
Stephen Brookes
Carnegie Mellon University

Retracing CSP

Outline

Original CSP

Theoretical CSP

Traditional models

Limitations and omissions

Unification and generalization

Original CSP

guarded commands

input and output

parallel composition

synchronized communication
between named processes

no shared variables

Hoare 1978

... a programming language

influenced by Dijkstra

Theoretical CSP

internal and external choice

input and output

parallel composition

synchronized communication
on named channels

Hoare, Brookes, Roscoe 1984
influenced by Milner

... a process algebra

Traditional models
communication traces

failures

failures/divergences

... all denotational

Hoare, Brookes, Roscoe 1984

Hoare 1980

Brookes, Roscoe 1985

Communication traces

trace = input/output sequence

process = set of traces

prefix-closed, ordered by inclusion

good for
safety

 properties

Failures

failure = trace + refusal

refusal = input/output set

process = set of failures

ordered by reverse inclusion

good for
safety properties

+ deadlock

Failures/divergences
divergence = trace

viewed as catastrophic

process = failures + divergences

ordered by reverse inclusion

good for
safety, deadlock,

divergence

Examples
if (true→a?x;c!x)▢(true→b?x;c!x) fi

if (a?x→c!x)▢(b?x→c!x) fi

same traces

different failures

Examples

if (a?x→c!x)▢(true→stop) fi

if (a?x→c!x) fi

same traces

different failures

Example

 no finite failures

infinite internal chatter

do (true→a?x) od || do (true→a!0) od
chan a in

divergence

Summary

communication traces

cannot model deadlock or divergence

failures

cannot model divergence

failures/divergences

allows compositional reasoning

basis for FDR model checker

Limitations
Lack of fairness

less suitable for liveness analysis

Hard to extend

traces + refusals + divergences + ???

Catastrophic divergence

not the only choice

Models are specialized

not applicable to other paradigms

Unification

Shared-memory

Synchronized i/o

Asynchronous i/o

We need a common semantic framework:

Traditional models are incompatible...

Action traces

Trace = sequence of actions

Actions have effect

input, output, waiting, ...

read, write, ...

Process = set of action traces
ordered by inclusion

... a unifying theme

Design features
Sets of complete traces

finite and infinite

not prefix-closed

Fairness

only include fair traces

Robustness

race condition = catastrophe
cf. Reynolds

CPP

Imperative programs

local state

shared state, including channels

Synchronization

conditional critical regions, semaphores

input and output

Communicating Parallel Processes

... a natural successor of CSP

Actions
Communication

h?v, h!v, h.v, δD

Reading and writing

x=v, x:=v

Resource management

try(r), acq(r), rel(r)

Runtime error

abort

(D is a set of directions)

Semantics
Process denotes a set of action traces

[[h!0]] = δ{h!}
∞ {h!0}

[[h?x]] = δ{h?}
∞ {h?v x:=v | v ∈ V }

[[c1 || c2]] = [[c1]] ∅||∅ [[c2]]

[[with r do c]] = wait∞ enter
wait = {try(r)}
enter = acq(r) [[c]] rel(r)

int

Parallel composition

Resource-sensitive

mutual exclusion for each resource

Race-detecting

concurrent write ⇒ catastrophe

Fair

unfair to ignore persistent synchronization

Reynolds

Example

if (true→a?x;c!x)▢(true→b?x;c!x) fi

δ{a?}
∞

 {a?v x:=v c!v | v ∈ V }

δ{b?}
∞

 {b?v x:=v c!v | v ∈ V }

∪

denotes

int

int

Example
if (a?x→c!x)▢(b?x→c!x) fi

δ{a?,b?}
∞

 {a?v x:=v c!v | v ∈ V }

δ{a?,b?}
∞

 {b?v x:=v c!v | v ∈ V }

∪

denotes

int

int

Example

if (a?x→c!x)▢(true→stop) fi

δ{a?}
∞

 {a?v x:=v c!v | v ∈ V }

∪
δ{a?}

∞ { δω }

denotes

int

Example

do (true→a?x) od || do (true→a!0) od
chan a in

{ δω }

denotes

Connections

Original CSP

no shared variables

restricted use of channels

Theoretical CSP

no imperative constructs

hiding vs. local channel declaration

Generality
Action trace semantics for:

shared memory parallel programs

asynchronous communication

Concurrent Separation Logic
Brookes, O’Hearn (CONCUR’04)

Brookes (MFPS’05)

Brookes (CONCUR’02)

Conclusion
Traces suffice

compositional, fair

deadlock, safety, liveness

Unification of paradigms

shared memory

message-passing

CSP continues to thrive....

Related Work
CCS

branching vs linear time

bisimulation vs trace equivalence

Traces

for shared memory (Park)

for concurrent constraint programs
(Palamidessi, Rutten, deBoer, ...)

many other variations on this theme ...

Lessons

One man’s trace is
another man’s failure

Traces suffice, after all...

