
APC 2005

Retracing CSP

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

Pittsburgh, USA

Abstract

The original CSP was a language for parallel imperative programs communicating
by synchronized message-passing. Most of the early foundational work concerned a
more abstract process algebra, now known as Theoretical CSP (or TCSP). The early
semantic models involved communication traces, refusals, failures, and divergence
traces. These models support compositional reasoning about safety properties, but
since they do not assume fair parallel scheduling they are less well suited for proving
liveness properties. More recent developments using a suitably formulated form of
action traces provide a unifying semantic framework, applicable both to CSP-style
synchronized communication and to asynchronously communicating processes, as
well as to shared memory parallel programs, in each case assuming a simple form
of fair execution.

Key words: concurrency, shared memory, communicating
process, granularity, race condition, denotational semantics, logic

1 Background

The original CSP programming language [13], introduced by Tony Hoare in
1978, combined input and output with guarded commands [8] and parallel
composition. For various practical reasons, the language imposed static syn-
tactic constraints on program structure: no nested parallelism, direct process-
to-process communication, and no shared variables. Some possible alternative
design choices were considered, such as the use of output guards, and whether
to assume synchronized or asynchronous message-passing. The original lan-
guage allowed only input guards, and adopted synchronized communication.

The early foundational efforts dealt with a process calculus (Theoretical
CSP, or TCSP), derived from CSP by abstracting away from state [11]. A
TCSP process performs events belonging to an abstract alphabet, and parallel

1 Email: brookes@cs.cmu.edu
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs



Brookes

composition involves a form of interleaving in which concurrent processes must
synchronize on the events belonging to the intersection of their alphabets.
Hoare’s first proposal for a denotational semantics of TCSP [12], involving
prefix-closed sets of communication traces, was suitable only for simple safety
properties, and ignored the possibility of deadlock. In the failures model [11],
communication traces were augmented with refusal sets designed specifically
to model deadlock: a process deadlocks when it refuses every event in its al-
phabet. The failures-divergences model [6] improved further by including in-
formation about divergence, characterized as the potential for “infinite internal
chatter”. The failures-divergences model treats divergence as a catastrophe,
arguing that a potentially divergent process is useless; some later variants of
this model take a more relaxed view of divergence. Subsequently Bill Roscoe
also developed a failures-divergences semantics incorporating state [21], for the
programming language occam, an (imperative) ancestor of the original CSP.
Roscoe’s book [22] contains a detailed and extensive account of the family of
models belonging to the CSP school.

TCSP has enjoyed much success as a process algebra for specifying and
proving correctness of communicating processes, and the failures-divergences
model forms the basis for the model-checker FDR [9]. Milner’s CCS [16,17],
based on a more discriminating notion of program equivalence (bisimulation),
has achieved similar success and wide applicability, with semantic models such
as synchronization trees and labelled transition systems, and model-checking
tools such as the Concurrency Workbench [7]. Both process algebras provide
a succinct and expressive notation for specifying parallel systems together
with algebraic laws of program equivalence. Indeed, a collection of CSP laws
valid for failures-divergences semantics can be used to justify the normal form
property for processes that is a key ingredient in implementing FDR, and the
Concurrency Workbench builds on top of CCS laws expressing properties of
bisimulation equivalence.

2 Reassessment

Now that more than 25 years have passed since the beginnings of CSP, it is
worth looking back, with the benefits of hindsight and experience, reassessing
some of the early design choices in the light of later developments and pointing
out limitations that may have seemed unimportant at the time but warrant
further investigation or reconsideration.

The early models of TCSP, and most of their successors, were concerned
only with finite traces, and therefore did not (need to) assume any form of fair
parallel execution. As a result, these models are not well suited for reasoning
about liveness properties, such as the eventual inevitability of some desirable
event: typically it is impossible to prove a liveness property without assum-
ing that process execution and the use of shared resources is governed by a
reasonably fair scheduler. At the time, fairness was regarded as semantically

2



Brookes

problematic and difficult to incorporate into the denotational setting. David
Park’s classic paper [19] and later developments such as [5] showed how this
could be done for shared memory parallel programs, but the notion of con-
currency underlying CSP seemed radically different from the shared memory
paradigm, and it was not easy to see how to combine CSP with fairness without
requiring complicated book-keeping to keep track of scheduling information.

The early models of CSP also ignored the potential for race conditions, such
as concurrent attempts to receive input from the same channel, or concurrent
writes to the same variable. A program whose execution is susceptible to races
may exhibit unpredictable behavior, and its safety and liveness properties may
depend on implementation details beyond the control of the programmer. The
syntactic constraints of the original CSP language obviously suffice to rule out
racy programs, by banning shared variables and imposing limits on channel
usage. However, these syntactic constraints seem unnecessarily draconian: it
seems natural to allow nested parallel composition, and to allow processes to
use a combination of shared state and channel-based communication. Further-
more, a similar approach cannot be adopted if we extend CSP with pointers
and mutable state, since syntax-based analysis would then longer suffice to
detect sharing. The TCSP models discussed above treat input and output as
atomic actions, tantamount to assuming that the underlying implementation
of a channel ensures that at most one process is allowed to input, and at most
one process is allowed to output, at all stages. Again such assumptions obvi-
ate the need to deal semantically with racy behavior, but may not be realistic
in practice.

All of the models mentioned so far were tailored specifically for modelling
synchronized communication, and are not well suited for shared memory or
asynchronous communication. Historically, these parallel paradigms have been
endowed with separate families of semantic models, with origins in early work
such as [10,15,16,11] and later more comprehensive accounts such as [14,17,22].
These families have disappointingly few structural similarities, a disparity that
has tended to prevent semantically-based techniques for program analysis de-
veloped for one paradigm from being easily used in another. To an extent
such differences are to be expected: in particular the CSP semantic models
differ fundamentally from those developed for CCS, because traces, failures
and refusals reflect a “linear time” view of process behavior whereas bisimu-
lation fits the “branching time” view better. Yet there is much less reason to
expect or require such disparity between models sharing the same linear-time
view of behavior. None of these models is clearly “best”, and such compar-
isons are fruitless: typically each applies to a limited class of programs, and
deals with a different notion of program behavior. It seems natural to seek
a single semantic framework capable of interpreting all of these paradigms as
variations on a common theme.

3



Brookes

3 Recent developments

Over the past few years we have developed a uniform family of semantic
models, based on a form of action trace, suitable both for reasoning about
shared memory parallel programs and about networks of communicating pro-
cesses [4,2,1]. Furthermore, the framework is adaptable both for synchronized
communication and for asynchronous communication. The framework can
therefore be used to model a concurrent language that combines features from
each of these paradigms, including shared memory, as well as traditional syn-
chronization primitives such as semaphores and monitors. Indeed, the frame-
work can also handle mutable state such as pointers [3].

We have shown how to incorporate an intuitively natural notion of fair-
ness, so that our models are suitable for reasoning about safety and liveness
properties. Unlike the earlier models, we no longer work with “partial” traces
that represent prefixes of computations, and we do not augment trace sets
with separate information such as refusal sets or divergences; instead we in-
clude “complete” traces, and employ a trace structure general enough to rep-
resent deadlock and divergence directly. We handle deadlock and divergence
by means of idling steps, parameterized by a set of “directions” that indicate
the reason for idling [4,2]. We do not equate divergence with disaster, since
it seems quite straightforward to represent divergence as just another kind
of trace: a divergent or deadlocked process performs an infinite sequence of
idling steps. The use of complete traces, containing information about idling,
is a key to handling fairness in a compositional manner.

Action trace models such as these can be shown to be grainless [2], i.e.
independent of assumptions about the granularity of hardware operations and
details such as word size; the key idea behind this achievement is a semantic
characterization of race conditions and a definition of parallel composition
that treats a potential race as a runtime error, following a suggestion of John
Reynolds [20]. Our semantics can therefore be used to characterize those
programs which are race-free from a given state, so that the model can be used
to prove correctness properties together with a guarantee that execution is free
from runtime errors and that program behavior is independent of granularity.

Action trace semantics makes appropriate distinctions between processes
on the basis of their deadlock potential and their safety or liveness properties,
and can therefore be seen as a generalization of the early CSP models [2],
although we take a more liberal view of divergence. Our model is applicable
to a rather more general language than the original [13], without the need to
impose syntactic limitations 2 .

We can identify laws of program equivalence specific to each concurrency
paradigm, and laws whose validity relies crucially on fairness. Although we
lack the space here to supply the semantic details, we will give a few character-

2 Of course, for programs in the original CSP our semantics can be simplified by omitting
race detection.

4



Brookes

istic examples and some key laws. The reader should refer to the cited papers
for the semantic definitions behind these laws. We write [[P ]] for the trace set
of process P , and we use juxtaposition of trace sets to denote concatenation.
This trace semantics can be defined in the denotational style, by structural
induction.

As a simple shared memory example, we have the following “expansion”
theorem, when x and y are distinct identifiers:

[[(x:=v1; P )‖(y:=v2; Q)]] = [[x:=v1]] [[P‖(y:=v2; Q)]] ∪ [[y:=v2]] [[(x:=v1; P )‖Q]].

Furthermore we have [[(x:=v1; P )‖(x:=v2; Q)]] = [[abort]], since concurrent
assignments to the same variable cause a race.

For synchronized communication we have

[[local a, b in (a!0; b!0)‖(a?x; b?y)]] = [[x:=0; y:=0]] = {x:=0 y:=0}

[[local a, b in (a!0; b!0)‖(b?y; a?x)]] = [[while true do skip]] = {δω},
the second example illustrating how we model deadlock. We also have laws
such as the following:

[[local h in (h?x; P )‖(Q1; Q2)]] = [[Q1; local h in (h?x; P )‖Q2]]

[[local h in (h!v; P )‖(Q1; Q2)]] = [[Q1; local h in (h!v; P )‖Q2]]

when h is not free in Q1, and

[[local h in (P1; h?x; P2)‖(Q1; h!v; Q2)]] = [[(P1‖Q1); x:=v; local h in (P2‖Q2)]]

when h is not free in P1 or Q1.

These laws, expressing “inevitability” properties of code fragments in cer-
tain parallel contexts, rely on fairness for their validity.

For asynchronous communication we assume as usual that output to a
channel is always enabled, but a process attempting input must wait if the
channel is currently empty. We model a channel as a queue-valued variable.
In contrast with the synchronous case we have

[[local a, b in (a!0; b!0)‖(a?x; b?y)]] = [[x:=0; y:=0]] = {x:=0 y:=0}

[[local a, b in (a!0; b!0)‖(b?y; a?x)]] = [[y:=0; x:=0]] = {y:=0 x:=0},
and because of race conditions involving concurrent input or output to the
same channel we have [[(h!v1; P )‖(h!v2; Q)]] = [[(h?x; P )‖(h?y; Q)]] = [[abort]].

Using the obvious list notation for queues, we have laws such as:

[[local h = ε in (h?x; P )‖(Q1; Q2)]] = [[Q1; local h = ε in (h?x; P )‖Q2]]

when h is not free in Q1, as for the synchronous case; also

[[local h = L in (h!v; P )‖Q]] = [[local h = enq(v ,L) in P‖Q]]

when h! is not free in Q, and

[[local h = L in (h?x; P )‖Q]] = [[local h = L′ in (x:=v; P )‖Q]]

5



Brookes

when deq(L) = (v, L′) and h? is not free in Q. We also have

[[local h = ε, k = ε in (P1; h?x; k! ; P2)‖(Q1; h!v; k? ; Q2)]]

= [[(P1‖Q1); local h = ε, k = ε in x:=v; (P2‖Q2)]]

when h, k do not occur free in P1 or Q1.

Again these laws embody fairness assumptions in a natural manner, al-
lowing us to reason about a parallel system by assuming “without loss of
generality” that some particular activity goes first.

Such laws can be extremely useful in calculational reasoning. These laws
can be seen as ancestors of Milner-style expansion theorems [16,17] and the
CSP laws presented in the early papers [11], but expressed in terms of a
parallel programming language that stands as a true descendant of original
CSP: an imperative concurrent language rich enough to encompass shared
state, synchronous and asynchronous message-passing, nested uses of parallel
composition, and a more flexible scoping mechanism for local data.

References

[1] S. Brookes. A grainless semantics for parallel programs with shared
mutable data. Proc. Mathematical Foundations of Programming Semantics,
Birmingham, England. May 2005. (Preliminary version.) Final version to
appear, Elsevier ENTCS (2005).

[2] S. Brookes. Retracing the semantics of CSP. Invited paper, Proc. 25 Years of
CSP Conference, London, July 2004. In: 25 Years of CSP, Springer LNCS
Festschrift series, vol. 3525. Ali Abdallah, Cliff Jones, and Jeff Sanders, eds.,
2005.

[3] S. Brookes. A semantics for concurrent separation logic. Invited paper, Proc.
CONCUR 2004, London. Springer LNCS vol. 3170. August 2004.

[4] S. Brookes. Traces, pomsets, fairness and full abstraction for communicating
processes. Proc. CONCUR 2002, Brno. Springer LNCS vol. 2421, pp. 466-482.
August 2002.

[5] S. Brookes. Full abstraction for a shared-variable parallel language. Proc. 8th
IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press
(1993), 98–109. Journal version in: Inf. Comp., vol 127(2):145-163, Academic
Press, June 1996.

[6] S. Brookes and A.W. Roscoe. An improved failures model for CSP. Proc.
Seminar on concurrency, Springer-Verlag, LNCS 197, 1984.

[7] R. Cleaveland, J. Parrow, and B. Steffen. The Concurrency Workbench:
A Semantics Based Tool for the Verification of Concurrent Systems. ACM
TOPLAS, vol. 15, no. 1, January 1993, pp. 36–72.

6



Brookes

[8] E. W. Dijkstra. Cooperating sequential processes. In: Programming
Languages, F. Genuys (editor), pp. 43-112. Academic Press, 1968.

[9] ”Formal Systems (Europe) Ltd.” Failures-Divergence Refinement, User Manual.
1997.

[10] M. Hennessy, and G. Plotkin. Full Abstraction for a Simple Parallel Language,
Proc. Mathematical Foundations of Computer Science Conference, Springer
LNCS vol. 74, 1979.

[11] C.A.R. Hoare, S. Brookes and A.W. Roscoe. A Theory of Communicating
Sequential Processes, J. ACM, July 1984.

[12] C. A. R. Hoare. A model for communicating sequential processes. In On the
Construction of Programs, R. M. McKeag and A. M. MacNaughten, eds,
pp. 229-254. Cambridge University Press, 1980.

[13] C.A.R. Hoare. Communicating Sequential Processes, Comm. ACM, 21(8):666–
677, 1978.

[14] C.A.R. Hoare. Communicating sequential processes. Prentice Hall, 1985.

[15] G. Kahn and D.B. MacQueen. Coroutines and Networks of Parallel Processes,
Proc. Information Processing ’77, North Holland, 1977.

[16] R. Milner. A Calculus for Communicating Systems. Springer LNCS, vol. 92
(1980).

[17] R. Milner. Communication and concurrency. Prentice Hall, 1989.

[18] S. Owicki and L. Lamport. Proving liveness properties of concurrent programs,
ACM TOPLAS, 4(3): 455-495, July 1982.

[19] D. Park. On the semantics of fair parallelism. In: Abstract Software
Specifications, Springer-Verlag LNCS vol. 86, 504–526, 1979.

[20] J. C. Reynolds. Towards a grainless semantics for shared-variable concurrency.
Invited Lecture, Proc. 31st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Venice. ACM Press, January 2004.

[21] A. W. Roscoe. Denotational semantics for occam. In: Seminar on concurrency,
Springer LNCS 197 (1985), pp. 306-329.

[22] A. W. Roscoe. The Theory and Practice of Concurrency, Prentice Hall,
1998.

7


	Background
	Reassessment
	Recent developments
	References

