established in (3], where an analysis is given of the
suitability and expressive power of recursive and recursively enumerable condition
languages.

The second point made above is that syntax-directed reasoning is possible for
any syntactic category, not solely for programs. This was already implicit in Hoare’s
early work [14], but I do not believe that later developments took up the idea to
its fullest extent. For one example, some early work on axiomatizing languages
with declarations as well as commands utilized the pca format { P }C{Q} again,
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but with the pre- and post-conditions also expressing declarative properties such
as aliasing relationships. It is conventional to give semantics by means of separate
(but related) environments and stores, as for example in Stoy [24] and in Strachey
[25]. The meaning of a command is then a function from environments to partial
store-transformations, and a declaration denotes an environment-transformation.
When this is done, the pca format no longer fits as well: from the format of a
pca for commands it appears that we will have to keep proving that the command
has no effect on the environment, because the post-condition mentions properties
of the environment. But only declarations change the environment, so it is actually
more convenient to design two proof systems in tandem: one for declarations and
one for commands. The assertions for commands should involve two separate pre-
conditions and a single post-condition, with a pre-condition for the environment
and one also for the store. A detailed exposition of such an approach can be found
in [8].

Next we expand on the idea that semantic structure should influence the design
of assertion languages and proof systems. We attempt a general definition of what
a semantically based, syntax-directed proof system should be.

In a denotational semantic definition for a programming language the meaning
of a term is constructed from the meanings of its parts. Given the abstract syntax
of a programming language, in particular the set of syntactic types (e.g. Com, Exp,
Ide, BExp) and the syntactic constructors (e.g., ;” of type Com X Com — Com),
a denotational semantics consists of a family of semantic functions, (usually) one
for each type, each mapping terms of a particular type into meanings appropriate
for that type. These functions are usually presented by a structural induction on
the syntax. It is usual to pick out a collection of semantic domains, one for each
type, so that if 7 ranges over the syntactic types, we can write D, for the semantic
domain appropriate for type 7 and define a semantic function M, : 7 — D,. The
denotational condition that a term’s meaning is determined from the meanings of
its subterms then becomes refiected as follows. For each program construct op of
type 71 X -+- X 7, — 7 there is a semantic operation Fo, which constructs the
meaning M,(op(t1,...,tn)) from the meanings M,,(¢;). With the usual notion of a
subterm occurrence, and of immediate subterm occurrence, written t' < t as before
(or (¢ : 7) < (¢t : 7) if we want to indicate the types), each ¢; is an immediate
subterm occurrence of op(ty,..., ;). This means that M,(t) is constructed from
the set { M (') | (¢ : 7') < (¢ : 7)} in a standard way depending on the operator
used to construct ¢. The definition of M.(t) is commonly referred to as a semantic
clause.

The relevance of this general definition when we try to formalize what is the
essence of syntax-directed, semantically based axiomatics should be clear. For each
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syntactic construct op and its corresponding semantic clause there should be an
inference rule. There should be assertion languages and proof systems for each
type 7, so that if we write (= A) : 7 to indicate a typical assertion about a term ¢
of type 7, this inference rule typically would take the form:

{EA):7|(:7)<(t:7)}
(tEA):T

with a premise for each immediate subterm occurrence of ¢t. Although this for-
mulation may look somewhat awkward, it collapses to the usual Hoare rules when
applied to while-programs and partial correctness semantics, with the adoption of
the usual syntactic sugaring and suppression of syntactic types. And for each type
7 it should be possible to define an appropriate notion of implication on assertions
about objects of that type, so that the proof system for that type would include a
modus ponens rule. Of course, the proof systems for the various types fit together
in a hierarchical manner which mimics the syntactic structure of the programming
language; and the various implication relations at each type may require a mutually
recursive definition.

An appropriate generalization of the use of proof outlines in the Cook theorem
and its proof would then be the following. If (¢ = A) : 7 is a valid assertion (validity
being defined by appeal to the semantics of the language, of course), then there
is an (type-respecting) assignment assert of assertions to the (immediate) subterm
occurrences of ¢ such that (t = A) : 7 is deducible from the application of this rule
to the premises

{(t' Fassert(t)) : ' |(t' : 7') < (t:7)}
This again collapses to the Cook theorem for while-programs in that simple case.
And in the example of parallel programs this seems an appropriate generalization
of the relevant theorem.

RELATED WORK AND FURTHER RESEARCH

We have not described a general-purpose technique for constructing semanti-
cally based, syntax-directed proof systems. Rather, our as yet limited experience
gained while investigating some particular programming languages and program
properties has led us to make some (we hope) reasonably coherent guidelines. Our
formulation of the denotational setting and its corresponding axiomatic analogue in
the previous section is intended as a first step towards a general theory. We believe
that the ideas are much more widely applicable than we have been able to indicate
here, and a general theory would be very worthwhile. The recent work of Abramsky
[1] may turn out to be an important contribution towards such a general theory;
he aims at a logical presentation of the domain theoretic constructs prevalent in




328

denotational semantics. In a similar vein we also mention the recent developments
of Robinson, also exploring the axiomatics of denotational semantics ([21]). The full
implications of this work need to be worked out, and the connections with existing
proof systems could be interesting. One particularly interesting example should be
provided by the work of Stirling [22], who has developed a compositional (syntax-
directed) formulation of the Owicki-Gries proof system involving a different type of
assertion from ours.

There are several interesting issues from an axiomatic point of view which
remain to be explored. A fairly simple example occurs in proof systems for dealing
with arrays (see [4] for example) where it is common to find an axiom for assign-
ment to an array position which superficially looks as simple as Hoare’s axiom for
“ordinary” assignment to a variable:

{[E\ A[Eo]|P }A[Eo]:=E{ P }.

However, the syntactic definition of what it means to substitute an expression for
A[Ep)] in a condition is somewhat involved. I believe it would be worth investigating
an alternative proof system in which a component of the proof system involves
reasoning about the (R-)value ([24]) of an (index) expression. It may be useful to
allow reasoning about assertions such as “the value of Ej lies in a certain range”,
with the obvious intention. One might then design a proof rule of the following

form.
{Bo: X} Aex(E\AP]Q = P)
{ P}A[E=E{Q}

where Eg : X is an assertion saying that the value of Ej is in a range described
by the set X (a finite subset of the integers). Since the substitution now only
involves “simple” array variables A[v] where v is known, it ought to be possible to
give a more straightforward syntactic definition. We have ignored issues pertaining
to range checking for indices out of bounds. And of course this idea itself brings
other problems, such as the possible need for more complex assertions for Ey, and
the choice of a syntax for describing finite subsets of integers. Nevertheless, our
version of the rule could be argued as more accurately reflecting the semantics and
our operational intuitions about what happens in an array assignment. We do not
want to get involved here in the details, but we propose to investigate this issue
elsewhere.

As we outlined above, syntactic classes other than commands are candidates
for syntax-directed reasoning, and an approach that systematically investigates the
possibilities may lead to some revision of our current ideas as to the “best” way to
reason about programs. Notable work along these lines is reported in [5]), where an
axiomatization is given for expressions with side-effects.
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Much more challenging applications of our ideas are provided by procedural
languages, especially when including higher types (procedures as parameters to
procedures); the semantic structures necessary to describe partial correctness of
programs then become intricate. It will be interesting to see if any benefits can be
gleaned from a semantically based approach.
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