Sequential Algorithms, Deterministic Parallelism,
and Intensional Expressiveness*

Stephen Brookes

Denis Dancanet

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

{brookes ,dancanet}@cs .cmu. edu

Abstract

We call language Ly intensionally more expressive than
L, if there are functions which can be computed faster
in Ly than in Ly. We study the intensional expressive-
ness of several languages: the Berry-Curien program-
ming language of sequential algorithms, CDSO0, a de-
terministic parallel extension to it, named CDSP, and
various parallel extensions to the functional program-
ming language PCF. The paper consists of two parts.

In the first part, we show that CDS0 can compute
the minimum of two numbers n and p in unary rep-
resentation in time O(min(n,p)). However, it cannot
compute a “natural” version of this function. CDSP
allows us to compute this function, as well as functions
like parallel-or. This work can be seen as an extension
of the work of Colson [7, 8] with primitive recursive
algorithms to the setting of sequential algorithms.

In the second part, we show that deterministic paral-
lelism adds intensional expressiveness, settling a “folk”
conjecture from the literature in the negative. We show
that CDSP is more expressive intensionally than CDS0.
We also study three parallel extensions to PCF: parallel-
or (por) and parallel conditionals on booleans (pif,) and
integers (pif,). The situation is more complicated there:
pif, 1s more expressive than both pif, and por. Ilowever,
pif, still is not as expressive as the deterministic query
construct of CDSP. Thus, we identify a hierarchy of in-
tensional expressiveness for deterministic parallelism.

*This research was sponsored by the Office of Naval Research
under Grant No. N00014-93-1-0750.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of the U.S.
Government.

To appear in the Proceedings of the 22nd Annual
ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, January 1995

1 Introduction

We are interested in establishing relative intensional ex-
pressiveness results for programming languages. Most
work in the past has focussed on extensional expres-
siveness: Language Ly is eziensionally more expressive
than Ly if there are functions that are computable in
L, but not computable in Ly. We say that L is inlen-
sionally more ezpressive than Lo if there are functions
computable faster in Ly than in Ls. Note that there
has been a lot of work comparing the intensional ex-
pressiveness of different models of computation. For
instance, allowing only a single tape for a Turing ma-
chine can square the time necessary to recognize a lan-
guage versus a two-tape Turing machine [13]; and there
are certain problems for which there exist faster CRCW
PRAM algorithms than EREW PRAM algorithms [10].
Our work compares programming languages, not their
underlying computation models.

In the first part of this paper, we study the express-
ibility of the minimum function, which computes the
minimum of two natural numbers represented in unary
form (0, S(0), ..., where S stands for successor). We
look at various algorithms computing minimum, which
agree when the inputs are fully defined (as they must,
since they all compute minimum), but may disagree on
undefined or partial inputs.

A natural way to define minimum is by the following
rewrite system:

min(z,0) =0
min(0,z) =0
min(S(z),S(y)) = S(min(z,y))

We need to distinguish between the function min
(the least Tunction satislying the rewrite rules above),
and an algorithm for min, which we denote min,. Intu-
itively, the algorithm based on the above rewrite rules

computes ifs result in time O(min(n,p)) (it takes ex-
actly min(n,p) + 1 steps). One can formalize this by

giving an operational semantics, and defining a notion
of cost (cf. Colson [8]).

The questions we are interested in are: Is it pos-
sible to write a program to compute the minimum of
n, p in time O(min(n,p)) in Berry and Curien’s lan-
guage of sequential algorithms, CDS07 Is this possible
in a language of parallel algorithms, CDSP, obtained
by generalizing the valof construct of CDS0 to a par-
allel form of query? In the second part of the paper
we consider the following more general questions: Does
the parallel query construct of CDSP give added inten-
sional expressiveness over CDS0?7 How does it relate to
the expressiveness of parallel extensions to PCF?

The rest of the paper is organized as follows: First,
we describe intensional semantics and the domain of
lazy natural numbers. We give a brief overview of se-
quential algorithms, concrete data structures, and the
programming languages CDS0 and CDSP. Then we re-
view Colson’s results concerning primitive recursive al-
gorithms. We describe our results with CDS0, CDSP,
and parallel PCF. We end with conclusions.

2 Background

2.1 Intensional Semantics

Traditionally, most denotational semantic models of
programming languages have been extensional, designed
to express only the input/output behavior of a pro-
gram. We are interested in reasoning about intensional
aspects (e.g., complexity), so we need semantic mod-
els that contain more computational information. This
can be achieved in many ways. We outline just a few
possibilities:

e We could take the meaning of a program to be
a function on a richer domain (e.g., [4, 7]) whose
structure permits us to deduce information about
computation strategy.

e We could take the meaning to be a pair consisting
of a function and an object conveying intensional
information; this object could represent the cost
of evaluating the function, or could be a function
from inputs to costs (e.g., [12, 19]).

¢ We could dispense with functions as meanings al-
together, and use algorithms instead (e.g., [2]).

An important point to note is that intensionality is rel-
ative. A model can be more intensional than another
one, if its elements convey extra computational detail.

For a simple example consider the semantics of prim-
itive recursive (PR) algorithms. PR algorithms are just
syntax for expressing PR functions [16]. The syntax is
in the form of a rewrite system (see Colson [7, 8] for

(L)
54(0) '

N

SH(L)

e / |
S(L)
g

L

S(0)

Figure 1: The lazy natural numbers

a formal definition). Consider the following two algo-
rithms for integer addition in unary representation [8]:

addl(0,y) =y
addl(S(z),y) = S(addl(z,y))

add2(z,0) = z
add2(z,S(y)) = S(add2(z,y))

The standard extensional denotational semantics for
addl, add2 maps them both into the addition function
of type N? — N, where N is the flat domain of natu-
ral numbers. A simple intensional semantics may be
provided by using the lazy natural numbers [7, 8, 9].
The domain LNAT is shown in Figure 1. LNAT cap-
tures the temporal aspect of finding out what an input
is. At S*(L) we don’t know yet if we have the number
S%(0), or something larger (at least S*¥+1(L)). This in-
tensional sermantics is suflicient to distinguish between
the two addition algorithms. Using the meaning func-
tion [] from [8, 9] (which makes the meaning L when
an algorithm tries to recur on L) we have:

[add1](S?(1),S(L)) = S*(L)
[add2])(S?(L),S(L)) = S(L)

The LNAT semantics is richer than the N seman-
tics, and contains intensional information; the above
equations can be interpreted as showing that at some
point, add?2 tries to evaluate part of ils second argu-
ment before the first, whereas addl looks at its first
input first. Although the LNAT semantics still repre-
sents the meanings of addl and add2 as functions (from
LNAT x LNAT to LNAT), it conveys implicit informa-
tion about computation strategy. In the next section we
describe Berry-Curien sequential algorithms, which can
be used to provide a more explicitly intensional model
for PR algorithms.

2.2 Sequential algorithms and concrete
data structures

Sequential algorithms on concrete data structures pro-
vide an intensional semantics for sequential program-
ming languages. In contrast with the traditional exten-
sional semantics for such languages, continuous func-
tions are replaced by sequential algorithms, and Scott
domains by concrete data structures. We provide a very
brief overview, along the lines of Berry and Curien’s
work. The interested reader is referred to [2, 11] for
details and definitions. An alternative description in
terms of decision trees can be found in [14].

2.2.1 Concrete data structures

Concrete data structures and their domain-theoretic
counterparts (concrete domains) were developed by
Kahn and Plotkin [15] in order to distinguish between
function domains and domains of the data on which
they compute. They provide an abstract framework for
modelling incremental sequential computation.

A concrete data structure (cds) consists of a set of
named cells, which can hold values, and an accessibil-
iy relation governing the order in which the cells can
be filled with values. A cell ¢ filled with a value v is
called an event, written ¢ = v. A set of events satisfy-
ing certain conditions (no cell is filled more than once,
accessibility relation is respected) is called a state. The
set of states of a cds M ordered by set inclusion form a
concrete domain (D(M), C).

Example 2.1 We define BOOL, the cds of booleans.
There is one cell called B, which can be filled with either
tt or ff. The set of states of this cds is:

{{L{B=uh{B=f}}

Note that (D(BOOL),C) is isomorphic to the flat do-
main of booleans. [J

Example 2.2 We define LNAT, the cds of lazy natural
numbers. It has cells b, for n > 0, values 0 and 1, and
the following accessibility relation: bq is initial (no pre-
condition), and {b; = 1} F b;4; (filling a cell with 1
enables the next cell). Intuitively, filling a cell with 1
means there might be more to follow, whereas 0 means
we’re done. (D(LNAT), C) is isomorphic to the domain
LNAT from the previous section. The encoding of the
lazy natural numbers is:

B = e jlemly
S™(0) {bi=1|i<n}uU{b, =0}, for n>0,
SY(41) {bi=1]i>0}.

I

Using the cds framework, Kahn and Plotkin defined
a notion of sequential function. A continuous function
f from D(M) to D(M') is sequential at z if for each cell
¢’ accessible in f(z) either (i) no cell is accessible in «,
or (ii) there is a cell ¢ accessible at z that must be filled
in any state y that is a superset of z such that ¢’ is filled
in f(y). The cell ¢ is called a sequentialily indezx of f
at x for ¢’. A function is sequential if it is continuous
and sequential at every z in its domain. Intuitively, this
definition captures the notion that a sequential function
is at any point dependent on one of its inputs; if that
input diverges, the function will diverge.

2.2.2 Sequential algorithms

Berry and Curien noted that Kahn-Plotkin sequential
functions and concrete data structures fail to form a
cartesian closed category. They introduced sequential
algorithmson concrete data structures, and showed that
the category of sequential algorithms and cds is carte-
sian closed.

Sequential algorithms can be viewed two ways: ab-
stractly and concretely. Abstractly, a sequential algo-
rithm is a pair consisting of a sequential function and a
(sequential) computation strategy. If there are several
ways of proceeding during the computation, the compu-
tation strategy picks out a particular one. Concretely,
a sequential algorithm is a state of a cds of arrow type
(the ezponentiation cds).

Given two cds, M and M’, the exponentiation cds
M = M’ is defined! as follows: the cells are of the form
zc', where = is a state of M and ¢’ is a cell of M'; the
values are of the form valof ¢ where ¢ is a cell of M, or
output v' if v’ is a value of M'. A state of M = M’ is
a sequential algorithm.

Example 2.3 The state of BOQOL = BOQOL that cor-
responds to the boolean negation is:
{{1B = nwalof B,
{B=u}B = oulpul ff,
{B=f}B oulput 1t}.
The way to read this definition is: Given no information

about the input and having to fill the output cell B, we
ask what value the input cell B holds. If the input is

true we output false and conversely. [

2.3 CDSO

The programming language CDSO0 [1, 3, 11] is a direct
implementation of the intensional denotational seman-

IThis is only part of the definition; it omits reference to the
accessibility conditions. The full definition can be found in [11],
for instance.

tics presented above; hence, it is an intensional pro-
gramming language of sequential algorithms. The name
stands for Concrete Data Structures.

CDSO0 is a lazy, polymorphic, higher-order, functional
language with some original features:

e Uniformity of types. Everything in CDS0 is a state
of a cds. This can be a state-constant or a higher-
order algorithm. The algorithm syntax is just syn-
tactic sugar for the state of a cds. Consequently,
an algorithm can be evaluated without being ap-
plied to any argument. Operationally speaking,
terms of non-ground type can be observed.

e Full abstraction. The denotational semantics of
CDS0, which maps an algorithm to a state of the
cds corresponding to its type (hence a CDS0 ob-
ject) is fully abstract with respect to two difTerent
operational semantics (CDS01 and CDS02) [11].

e Semantics manipulation. Since the semantics of
an algorithm is itself a CDSO0 state it is possible to
write algorithms which manipulate the semantics
of other algorithms.

Example 2.4 As asimple example?, we implement the
cds of booleans and boolean negation in CDS0. The
boolean negation algorithm is given in two forms: sug-

ared (NOT) and un-sugared (NOT.STATE):

let BOOL = dcds
cell B values tt,ff
end;

let NOT : BOOL -> BOOL = algo
request B do
valof B is
tt : output ff
ff : output tt
end
end
end;

let NOT_STATE : BOOL -> BOOL =

{{}B = valof B,
{B=tt}B = output £ff,
{B=££}B = output tt};

The request construct specifies which output cell we are
computing, velof requests a value from an input cell,
and output fills a cell with a value. [J

The user can combine algorithms and states into ex-
pressions using the calegorical combinators: applica-
tion, composition, curry, uncurry, fix, pair, and prod-
uct. Computation is lazy, demand-driven: the user

2The syntax for the CDS0 examples presented in this section
is from our own CDSO0 interpreter and is very similar to that in
3, 11].

types in an expression and enters a request loop. At this
point the user may type in an output cell name and if
the cell is filled in that expression its value will come
back as a result. The lazy evaluation model enables us
to compute with infinite structures.

Example 2.5 As a more advanced example, we imple-
ment the lazy natural numbers, and the successor algo-
rithm, which are needed in what follows.

letrec LNAT = dcds

cell B values 0,1

graft (LNAT.s) access B = 1
end;

LNAT is defined using recursion and grafling: a copy
of LNAT isincluded, tagging all cells with the specified
tag. The first three cells and their access conditions are
as follows:

B values 0, 1
(B.s) values 0, 1 access B=1
((B.=s).s) values 0, 1 access (B.s)=1

Now let us define a few constants: L, 0, S(L1), and
S (L)

let Bot : LNAT = {};
let Zero : LNAT = {B=0};
let S_bot : LNAT = {B=1};

let Srec : LNAT -> LNAT = algo
request B do
output 1
end
request ((B.$V).s) do
valof (B.$V) is
1 : output 1
end
end
end;

let S_omega_bot : LNAT = fix(Srec);

S¥(L) is defined as the least fixpoint of the algorithm
which in the base case fills B with 1, and recursively, if
the previous cell contains 1, puts 1 into the current cell.
The “name variable” $V matches any tag. The ability
to use such variables for cell names and values is the
source of polymorphism in CDS0.

Now we can write the successor algorithm. Its struc-
ture is just slightly more complicated than the algo-
rithm for S*(L), but warrants further explanation be-
cause it is higher-order. Successor is defined as the fix-
point of a higher-order algorithm and it works as fol-
lows: If asked what B is, it immediately outputs 1 (the
successor of anything is at least S(L)). In the gen-
eral case, if asked what value an output cell holds, it
asks what value the input cell immediately preceding it
holds, and outputs the same value.

let succ_rec :(LNAT -> LNAT) -> LNAT -> LNAT =
algo
request {}B do
output output 1
end
request {}((B.$V).s) do
output valof (B.$V)
end
request {(B.$V)=0}((B.$V).s) do
cutput output 0
end
request {(B.$V)=1}((B.$V).s) do
output output 1
end
end;

let S : LNAT => LNAT = fix(succ_rec);
|

2.4 CDS: A higher-level notation

As can be seen from the examples in the previous sec-
tion, the syntax of CDSO0 is very low-level. In fact, CDS0
was designed to serve as a “machine-language” for a
syntactically ML-like language called CDS [1]. CDS
was never fully described or implemented. For ease of
presentation we assume an SML-like notation [17] for
it, glossing over exactly how the translation to CDS0
might be accomplished (for a discussion see [3]). An
important difference between CDS and SML is that in
CDS pattern matching is not allowed on tuples, so that
the sequential nature of the computation is more readily
apparent.

2.5 CDSP: A parallel version of CDS

Brookes and Geva [5] extended Berry and Curien’s work
to the setting of deterministic parallel algorithms on cds.
They generalized the valof construct of CDS0O which
tests the value of one cell to a deterministic parallel
query construct, which, intuitively, spawns off a num-
ber of valofs. More precisely, a query starts a number of
parallel subcomputations and specifies conditions based
on the results of the subcomputations under which the
main computation may resume. We call the extension of
CDS0 with the query construct CDSP (for CDS Paral-
lel). A CDSP algorithm may be viewed as a continuous
function paired with a (parallel) computation strategy.

Example 2.6 Query enables us to compute new func-
tions. One example is parallel-or, which returns true if
either of its arguments is true. Parallel-or, as the name
implies, is not a sequential function. Ilere is how it
would be implemented in CDSP, assuming the higher-
level syntax:

algo por (bl, b2) = query (b1, b2) is
(1,) = 1t
| (., tt) = it
| (F, 1) = &

a

In order to ensure determinism, all consistent (simul-
taneously satisfiable) branches of a query must have the
same result; for example, the first two branches of the
above algorithm result in the same output. This re-
quirement is built into the syntax used in [5]. We use a
simpler notation in order to avoid the extra complexity.

3 Colson’s Results

Colson studied the expressibility of the minirmum funec-
tion in the context of primitive recursive (PR) algo-
rithms [7, 8]. He established that PR algorithms are
inherently sequential: like sequential algorithms, they
possess sequentiality indices. Moreover, PR algorithms
are sequential in an even stronger sense. They suffer
from “ultimate obstination” [8, 9]: at some point one
argument must be chosen to be evaluated until the end.
Using primarily the intensional denotational semantics
based on LNAT, Colson proved two main results:

Proposition 3.1 There is no PR algorithm a of arity
2 satisfying:

[a](5" (1), §7(1)) = SminP)(1),

Proposition 3.2 There is no PR algorithm computing
the minimum of two numbers n and p in unary repre-
sentation, with time complexily O(min(n, p)).

However, there are many PR algorithms which com-
pute the minimum of two integers in unary representa-
tion. We define one below, using some auxiliary fune-
tions (sce [16]):

pred(0) =0
pred(S(z)) =z

sub(z,0) =z
sub(z, S(y)) = pred(sub(z,y))

MIN(z,y) = sub(x, sub(a, y)).

Again we need to distingnish between the function
MIN and an algorithm MIN,; for MIN. Note that
in an operational interpretation of this definition, the
algorithm M IN,(n,p) has a worst-case running time
of O(max(n,p)). The function MIN agrees with min
from Section | on the totally defined elements of the

lazy naturals. They differ on the partial elements, since
in the LNAT semantics we have:

min(S"(1),S7(1)) Smintp)(L),
MIN(S*(L),S7(L)) = L.

We can view Proposition 3.1 as an extensional ex-
pressiveness result: PR algorithms can compute MIN
but not min. Note that there are many other functions
between min and M IN in the pointwise order. But it is
the intensional aspect of Proposition 3.2 that is partic-
ularly interesting here: PR algorithms cannot compute
minimum efficiently.

If we augment PR algorithms with functional argu-
ments, we arrive at G6del’s system T'. System T can not
only compute new functions (e.g., the Ackermann func-
tion), but can also compute minimum efficiently. Thus
system T is more powerful than PR both extensionally
and intensionally (cf. [8]).

Colson’s results are the first intensional expressive-
ness results for programming languages of which we are
aware.

4 Sequential, Parallel Algorithms, and
Minimum

We expected to obtain results similar to Colson’s in
our study of sequential algorithms. After all, CDSO0 is
a sequential programming language by design: sequen-
tial algorithms compute sequential functions. It turns
out, however, that sequential algorithms are sufficiently
more powerful than PR algorithms to be able to com-
pute minimum efficiently, but not powerful enough to
compute the “natural” min function from the introduc-
tion. The parallel query construct of CDSP allows us
to compute that function.

4.1 CDSO

We begin by showing that sequential algorithms cannot
compute min. The proof follows standard lines (¢f. [2,

5]).

Proposition 4.1 There is no sequential algorithm com-
puling min.

Proof: A sequential algorithm computes a sequential
function. But min is not sequential, since it has no
sequentiality index at (L, L) for output cell by. In other
words, there is no input cell which must be filled in order
for min to fill by. (Actually, min has no sequentiality
index at any (S™(Ll),S"(L1)) for b,, n > 0.) Therefore,
no CDS0 algorithm can compute min. 0O

But this does not mean we cannot compute mini-
mum efficiently in CDS0. Recall that the problem with

PR algorithms was that they become “fixated” on one
input. Sequential algorithms allow us to keep alternat-
ing between the two inputs, examining one cell at a
time.

We reason informally about the running time of se-
quential algorithms. It is possible to formalize these
arguments by appealing to the operational semantics.

Proposition 4.2 There is a sequential algorithm which
compules the minimum of two numbersn and p in unary
representation, and is of lime complezily O(min(n,p)).

Proof: The algorithm looks like a simple sequential
version of the min function definition from the intro-
duction. We choose the left input to evaluate first.

algo left_min (nl, n2) =
case nl of
0=20
| S(x) = case n2 of
0=0
| S(y) = S(lelt_min(x, y))
The algorithm has the following property:
[left_min}(S"(0), $7(0)) = $™"("P)(0),

so it does compute the minimum, and it works in time
O(min(n, p)) by alternating between the inputs and ex-
amining one cell at a time. [

Note that the algorithm also satisfies:

[[IC“._n!ih]](Sn(J_), S‘PJ(J_)) = Smin(n 'F‘)(J.),

so Colson’s Proposition 3.1 fails as well in the context
of sequential algorithms.

The key difference between left_min and min, is il-
lustrated by their behavior on pairs of a totally defined
and a partial element, such as (5"(0),5"(L)) (they
agree on all other inputs):

[Teft_min](S™(0), S™ (L))
[mingJ(57(0),S" (L)) =

1l

Il

[left_omin](S™ (L), S™(0)) S™(L)
[mingJ(S™(L),S™(0)) = S™(0)

This comparison makes it clear that min is a parallel
function: it must evaluate its inputs in parallel in order
to be able to determine when cither one is defined. Also
note that [left_min] fits between min and MIN in the
pointwise order.

4.2 CDSP

The addition of the parallel query construct enables us
to compute min, which is essentially a generalization
of parallel-or to integer arguments. The program looks
almost the same as the definition of the min function
from the introduction:

algo min (nl, n2) =
query (nl, n2) is
(0,) =0
| (- 0) =0
| (5(x), 5(y)) = S(min(x, y))

We then obtain the following, using the semantics of
CDSP:

Proposition 4.3 There is a CDSP program computing
min.

5 Deterministic Parallelism and Inten-
sional Expressiveness

There appears to be a folk conjecture that determinis-
tic parallelism is not “useful.” The claim (see [6], for
instance) is that even though deterministic parallel fea-
tures may increase the extensional expressiveness of a
language, they are expensive to use and the additional
expressiveness is not useful in practice, because “it ap-
plies only to computations that are unbounded.” In our
terms, the claim is that deterministic parallelism may
Increase extensional, but not intensional expressiveness.

As we’ll see in what follows, this conjecture is false.
Deterministic parallelism does add intensional expres-
siveness. The deterministic query construct of CDSP is
sufficiently general to allow a speedup in the computa-
tion of many different functions.

From our study of CDS0 and CDSP we are natu-
rally drawn to a study of the sequential functional lan-
guage PCF and its parallel extensions. The reason is
the close connection between CDS0 and PCI': CDSO0 i1s
an intensional semantics for PCF [3]. In fact, CDSO0 is
extensionally more expressive than PCF, being able to
express semantic-manipulation algorithms. Thus, the
results we obtain with CDS0 and parallel extensions
are likely to be mirrored with PCF and similar parallel
extensions.

The situation is more complicated in the case of
PCF: the different parallel extensions in the literature,
although extensionally equivalent, are not intensionally
equivalent. They do increase the computational power
of PCF, but in different ways. They are also less pow-
erful than CDSP’s query.

In this second part of the paper we no longer work
with integers in unary representation. We are interested
in the running time of n-ary operations, such as adding
n integers. Thus, our results should be more relevant
to real programming languages.

5.1 CDSP

We give examples of two functions which can be com-
puted faster in CDSP than in CDS0: n-ary disjunction

and n-ary addition. They can be computed in logarith-
mic time, which is an improvement over the linear time
achievable in CDS0. The two functions are very similar
in structure. As with CDS0, we argue informally about
the running time of CDSP programs.

The main idea is to construct a tree of processes.
For notational simplicity, we define a separate function
for each value of n, and we assume n is a (fixed) power
of 2. We have already defined por for two arguments.
Here is the general case:

algo por, (by, ..., by) =
por (pory /s (b1, ..., bnya),
I)orn/E (bn/‘2+1: LS | bn))

n-ary disjunction creates a tree of processes of depth
log n. Addition for n arguments, padd,,, works similarly
using addifion on two arguments, padd, given by:

algo padd (x1, x2) = query (xi, x2) 1s
(vi, v2) = vi+ve

Note that the addition of v; and vy is performed sequen-
tially (this + is sequential, not bitwise-parallel). This
is not essential. What is important is that separate
processes are started to evaluate the inputs.

When computing por, or padd,, in order to fill the
output cell we query in parallel two cells. In order to
fill those cells, we query two more for each. Intuitively,
after a depth of log n queries we reach our n inputs.
Therefore, we compute the result in time O(log n). In
CDS0, since we must examine the inputs sequentially,
we can only compute the result in time O(n).

Proposition 5.1 CDSP is intensionally more cxpres-
sive than CDSO.

Note that the previous proposition is unalffected by
the fact that we are no longer using integers in unary
representation. The function por, would still be speed-
ed up in CDSP even with unary representation for in-
tegers.

5.2 PCF and circuits

PCT [18] is a paradigmatic sequential functional pro-
gramming language that has been used in many seman-
tic studies of sequentiality. It is a typed A-calculus with
two ground types, booleans (o) and integers (¢) and the
following set of types:

cii=o|t]|lo—0
The syntax is given by the grammar:

M:=cl|lz|dx. M| MM

The constants traditionally included in the language are
the following;:

it:o

f:o0

n:i (the integers, n > 0)
isZero? : 1—o

+1: 01—

—1:i—

Do : 0—0—0—o0 (boolean conditional)
D, : 0—¢—1— (integer conditional)
Y, : (¢—a)—c (one for each o)

For simplicity, we blur the distinction between numerals
and integers, and use n to denote both.

The relevant rules of the operational semantics for
the constants are:

Do it MgNy— My, foro=1t,0
Do ff MgNyg — Ny, for o=1,0
YoM — M(Y, M)
+ln—=n+1, forn>0

-1 (n+1)—n, forn>0
isZero? 0 — 1t

1sZero? (n+ 1)— ff, forn >0

In addition to the standard constants listed above,
we assume the existence of a constant-time equality test
for integers:

=iL—L—0

with the obvious operational semantics. Traditionally,
the equality test is implemented using recursion (cf.
[20]), but this would render some of the issues of inter-
est to us moot, since we are not dealing with integers
in unary representation.

We find it useful to view PCF programs as circuits.
There are several reasons for this. First, it enables us
to reason based on the last gate used in the circuit.
Viewing a program as a circuit reduces the number of
cases we need to consider. Second, the running time
of the program corresponds to the depth of the circuit.
We are only interested in programs of ground type so we
need not worry about complications caused by higher-
order programs. And third, circuits provide a visual
and intuitive semantics.

The translation from PCF to circuits is simple. Fig-
ure 2 shows circuits for function definition, application,
and a constant. A function denotes a circuit some of
whose inputs are labelled with variables. Application
substitutes a value for a variable, or, il we have a whole
circuit, connects its output to the respective variable-
labelled input. Note that higher-order functions can be
treated in this framework as well, by labelling an in-
put with a function variable and using gates labelled
with the function variable inside the circuit. There are

2L
(a) (b) (c)

Figure 2: (a) Az. M, (b) (Az. M)N, (¢c) D. bz y

gates for the various constants. The only interesting
case is the Y combinator. It gives rise to a special kind
of circuit, a dynamic circuil, which can have subparts
expanded dynamically as required during computation.
The semantics of circuits is based on PCI"s opera-
tional semantics. Execution is demand-driven and be-
gins at the output. The last gate in the circuit is acti-
vated. This gate may start evaluating one (or more, if
it is parallel) of its inputs, leading to activity at further
gates, and so on. If the computation terminates, the
result will filter down to the output of the last gate.

Definition 5.2 A circuit is staiic if it is the {ranslation
of a non-recursive PCF program.

Definition 5.3 A circuil is dynamic if il is the trans-
lation of a recursive PCF program.

A circuit could have several inputs, but it always has
Jjust one output, so it is shaped as a tree.

Definition 5.4 The depth of a stalic circuil is equal to
the height of the underlying tree.

Definition 5.5 A circuil is constani-depth if il is ei-
ther static, or a dynamic circuil which does not expand
more than e fized constant number of times (indepen-

dent of the inpuis).

Example 5.6 To give an example of dynamic circuits,
and to illustrate the difference between constant-depth
and non-constant-depth dynamic circuits, consider the

following PCF program:
F=AMnz.2,(=n3)z(f (+1n)).

Figure 3 shows the circuit denoted by the recursive
PCF term Y I'. We enclose a dynamic circuit in a box
with dotfed lines, to represent the fact that it can be
expanded. The box is labelled with the name of the
recursive part. The result of expanding the circuit once
is shown in Figure 4.

Figure 3: Y F

The program YFn for 0 < n < 3 gives rise to a
constant-depth dynamic circuit, while for n > 3 it re-
sults in a non-constant-depth dynamic circuit. [

In the following, we are particularly interested in
the constant-depth circuits. If two functions can be
implemented in terms of each other with constant-depth
circuits, we say that the two functions are infensionally
equivalent.

5.3 Parallel extensions of PCF

The parallel extensions of PCF studied in Plotkin’s sem-
inal paper [18] are: por, pif, (parallel conditional on
booleans), and pif, (parallel conditional on integers).
The functions are defined as follows:

por: o—o—o pif,:0—20—0—0
por L it =1t pif, Lo x=72
por it L =11 pifyite L=2

por [f f =1 pif, flLe=2z

for ¢ = ¢, 0. They are known to be extensionally equiv-
alent [11, 20]. Interestingly, they are not intensionally
equivalent.

Obviously, por can be used to implement n-ary dis-
junction as in CDSP, thus providing added intensional
expressiveness over PCF. It turns out that pif, and pif,
can also be used for this purpose. However, por and
pif, cannot implement pif, efficiently and none of the
constructs can speed up n-ary addition.

Proposition 5.7 por and pif, are inlensionally equiv-
alent.

Proof: We need constant-depth implementations of
one in terms of the other. This can be done as follows

(cf. [20)):

Figure 4: Y F expanded once

por = Azy. pif, © Ul y,

pif, = Abzy. por (pand b z)
(pand (not b) y)
(pand =z y),

where pand is the parallel conjunction defined by:
pand = Azy. not (por (not) (not y)),

and we have generalized por to three arguments in the
obvious way. [
It is known that pif, can implement pif, (cf. [20]):

pif, = May. (= 1 (pif, b (D, 2 10) (3, y 10))).

This implementation is also efficient. In view of the
previous proposition, it follows that pif, can also imple-
ment por efliciently. However, the converse is false. The
problem is that por can only start parallel subcompu-
tations on booleans, whereas pif, operates in parallel on
integers. The standard way of encoding pif, with por
uses recursion (cf. [20]):

pif, = Y F0, where

F = Afnbzy. D, (por (pand (= z n) (= y n))
(pand b (= = n))
(pand (not b) (= y n)))

T

(f (+1n) bz y).

This is clearly ineflicient, because of the way the recur-
sion unwinds, checking if z and y are equal to 0 first,

(=zy) | B
L |u
i L |F
i it (1)

Table 1: Requirements for function B

then 1, and so on. But we cannot do any better. To
show that, we prove first two lemmas which restrict the
shape of any program computing pif,.

The point of the first lemma is that it is impossible
to design boolean circuitry B which chooses between z
and y and obeys all the requirements of pif,.

Lemma 5.8 It is not possible lo wrile a program in
PCF + por, which compules pif, b = y and is of the
form O, B z y, where B is a stalic circuil yielding a
boolean.

Proof: Without loss of generality, the issue is whether
it is possible to write a PCF + por function B with the
following properties:

1. If b is 1t then B is i,
2. Ifbis ff then B is ff,
3. If (= 2 y) is 1t then B is 1.

Table 1 shows some of the inputs and corresponding
outputs for function B. For simplicity, we assume only
b and (= z y) are used in evaluating B. The same ar-
gument can be carried through with additional inputs,
since b and (= = y) must be used in evaluating B.

The last line of Table 1 implies by monotonicity that
B fJtt = {t. But this violates the monotonicity condi-
tion raised by the second line in the table. Therefore,
no program of this form computes pif, b z y. O

Our second lemma generalizes the first one.

Lemma 5.9 I is not possible {0 wrile a program in
PCF + por, which compules pif, b = y and is of the
form D, B Ny Na, where B, N1, Ny are stalic circuils
yielding a boolean and iwo inlegers respectively.

Proof: Intuitively, there are two possibilities for B:
either it “chooses” between N; and N, or it is “hard-
wired” to always pick one of them. More precisely, we
have two cases for the function computed by B:

1. B is non-constant. Since the program computes
pif, b = y, the result must be either x or y. There
are an infinite number of possible inputs and out-
puts and N, Ng are static circuits, so it is not
possible to hard-code the output.
times return {{ and sometimes [f. There are then
three choices for what Ny, Ng evaluate to:

B will some-

10

(a) They evaluate to z, y, respectively. But this
is impossible by Lemma 5.8.

(b) They both evaluate to pif, b © y. The D,
gate then does no work. Since Ny, N3 both
compute something of type integer, there are
essentially two cases for the last gate used in
their construction: (i) D, or (ii) +1 (-1 is
handled similarly). In case (i) apply the same
reasoning of this lemma. There cannot be an
infinite sequence of O, gates which do noth-
ing, since the circuit is static. It is not possible
for all D, gates to do nothing since the out-
put would then have to be constructed out
of +1, —1, and the integers, so it would ei-
ther be hard-coded (and it must work for an
infinite number of values), ar produce a fixed
oflset from @ or . The latter case is analogous
to case (la) above, except that the branches
evaluate here to a fixed oflset of z or y; the
same reasoning applics. In case (ii) there can-
not only be +1 (or —1) gates for the reason
outlined above. Also, there can only be a con-
stant number of +1 (or —1) in a row before
somme D, is reached, whereupon we can apply
the lemma again. By the same reasoning we
must at some point encounter case (la) of the
proof.

One cvaluates to pif, b = y and the other to
2z or y. What is the last gate in the one that
evaluates to pif, b =z y?7 Apply the same rea-
soning here as in case (1b), eventually reach-
ing case (la).

2. B is constant. That means that either Ny or Ny
must compute pif, b x y. Again we have a D, gale
which does no work. Without loss of generality,
assume [3 is {1, so Ny always gets chosen. What is
the last gate in Ny7 We can apply the same rea-
soning hiere as in case (1) of the proof, eventually
reducing the problem to case (1a).

So our circuit cannot be filled with gates which “do
no work.” Af some point there must he a D, which
essentially aticmpts to choose between z and y. But
that is impossible by Lemma 5.8. Thereflore, our pif,
program cannot have even this more general form. O

Now we are ready to prove the main result of this
section.

Proposition 5.10 PCF + por cannol implement pif,
with a constani-depth civewil.

Proof: Assume there exists a constant-depth circuit
computing pif,. There are two possibilities:

1. Static circuit. The result has type integer. There-
fore, there are two cases for the last gate in the
circuit:

(a) D.. By Lemma 5.9 this is not possible.

(b) +1 or —1. The circuit cannot be constructed
entirely out of +1, —1, integers, z, y, because
the result would be either hard-coded (and it
must work for an infinite number of values), or
a fixed offset of z or y. Also, since the circuit
is static, there can only be a constant number
of +1 or —1 in a row before reaching an oc-
currence of D,. Then we have essentially the
same situation as in case (la) (modulo some
fixed offset, as in the proof of Lemma 5.9),
and by the same argument the circuit cannot
implement pif,.

2. Dynamic circuit. We want to show that the circuit
cannot be constant-depth. Assume, for a contra-
diction, that there is a fixed maximum constant
depth beyond which the recursion does not get
unwound, regardless of the inputs b, z, y. Then
there are only finitely many constant-depth cir-
cuits which could be the result of the unwind-
ing. But there are infinitely many possible inputs.
Therefore, at least one of these circuits must work
for infinitely many inputs. Apply the same rea-
soning on that circuit as in case (1) of this proof.
We can assume there is no other recursion, oth-
erwise continue the argument on innermost recur-
sion (there must be a constant number of them).
Therefore, there is no fixed maximum depth for
unwinding the recursion computing pif,.

In conclusion, it is impossible to write a constant-
depth program using por to compute pif,, therefore por
and pif, are not intensionally equivalent.

The next question we are concerned with is whether
pif, is sufficient to implement n-ary addition efliciently.
The answer is no. The problem is that even though
pif, can start parallel subcomputations to evaluate two
integers, it must return one of them. There is no way
to combine the results of the subcomputations. Only
a limited amount of communication exists between the
subcomputations: a check for equality of their results.

We assume the existence of an addition operation
(+), as in CDSP, so we can write sequential addition
without having to use recursion: adds = Azy. 2 + v.

Proposition 5.11 PCF + pif, cannol implement n-
ary addition with a circuil of depth log n.

Proof: We identify a property that holds for our CDSP
program, padd, and show that it does not hold for pro-
grams of PCF + pif,. In padd the inputs are evaluated

11

in parallel and the result is their sum. In PCF + pif,,
the only parallel primitive is pif, so the inputs z and y
must go through some pif, if they are to be evaluated
in parallel. Suppose z goes through pif, alter passing
through some constant-depth circuit computing ' and
similarly for y and a function G. Then the output of
the pif, is either F'(z) or G(y). If either Fi(z) = ¢+ y
or G(y) = z + y, then the addition was performed se-
quentially before the pif,. If the output of pif, goes into
some constant-depth H such that [(F(z)) = 2 + y or
H(G(y)) = + y then the addition was also performed
sequentially, this time after the pif,. So it is not pos-
sible to compute z + y using pzf, in such a way that =
and y are evaluated in parallel. Therefore, a PCF +
pif, program for n-ary addition must be of depth n. 0O

As a corollary of the previous two propositions, we
have the following:

Proposition 5.12 PCF + por cannol implement n-
ary addition with a circuit of depth log n.

In light of these results, we have the emergence of
a picture of different levels of intensional expressiveness
for deterministic parallel constructs: At the lowest level
we have por and pif,, which scem to be able to speed
up only n-ary boolean functions. At the next level we
have pif,, which can be used to speed up some integer
functions. Finally, at the top level we have query, which
can be used to speed up n-ary addition.

6 Conclusions

The sequentiality of the primitive recursive algorithms
is manifested by their ability to recur on only one input.
This makes them “ultimately obstinate,” and they are
not able to express an eflicient algorithm for minirmum.

The sequentiality of Berry-Curien algorithms is “by
design.” A sequential algorithm computes a sequential
function, by only choosing one sequentiality index at a
time, even if more than one exists. However, sequential
algorithms are more expressive than primitive recursive
algorithms: there is a sequential algorithm that com-
putes a version of the minimum function efliciently, but
not the “natural,” inherently parallel, minimum func-
tion.

The addition of functional arguments to primitive
recursion (system T) gives more power intensionally as
well as extensionally. It allows us not only to express
new functions, but also to compute more elficiently.

The addition of determinisgtic parallelism to CDS0
allowed us to compute the “natural” version of the min-
imum function, but CDS0 was already able to express
an efficient minimum algorithm. However, the addi-
tion of deterministic parallelism did add intensional ex-

pressiveness, contradicting a conjecture from the liter-
ature. The computation of a number of functions can
be speeded up, such as n-ary disjunction and n-ary ad-
dition. A more careful study of deterministic parallel
constructs reveals different intensional powers. CDSP’s
query is more powerful than three parallel extensions
to PCF, which differ in power among each other. Thus
we have the beginnings of a hierarchy of intensional ex-
pressiveness for deterministic parallelism.

We have exhibited languages which are extension-
ally but not intensionally equivalent. The constructs
por, pif,, and pif, are interdefinable in the continuous
function model of PCF. However, PCF + pif, is inten-
sionally more expressive than PCF + por (or pif,). A
natural question raised by this is whether there exists
a language that is extensionally more expressive but
intensionally less expressive (on the common subset of
computable functions) than another language. The case
of the Girard-Reynolds system F' versus Godel’s system
T might be an example of this, but the matter is not
settled yet (cf. [8]).

The study of intensional expressiveness has been ne-
glected in the past, perhaps because it seems to be more
difficult than extensional expressiveness. TFor instance,
the problem of NC versus P can be phrased as a problem
of relative intensional expressiveness between program-
ming languages. Despite the difficulty, we believe that
it is possible to obtain interesting results concerning
intensional expressiveness, and that the area of inten-
sional semantics deserves further exploration.

Acknowledgments

We thank Matthias Felleisen for many uselul conversa-
tions on the topic of intensional expressiveness and for
comments on an earlier version of the first part of the
paper. We also thank the anonymous referees, whose
suggestions led to improvements in the paper.

References

[1] G. Berry, Programming with concrete data structures
and sequential algorithms, in: Proc. ACM Conf. on
Functional Programming Languages and Computer Ar-
chitecture, 1981, 49-57.

[2] G. Berry and P.-L. Curien, Sequential algorithms on
concrete data structures, Theoretical Computer Science
20 (1985) 265-321.

[3] G. Berry and P.-L. Curien, The kernel of the applicative
language CDS: Theory and practice, in: M. Nivat and
J.C. Reynolds, eds., Algebraic Methods in Semantics

(Cambridge University Press, 1985) 35-87.

S. Brookes and S. Geva, Computational Comonads and
Intensional Semantics, in: M. Fourman, P. Johnstone,

(4]

12

5

—_—

(6]

[7

—

8

[l

(10]
[11]

[12)

13]

and A. Pitts, eds., Applications of Calegories in Com-
puter Science, LMS Lecture Notes 177 (Cambridge Uni-
versity Press, 1992) 1-44.

S. Brookes and S. Geva, Towards a theory of paral-
lel algorithms on concrete data structures, Theoretical
Computer Science 101 (1992) 177-221.

R. Cartwright, P.-L. Curien, M. Felleisen, Fully ab-
stract semantics for observably sequential languages, to
appear in Information and Compulation.

L. Colson, About Primitive Recursive Algorithms, in:
Proc. International Colloquium on Automata, Lan-
guages, and Programming, 1989, 194-206.

L. Colson, Représentation intentionelle d’algorithmes
dans les systémes fonctionelles: une étude de cas, Thése
de Doctorat, Université Paris VIL (1991).

T. Coquand, Une preuve directe du Théoréme d’Ultime

Obstination, Comptes Rendus de l'Académie des Sci-
ences, March 1992,

T.I. Cormen, C.E. Leiserson, R.L. Rivest, Introduction
to Algorithms (MIT Press, 1990).

P.-L. Curien,
gorithms, and Functional Programming (Birkhauser,
1993).

Jategorical Combinalors, Scquential Al-

D.J. Gurr, Semantic Frameworks for Complexity, Doc-
toral Thesis, University of Edinburgh, Technical Report
ECS-LFCS-91-130, Jannary 1991.

J.E. Hopcroft and J.D. Ullman, Introduction
Automata Theory, Languages, and
(Addison-Wesley, 1979).

to
Computation

J. Hughes and A. Terguson, A loop-detecting inter-
preter for lazy, higher-order programs, in: Proe. Glas-
gow Warkshop on Functional Languages, 1992.

G. Kahn and G.D. Plotkin, Concrete Domains, Theo-
retical Computer Science 121 (1993).

S.C. Kleene, Introduction to Metamathematics (North-
Holland, 1952).

R. Milner, M. Tofte, and R. Harper, The definition of
Standard ML (MIT Press, 1990).

G.D. Plotkin, LCTE considered as a programming lan-
guage, Theoretical Computer Science 5 (1977) 223-56.
M.
Proc. ACM Conf. on Functional Programming Lan-
guages and Computer Archilecture, 1989, 1414-156.

Rosendahl, Automatic complexity analysis, in:

AL Stonghton, Interdefinability of parallel operations in
PCF, Theorclical Compuler Science 79 (1991) 357-8,

