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Abstract. Algorithms designed for VLSI implementation are commonly described by directed graphs,
in which the nodes represent functional units and the arcs indicate communication links. We give
a denotational semantics for such a graph in terms of the least fixed point of a set of (mutually
recursive) function definitions, describing the outputs produced at each node as a function of time.
This semantics is consistent with the conventional clocked operational semantics of the system. A
retiming is a systematic modification of the internode delays of a design, often used to convert an
algorithm design into a systolic form. The utility of such retimings in optimizing the behavior of
designs is well known. We use fixed-point semantics to provide simple proofs of the correctness of
certain retiming transformations from the literature and to justify other design transformations such
as pipelining.
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1. Introduction

The rapidly increasing use of VLSI technology and the potential offered by VLSI
technology for parallel computation are well known. It is therefore important
to provide rigorous methods of specifying and proving correctness properties of
algorithms designed for VLSI implementation. It seems to be common to use a
high-level abstract model of algorithm designs in which a design is presented as a
labeled directed graph whose nodes are regarded as standing for combinational
units and whose edges represent dataflow connections. Such graphs (or related
models) have been used (either explicitly or implicitly) by various people in
specification and verification of the correctness of VLSI designs, often by using
a semantic model in which the behavior of each node is modeled as a function
(typically, from time to data values). For instance, functional models are used
by Leiserson and Saxe [1], by Kung and Lin [2], in Chen’s work on space—time
equations [3], in Chen and Mead’s hierarchical simulation [4], and in the work
of Gordon [5].

In most of these earlier papers, correctness arguments were based (usually
implicitly) on operational reasoning, analyzing the “state” of a system at each
time step and arguing by induction on the number of elapsed time steps or clock
cycles. This reliance on operational reasoning can result in rather complicated
proofs [1]. In this article, we show that some elementary ideas from denotational
semantics [6, 7] can be used to give simple correctness proofs. We focus on
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a transformational approach to VLSI design based on notions such as retiming
and pipelining, much as described in [1, 2, 8]. Essentially, we use a denotational
semantics using fixed-point theory to describe the behavior of VLSI designs. The
use of fixed points and related proof methods such as fixed-point induction [9] in
formal reasoning about program behavior is common in branches of theoretical
computer science, but we believe that the relevance of these ideas to VLSI theory
is not widely realized. Our use of fixed points is inspired by the Kahn-MacQueen
treatment of networks of lazy asynchronous functional processes [10], although
we employ an underlying model of synchronous computation.

Of this earlier work, ours is most closely related to the algebraic approach
of Kung and Lin [2]. We adopt a graphical model of system designs closely
related to their z-graphs (and also to the communication graphs of Leiserson and
Saxe [1]). We provide such graphs with a formal denotational semantics.! One of
our contributions is a formal justification of the kind of algebraic manipulations
performed in transformational approaches to VLSI design (see, for example, [2,
11]), based on a natural underlying denotational semantics rather than by using
operational semantics.

An advantage of the denotational approach is that it is well suited to reasoning
about hierarchically designed systems and facilitates a modular approach to system
design, analysis, and synthesis. In a denotational semantics, the meaning of a
compound object is built from the meanings of its parts, so that replacing any
part by another with the same meaning leaves the overall meaning unchanged.
This justifies certain common design transformations such as pipelining, and
more general transformations involving the replacement of a subsystem by an
equivalent one. It is also easy to use denotational semantics to analyze the effect
of overlaying one design on top of another (with the same underlying network
topology).

We illustrate the use of our ideas in the derivation of a systolic design for a
palindrome recognizer, similar to the design given in [1], which was itself related
to an earlier design by Cole [12]. Beginning with a mathematical specification of
the problem, we derive a correct, systolic design. The derivation uses retiming,
pipelining, and overlaying.

2. Modeling VLSI systems

It is common to describe algorithms for VLSI implementation by means of
directed graphs, in which nodes stand for combinational elements or registers
and arcs indicate the dataflow paths between the nodes. While this type of
graphical representation can be very useful, it is not ideal if we want to discuss
the effect of retiming on VLSI designs. At this level of abstraction, a retiming
transformation has the effect of systematically adjusting the number of registers
between each pair of combinational nodes. Thus, the graph of a VLSI design
may differ considerably from the graph of a retimed version of the same design,
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and this can make it unnecessarily complicated to formalize the relationship
between the behavior of the system and the behavior of its retimed version.

Instead, we model a VLSI system as a directed graph, each node representing
a combinational unit and each arc labeled by a (nonnegative) integer weight and
a function symbol. Intuitively, the weight on an arc indicates the number of
registers along a data path between two combinational units, or (equivalently)
the number of clock cycles required for data to move along a data path. We
represent a typical edge, from source u to destination v and with weight d and
function symbol f by the notation f: (u,d,v) or, pictorially,

u ‘EL V.

We assume the usual graph-theoretical notions of path and cycle. A path leading
from node u to node v on which the total accumulated weight is w indicates
that the output(s) produced by node v at any time depend on a value output by
node u at the wth previous time step. Since we are modeling synchronous (or
clocked) systems, we do not specify the exact length of a time step; the delay w
corresponds to the number of clock cycles that it takes for data to move along
the path.

A cyclic path in a graph indicates a cyclic dependency: the output produced
at each node on the cycle may depend on its own output from some earlier
time. This kind of path obviously occurs in systems with feedback, and the
special case when the total delay on a cycle is zero corresponds to a race
condition. For obvious reasons, race conditions in designs are often considered
bugs. Intuitively, the presence of a cycle of zero delay may lead to unpredictable
operational behavior.

In order to specify a semantics for a system we need to provide an interpretation
for its combinational elements. We do this by giving a rule, for each output
function of each node, describing how that output is produced from the input
values supplied to the node. All outputs and inputs are regarded as functions
of time, and since we are modeling synchronous systems, time is regarded as
integer-valued. We therefore specify the combinational behavior of the nodes
by giving a functional equation for each output function, describing the output
functions produced by each node in terms of the input functions at that node and
the input delays. This amounts to a fixed-point definition of a set of functions,
and the intended semantics of the system is just the least fixed point, which
always exists (under certain general and realistic assumptions about the nature
of the computations that take place at the nodes). In the case of a system with
particularly regular or simple structure, it may be possible to find the intended
semantics of the system by inspection. However, even when a solution may not
be so obvious, elementary fixed-point techniques can be used to calculate the
solution and to reason about it.
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Figure 1. Finite impulse response.

Before giving the mathematical foundations in more detail, we will dis-
cuss a simple example.

2.1. An example: finite impulse response

The finite impulse response function (FIR) appears in [2]. The problem is
to compute the terms of the sequence y,(n > 3), assuming a given sequence
zn(n = 0), corresponding to the recurrence relation

UYn = U Ty + Wolln 1 + W3Lp—z + WiTn—3 (ﬂ. Z 3)

The wi(1 < k < 4) are given integers, and we assume that the =, are all integers.
Thus, the problem is to compute certain weighted sums.
The system pictured in figure 1 solves this problem. The graph structure is

G=(V,E,F)
V = {i,v1,v2,v3, vy, 0}
E={z:(0v),z:\1,vm),:(42,9),z:(13,1),

J1 1 (v1,0,v2), fa : (v2,0,v3), f3 i (vs,0,v4), fa: (vs,0,0)}
F = {z, fi, fa, fs, fa, u}.

We are modeling time as a sequence of discrete steps, so we use the natural
numbers to represent time instances. In order to keep the distinction between
integer times and integer data values, we use T for the set of times, N for the
set of integer values, and we let ¢ range over T, n over N. In this example,
each function symbol is to be interpreted as a function from T to N; since each
fr(t) is only defined for ¢t > k — 1, it is natural to regard these as partial functions
rather than total functions. The function definitions are

fl(ﬂ) = wl:z:(t),
@) = wz(t -k + 1) + fr_1(t) (k=2,3,4),
y(8) = fa(t).
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It is obvious and easy to show formally that these equations have a closed-form
solution

f(#) = wiz(?),

F2(8) = wiz(t) + wez(t — 1),

f3(t) = wiz(t) + woz(t — 1) + waz(t — 2),

fa(®) = wiz(t) + wez(t — 1) + waz(t — 2) + wez(t — 3).

Thus, if the terms of a sequence z; are input along z, so that for each time
t we have z(t) = =, then the output sequence y = y(t) satisfies the desired
recurrence relation.

We now move towards a more general treatment, as follows. Firstly, we can
be more succinct and eliminate ¢ from the defining equations by introducing
functionals $x(1 < k < 4) defined by

P1(g) = At g(t),
Bi(g,h) = M.(wrg(t) + h(®)) (k= 2,3,4).

Note the use of lambda-notation: for instance, @,(g) is simply the function

mapping each time ¢ to the value w,g(t) (provided this expression has a defined
value at time t).

Now let Z : T — T be the “delay function,” described by
Z)=(t<1—-L,t-1).

Here, as is common, we use the special symbol L to indicate undefinedness, so
that Z(0) is undefined, and Z(t) =t — 1 if ¢ > 0. The notation (p — ¢,7) is a
form of conditional expression, and is intended to denote the value of ¢ if p is
true and the value of r if p is false, and is undefined otherwise. We also define
Z", the n-fold iteration of Z, for n > 0, given by

Z"t)=(t<n—Ll,t—n).

Note that Z' = Z, and Z°t) =t for all t. Note also the obvious identities
Z™o Z™ = Z™™ for all m,n > 0.
Now the equations defining the f; can be rewritten as

fl = @1(.’17),
Je = Bp(zo Z*7, fiy),
y = fa

In this form, the functional equations are susceptible to algebraic manipulation
without keeping such explicit track of the time parameter. By substitution, we
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obtain immediately the following closed-form solution:

fi=d1(z),

fo=Po(z 0 Z*,8,(2)),

f3=®3(z 0 Z°, By(z 0 Z",91())),

fa=By(z 0 Z3 &3(z 0 Z%,Py(x 0 Z*,B)(x)))).

Of course, this represents the same closed-form solution given above.

This example is rather simple, since the system behavior involves an extremely
straightforward flow of data. In more complex designs, it may be more difficult
to prove correctness: there may be a lot of bookkeeping to do to show that
data are transmitted around the system in such a way that the correct values
are always at the right place at the right time. Moreover, the nature of the
functions computed by a system may not always be so obvious. We now show that
under certain very general conditions, elementary fixed-point techniques provide
a guarantee that a system has a well-defined semantics and provide a means of
calculating effectively what functions are computed in a system.

3. Fixed-point semantics

A system S = (V, E, F) is described by a set of equations for the function symbols
in F. For each node v € V with inputs fi,..., f, weighted d,, ..., d,, respectively,
for each output symbol f of v, there is an equation of the form

f = é(fl ozdla-“:fﬂozd")a

where @ is a functional that captures (an aspect of) the combinational behavior
of node v: this equation describes how the output function f depends on the
input functions fi,..., fa.

Let T be the set of natural numbers. Suppose that each arc transmits
data of a certain type (for example, integer or boolean). Then each function
symbol is intended to denote a partial function of type T — V, where V is the
type associated with the arc labeled by the function symbol. With the obvious
association of types to arcs, the functional @ in this equation has type

T—-V)x - x(T—-V)=T—=V)

Using L to represent undefinedness, any set ' — V of partial functions may be
partially ordered by the relation f C g, defined as follows:

fcg & (MeT)(f()#L= f(t) = g(t))

We use the symbol C for this relation because it coincides with the usual notion
of set inclusion on the graphs of the two partial functions. If f C g, then at all
times ¢ for which f(¢) is defined, g(t) is also defined, and the two values are equal.
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This partial order is complete in that every increasing sequence of partial
functions has a limit (or least upper bound): this is because whenever f,, is a
partial function and f,, C fny1 for each m > 0, then f = (J_, fm is again a
partial function.

Since each node in a VLSI design is a combinational clement, we lose no
generality if we make the following Combinational Assumption: there is a function
¢ on data values such that, for all t € T, and all partial functions gi,..., gn,

Q(gls very gn)(t) = (b(gl(t)a teey gn(t))'

Several important and useful properties follow from this assumption:

e Each @ is monotone, in that
(4] g h‘ls---)gn g hn = Q(gla"' vgn) g !ﬁ(h].)"'uh“n)'

e Each & is continuous, or preserves limits: if gi(m} & g,.("‘ﬂ) for all m and
each 7 between 1 and n, then

o & s
¢(Ug§-m)"°°’ Ugslm)) - U@(gfim)a--.sg;(gnl)).
m=0 m=0 m=0

e Each & distributes over composition, in that for all partial functions g;,..., gn
and h,

P(g1,...,gn)oh =P(gi0h,...,g,0h).

We define for each function symbol f a chain f(™(m > 0) of partial functions
as follows, by induction on m, using the functional equation for f:

FO =2t 1

fm) =g (o za,..., i o 7).
Intuitively, each f(™ is obtained by expanding the functional definitions m times
and replacing all remaining recursive calls by the everywhere undefined function

At. L. The fact that f(™ C f(m+1) for each f € F and each m > 0 follows by
monotonicity of each &.

Let f be the limit of this sequence of partial functions:

o0

F=U s
m=0
Then by continuity of ¢, we obtain the equations

F=0(fio2%,..., .0 2%).
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Moreover, the f are the least solutions to these equations, in that for every
collection of functions f* such that

fr=9(ff0oZ%,..., fr02%),

we get £ C f*. Thus, each f function has a defined value at time ¢ if and only
if that value can be deduced from the defining equations.

Note that in a design with a cycle of zero weight, the fixed-point semantics
still makes sense, and the operational unpredictability of such a design would
correspond to the persistent undefinedness of an output function produced along
such a cycle, since the semantics will only ascribe a proper output value at any
time when this is truly implied by the functional equations. As an extreme
example, the system defined by the equation f = f (with a graph containing a
single node and a cyclic arc with zero delay) has semantics f = Xt. L.

3.1. Example: finite impulse response, revisited

The defining equations for this system were
h= @1(3’.‘),
fi = Bi(z 0 25, fr) (k=2,3,4).

The sequences of approximations are therefore simply
D=t (k=1,23,4),
£ = oy(2),
0 =@y (zo 24 1) (k=2,3,4).

Trivially it follows that f™ = &,(z), for all m > 1, so that the limit function f;
is also &;(x). Similarly,

7 = Oy o 2", £ = By(z 0 2, 81(v)),

for all m > 2. The analyses for f, and f,; are also easy. This shows that
the approximations converge, as expected, to the functions derived earlier as
closed-form solutions for the fj.

4. Retiming transformations

A retiming is a systematic transformation of the internode delays in the com-
munication graph of a system. The utility of retimings in improving the timing
behavior of systems is argued cogently in [1, 13]. In particular, a design is sys-
tolic if each (internal) arc has weight at least one. Systolic designs are especially
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appealing because the clock period in a system is independent of the size of the
system and is typically short, since it only depends on the time needed for a
signal to propagate through an individual combinational unit (equivalently, the
time taken by the slowest individual node in the system to perform its output
calculations). In a general system, the clock period may need to be longer to
allow for rippling of inputs along paths consisting of arcs with zero delay. Leis-
erson and Saxe [1] show how to transform a wide variety of system designs into
an equivalent systolic version by means of retimings. Other people have used
retimings to support the development of fault-tolerant systolic designs [8]. We
discuss the main notions of retiming introduced by these authors, and show how
easy it is in our framework to prove the correctness of their retiming methods.

Two simple yet powerful notions of retiming were introduced in [1]. The first
may be thought of as a lagging operation, the second as a slowing. In a lagging
transformation, we assign an integer “lag” to each node of the system and adjust
the weights on each edge according to a simple formula: if each node v; is given
lag I;, then each edge (vi, wij,v;) of the original system becomes (vi, wi; +1; —1;, vj)
in the retimed system. Intuitively the effect is to delay each output of each node
by a fixed amount. Like Leiserson and Saxe, we assume that the delays are
chosen so that the new weights are all nonnegative. A slowing transformation
multiples each edge weight of a system by a constant (integer) factor k; the
resulting system is a k-slowed version of the original system. Intuitively the
effect is to produce a system that computes the same outputs as before, but with
a delay of length k& between successive outputs. We now formalize these two
types of retiming and prove that the effect of a retiming on the semantics of a
design is as expected.

4.1. Lagging

Given a system S = (V, E, F), suppose we have an integer lag l; to be associated
with each node v;. Let v be a typical node of V with an output arc labeled
by the function symbol f. Suppose that the incoming arcs for this node are
fi: (vi,di,v), for i = 1...n. The output equation for f then has the form

f=0(fioZ%,..., o0 Z%).

For clarity, we will prime all the function symbols in the retimed system (so that
f becomes j', and each f; becomes f/). The lagging operation replaces each d;
by d; + 1 —1l;, where [ is the lag assigned to node v. The corresponding equation
in the retimed system &’ is thus

fr = @(.ﬂ o Zdﬁ-}—l—-!],”. ' f; o Zd,.+1—l,.)_

We assume that the delays are chosen so that each new weight d; + I — I; is
nonnegative.
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We claim that the least functions satisfying the equations for S’ are just the
appropriately lagged versions of the least functions satisfying the equations for
S. More precisely, for each output function f of a node v with lag I, P =Ffo2.
Hence, at all times t > 1, P(t) = f(t - 1).

This is easy to prove, using the following property of the functionals &: for
all partial functions hi,...,h,, and all [ >0,

&(hy,... hn) 0 Z' = B(hyo0 Z',... ko Z"),

which is implied by the Combinational Assumption.

The desired result can be proved using fixed-point induction [9], but we will
give a direct proof. First we show by induction on m that for each m > 0 and all
output symbols f,f™ 02! = f(™. Note that the property to be proven concerns
all output functions at once. The base case is trivial: For each f € F we have

FO =0t 1) = (. L)o Z' = fO.

For the inductive step, let f and f’ be defined by the equations

f = é(fl ozd11°°- )fnozd")s
f.f - @(ﬁ o Zdl-H_Il,. w ,f’ o Zd’,,+l—l,.)_
By the induction hypothesis, f™ = f(m) o Z! and for each i, f/™ = ;™ o Zk,
Hence,
f;{m+1) — @(flr(m) o ZhH-h 7! (m} Zdwu:n)
= ds(fi‘(m) & Zdrix o Zl, ey f:i(m) & Zdn—ln & Zl)
=o(fiM o287, £i™ 0 2 h) 0 7

= Q(fl(m) 0Zho Z‘i'_!‘,....f,gm) AR Zd"_l") o Z!
T Q(fl{m) o Zdls'--!fw(am) OZd“)OZI
= fmto 2,

Hence, for all m > 0, we have f(™ = f(™ o Z'. It follows, since composition
with the fixed function Z' is a continuous operation, that the equation also holds
in the limit: ” = fo Z!, as required.

Note that in Leiserson and Saxe’s paper [1], the proof only applies to systems
in which there are no cycles of total weight zero. The existence in a system of
such a cycle means intuitively that there is a race condition (some output function
is defined at time ¢ in terms of its own result at time t), and therefore one might
reasonably want to rule out such occurrences in system designs. Nevertheless,
our fixed-point treatment may still be used even in such circumstances, and the
retiming proof goes through. Note that if a design has a cycle of zero weight,
then so does its retimed version.
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4.2. Slowing

The k-slowed version of a system (k > 1) is obtained by replacing each function
equation

f=(fioZ%,..., fa0 Z%)

by (again, priming the function symbols):
f'=&(floZ" ..., f.oZkn),

Let k be the function At.kt. We claim that
frok=7F,

so that for all ¢ > 0, P(kt) = f(2).
Note first the following identity, which holds for all hy,..., h, and all &k > 1:

®(h1y...,hp) ok = B(hiok,..., h, 0 k).

This again is a consequence of the Combinational Assumption. Again one can
show by induction on m that for all m > 0, f™ ok = f™. The proof is similar
to the previous proof, but uses the identity

ZH ok =k o Zv.

which holds for all w,k > 0. The result follows by continuity of composition
with the fixed function % : we get ok = f.

Again, if a design has a cycle of zero weight, then so does its k-slowed version.
Again, our proof is applicable even in such degenerate cases.

4.3. The cut theorem

Kung and Lam [8] give a simple yet useful Cut Theorem concerning the design
of fault-tolerant systolic arrays without feedback cycles. We first recall their
definitions and then give a simple proof of their theorem; then we make some
remarks about the generality under which the result can be used.

A cut is a set of edges that partitions a system graph into two disjoint sets
of nodes, the source set and the destination set, with the property that the edges
crossing the boundary between these sets are the cut edges, and all cut edges
are directed from source set to destination set.

The Cut Theorem states the following: adding the same delay d to all edges
entering the destination set of a cut produces an equivalent system. To be precise,
if the cut partitions a system S into source set A and destination set B, and if S’
is the retimed system, with A’ and B’ as the subsystems that correspond to A and
B, then all output functions computed in A’ are identical to their counterparts
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in A, and each output function computed in B’ lags behind its counterpart in B
by d time units.

These properties are intuitively obvious, and Kung and Lam [8] gave a proof
that analyzed the flow of data among the registers linking arcs, which they
regarded as much simpler than the proof supplied by Leiserson and Saxe [1]
for the (more general) retiming lemma. In fact the Cut Theorem is itself a
special case of the retiming lemma. A cut corresponds simply to a lagging
transformation in which each node in the source set gets lag 0 and each node
in the destination set gets lag d; this has the intended effect of adding d to the
weights of all edges leading into the destination set, and the effect predicted by
the retiming lemma is exactly as required.

Again, if one prefers a direct proof of the Cut Theorem, it is easy to provide
one using elementary fixed-point properties. In a cut partition, it is evident that
the functions defined by nodes in A are independent of the functions defined
in B, because none of the functions computed by B is an input to any of the
nodes in A. This is again true for A’ and B’. Moreover, apart from renaming
the function symbols to avoid confusion, the subsystems A and A’ are identical
(and therefore, so are the functions computed). If we add d to the weights of
all arcs leading into B we get B’. The fact that for each output function f of a
node in B the output function f' of the corresponding node in B’ satisfies the
condition 7 = fo Z¢ is easy to prove, either by repeating the (relevant part of
the) argument given above for the general lagging transformation, adapted to
the special case used here, or by using fixed-point induction.

Note also that although Kung and Lam [8] stated the Cut Theorem only for
systems without feedback, the result (and our proof) applies even in systems
permitting feedback, provided there is no feedback from the destination set to
the source set. That is, the result holds if each feedback cycle is contained
entirely in either the source set or the destination set.

4.4. Pipelining

In many system designs the same input value is needed at several nodes at
different times. Instead of inputting directly to each such node, when the nodes
can be linearly ordered by the relative times at which they need to operate on the
data, we can arrange for each node to pass on the input value to its successor,
with the appropriate extra delay: this is known as pipelining. The effect on
the functions computed by a system when the system is reorganized to employ
pipelining is trivial. In essence, what used to be several different input arcs each
labeled (say) z becomes a sequence of arcs, successively labeled x, where each
zr computes a lagged version of z. It is then obvious that such changes make
no difference to the other functions computed by a system, provided that the
internode delays along the pipeline are chosen correctly.
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Figure 2. Retimed finite impulse response.

4.5. Refinement

In a hierarchical development of a system to meet a desired specification, one
may want to begin with a design based on certain types of node and later to
refine these nodes, replacing them with an equivalent combination or subsystem.
In the FIR system, for instance, we might replace each multiply-add unit by the
obvious sequence (multiply first, then add). Provided we do not insert any delay
between these successive operations, the overall effect is obviously going to be
the same.

5. Example: retiming and pipelining in the FIR system

To illustrate the ideas, consider again the graph corresponding to the finite
impulse response (FIR) problem (figure 1). If we retime using the lagging
transformation that delays each vy by k — 1 (with zero delay at the input node
i), we get the graph of figure 2.

Again using primed function symbols, the function equations in the retimed
system are

fi = &1(2),
fi = Pu(@o 2"V, fi 1 02") (k=2,3,4).

Either by inspection, or by the retiming lemma, the following relationships hold:
fo=FfeoZ" (k=1,2,3,4).

Since = is required at each of the vy nodes successively, we may pipeline =
by sending it first to v; and then to v, with a delay of 2; v, then sends it with a
further delay of 2 to v3, and so on. The result is the system defined by figure 3
and the equations

Ip =1,

fi = @1(z0),

zr=x3,02° (k=1,23),

fr = Pk(Th-1, fr-10Z) (k= 2,3,4).
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23y — 2,3 ) 2,2
0,z ; : - 0, /4
lufl lufz 1,f3
S

Figure 3. Pipelined, retimed finite impulse response.

It is obvious that the equations z; = x o Z%* hold for k = 0,1,2,3, and hence
that the f; defined by these equations are identical to the f; defined by the
retimed FIR system. This system is systolic, since the delays on all internal arcs
are all positive.

6. A palindrome recognizer

In this section we apply the methods of the previous section to a problem
drawn from the literature: Leiserson and Saxe [1] described a systolic array for
recognizing palindromes. The successive characters of a string or sequence are to
be input to the array, one at each clock step, and the output of the array at time
t+ 1 is to be a boolean value indicating if the characters input up to time ¢ form
a palindrome (i.e., if the input string reads the same backwards as forwards). We
show how to derive a correct design directly from the mathematical specification
of the problem, and as a consequence we obtain a formal correctness proof of
(a variant of) the solution proposed in [1].

Informally, a nonempty string is a palindrome if and only if its first half is the
reverse of its second half. We specify this more rigorously as follows. We use the
notation z(;; for the substring «;...x; when i < j (and likewise, z[;.; for z;...z;
when i > j). Two strings are equal if they have the same length and identical
components. A string xp...z,(n > 0) of length n+ 1 is a palindrome if and only
if T(g.m) = Tp:m+1), Where m = |n /2], or, equivalently, for all i < |n/2|,z,; = ;.

We want to build a system with input = and output p satisfying the following
condition: for all ¢ > 0,

P(t) = Vi < [t/2].(a(t — i) = =(s)).

Clearly such a system can be built from two subsystems, one to input = and
distribute its values through a suitably arranged sequence of outputs (a; and b;),
and one to perform equality tests on single characters: for each i < [t/2] we
want

ai(t) = z(t —i),  bi(t) = =(5),

and then we will set

p(t) = Vi < [£/2].(ai(t) = bi(2)).
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0,z D 1,ag D 1,a, l.ai_lD 1,a; D
Ol‘bo OIJH Oi‘f'-' Olsb;'+1

Figure 4. Input routing.

Figure 5. Combining character tests.

The problem specification does not define values for a;(t) or b;(f) when t < 2i.
The following pipelining definitions for the a; are obvious:
apg = o,
Ajp1 = /\t.(t <21+ 2 —PJ_,G.,;(t e 1)) (i > 0)
The least functions satisfying these equations are given by
ait)=(t<2Zi—-Ll,z(t—1) (i=>0).
For the b; we can use the definition:
bi(t) = (t<2i—>Ll,(t=2i—>ai(®),bi(t—-1))) (=20).
In other words, b; is undefined for 2i time steps, gets initialized on step 2i, and
remains constant thereafter. Equivalently, we may use the equations:
bo = At.(t = 0 — z(t), bo(t — 1))
biyi=M(E<2i+2 -1, (t=2i+2— ai(t—1),b1(t —1)).
This leads to the design of figure 4. Note the fact that the labels on the arcs of
this design fit the form of the defining equations for the output functions.
We can implement the part of the system that computes the palindrome
function using character comparators, linked in a sequence, and conjoining their
results. We need there to be |t/2| “active” comparators at time t, and an

“inactive” comparator should output the default value T. One possible design
appears in figure 5. For each i, the equation defining p; is
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0,z — lyas 1 L Laiy— 1a
[ 0, po 0,py O,p2 ... O,pi 0, pis1 ]
ULk ULk Uik oMb

Figure 6. Palindrome recognizer.

Oz — 2,60 ™/ 2,4y 2,aio ) 2,8
[ 0, po 0, O,pz ... Op 0, pisa ]
Uk U2 U2t 2 b

Figure 7. Palindrome recognizer, 2-slowed.

pilt) = (t < 2i — T, (ai(t) = bi(t)) A pisa(2)).

Note that these two systems are compatible, in that the first system defines
the a; and b; outputs while the second system inputs these functions and uses
them to define the p;. We may therefore superpose the two designs, with the
effect of combining the sets of equations. This produces the design of figure 6.

This design is not systolic: the leftmost node, trying to compute po(t), must
wait until the result of the rightmost active comparator has filtered through
before giving its answer, because of the sequence of zero delay arcs linking the
successive nodes. It is also impossible to find a lagging that will make the system
systolic, because every lagging retiming preserves the total delay on all cycles in
a system, and this system has cycles of length 2 with total delay 1: in a systolic
system the delay on a cycle must be at least the cycle’s length. However, we can
produce a systolic version if we first slow the system by a factor of 2. The result
of this slowing is the system of figure 7.

If we now introduce, for each i, lag —i at the node computing a; and b;, we
obtain the systolic design of figure 8.

The functional equations and semantic definitions to go with this design are
easy to derive from the original definitions by applying the retiming lemmas.
The correctness of this final design is guaranteed because of the (more obvious)
correctness of the initial design, based as it was on the mathematical specification
of the problem.

7. Conclusions

We have described how elementary fixed-point techniques and a simple func-
tional semantic interpretation for VLSI designs may be used to justify certain
transformations such as retimings and pipelining. The fixed-point proofs make
clear the underlying assumptions on which these proofs depend and the degree of
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0,z ™ lLiag T Laa e L, a;
[ G!PO I‘P]. l)PG ] 1!?1' lupi+l. ]
Uzte U2 h Ozb 2bi

Figure 8. Palindrome recognizer, 2-slowed and lagged.

generality behind these results. In particular, our proofs of the retiming results
work provided the functionals associated with each node obey certain natural
delay-respecting properties:

B(hy,.i. hn) 02 = B(hyo 2Z,..., hy 0 ZY),
S(hy,...,hp) ok = B(hyok,..., fnok).

These properties will certainly hold for the kinds of combinational units normally
used in implementing systems. Although race conditions may be regarded as
undesirable in system designs, our results do not depend on their absence. Our
proof of the Cut Theorem does not require that the cut be chosen so that there
is no feedback even within the source set and within the destination set, although
of course there must be no flow back across the cut into the source.

It is perhaps worth pointing out that one of the main reasons why Leiserson
and Saxe [1] needed a rather longer proof for the retiming lemma concerns
their reliance on operational reasoning about the flow of data from register to
register on each clock cycle. They were, in effect, using an operational semantics
as the basis for their reasoning. Moreover, their graph representation for a
system design includes nodes for registers as well as for combinational units.
The effect of a retiming transformation on such a representation is to add or
delete registers along the paths between combinational units, and thus to alter
the graphical structure. To show equivalence of a design with a retimed version
then requires comparison of the operational behavior of two graphs with different
structure: the proof given in [1] establishes a time-dependent correspondence
between the contents of certain pairs of registers, one from each graph, and the
details are rather intricate.

In contrast, in our graphical representation (and in the z-graph notation of
Kung and Lin [2]) nodes are always combinational units, and only the number
of registers between successive combinational units is retained, as a weight label
on an arc. The effect of a retiming is just to modify weights, leaving graph
structure the same. We use, instead, a denotational semantics. The main
difference in semantic descriptions here is stylistic, but the use of a functional
semantics and fixed-point theory to provide a satisfactory treatment or recursion
has the advantage of providing us with a powerful technique based on fixed-point
induction. It would be straightforward to present a fully fledged operational
semantics for a language of VLSI designs, and to show that the fixed-point
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semantics used in this article essentially coincides with the behavior predicted by
the operational semantics. However, the natural style of proof for an operational
model involves induction on the length of a computation (here, on the number
of time steps), and it seems to be easier to use fixed-point induction for analyzing
retimings.

The methodology illustrated here can be used to support incremental and
hierarchical development and analysis of systems. Although the palindrome
example is not very profound in itself, it does demonstrate the joining together of
two compatible systems; this is one of the keys to designing systems incrementally.
The effect this has on the semantics of the system is obvious, and the justification
is trivial. In a hierarchical development of a system, one might want to first
assume as given a node with certain combinatorial nature, and design a system
built from such nodes. Later one might implement these nodes themselves in
terms of a system built from “smaller” nodes; provided that this system computes
the same function(s) as the node was assumed to compute, replacement of the
node by the newly designed system will not alter the behavior of the overall
system. Again, the justification for this will be easy.

Notes

1. Kung and Lin alluded to the relevance of fixed points in a footnote to their paper; however, they
did not elaborate on this, and they based their reasoning on operational arguments.
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