
Traces, Pomsets, Fairness and Full Abstraction

for Communicating Processes

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

Abstract. We provide a denotational trace semantics for processes with
synchronous communication and a form of weakly fair parallelism. The
semantics is fully abstract: processes have the same trace sets if and only
if their communication behaviors are identical in all contexts. The model
can easily be adapted for asynchronously communicating processes, or
for shared-memory parallel programs. We also provide a partial-order
semantics, using pomsets adapted for synchronization and our form of
fairness. The pomset semantics can also be adjusted to model alternative
paradigms. The traces of a process can be recovered from the pomset
semantics by taking all fair interleavings consistent with the partial order.

1 Introduction

Traces of various kinds are commonly used in semantic models of languages
for parallel programming, with parallel execution usually interpreted as a form
of fair interleaving. Transition traces, sequences of pairs of states, have been
used for shared-memory parallel programs [27, 5], for concurrent logic programs
and concurrent constraint programs [4, 34]1, and for networks of asynchronously
communicating processes [8], assuming weakly fair execution. Transition traces
also provide a semantics for a parallel Algol-like language [6, 7]. Communication

traces, sequences of input/output events, were the basis for an early model of
CSP [19, 20], later augmented with refusal sets to permit deadlock analysis in
the failures model [11], and with divergence traces in the failures-divergences

model [12]2. Pomset traces provide a partial-order based framework based on
“true concurrency” rather than interleaving [31, 32].

Fairness assumptions [15], such as weak process fairness, the guarantee that
each persistently enabled process is eventually scheduled, allow us to abstract

1 The use of such sequences to model shared-memory programs dates back at least to
Park [27]. The term reactive sequence is used in [4] for this kind of trace, which is
also related to the ask/tell sequences of [34].

2 Roscoe’s book [33] gives a detailed account of these and related models of CSP.
van Glabbeek’s article [16] provides a wide-ranging and detailed survey of process
algebras and notions of behavioral equivalence.

away from unknown or unknowable implementation details. A fairness notion is
“reasonable” if it provides a good abstraction of realistic schedulers, so that by
assuming this form of fairness one is able to deduce program properties which
hold under any reasonable implementation. We are typically interested in safety

and liveness properties [26]. A safety property has the general intuitive form
that something “bad” never happens. A liveness property asserts that something
“good” will eventually happen. Both kinds of property depend on the sequences
of states through which a parallel system may pass during execution. Fairness
plays a crucial role: it is often impossible to prove liveness properties without
fairness assumptions.

CSP [19] is a language of synchronously communicating processes: a process
attempting output must wait until another process attempts a matching input,
and vice versa. The early denotational models of CSP [20, 11, 12, 33], like many
operational or denotational accounts of related languages such as CCS [22, 23]
and ACP [2, 3], focussed mainly on finite behaviors and consequently did not
take fairness into account. It is not easy to extend these models naturally to
incorporate fairness. Moreover, there is a plethora of fairness notions, including
strong and weak forms of process, channel, and communication fairness [15].
The extent to which these fairness notions provide tractable yet realistic ab-
stractions for CSP-style processes is unclear, although weak process fairness has
an intuitively appealing definition and can be ensured by a “reasonable” sched-
uler using a simple round-robin strategy. Costa and Stirling have shown how to
provide an operational semantics for a CCS-like language assuming either weak
or strong process fairness [13, 14]. Older shows that one can treat some of these
fairness notions denotationally by augmenting failure-style models still further,
with detailed book-keeping information concerning processes, communications,
and synchronizations which become persistently enabled but not scheduled [24,
10, 25]. Much of the difficulty is caused by the fact that synchronization requires
cooperation between processes. Indeed, in Older’s formulation even weak process
fairness fails to be equivalence robust [1], in that there is a pair of computations,
one fair and one unfair, which differ only in the interleaving order of independent
actions [24]. In contrast, for processes communicating asynchronously one can
model weak process fairness using transition traces, and weak process fairness
can be given an equivalence-robust formulation [8, 9].

The structural disparity between the simple trace semantics for asynchronous
processes and the intricately book-keeping failure semantics for synchronous pro-
cesses obscures the underlying similarities between the two paradigms. It seems
to be widely believed that this disparity is inevitable, that traces are too sim-
ple a notion to support the combination of deadlock, fairness, and synchronized
communication. This is certainly a valid criticism of the traditional trace-based
accounts of CSP, which used prefix-closed sets of finite traces (augmented with
refusal sets) and handled infinite traces implicitly based on their finite prefixes.
Although these models give an accurate account of deadlock and safety proper-
ties, they do not adequately support liveness analysis since they do not admit

fairness: the existence of a fair infinite trace for a process does not follow from
the process’s ability to perform each of its finite prefixes.

In this paper we show that, despite the above commentary, if we assume a
reasonable weak (and robust) notion of fairness, it becomes possible to design a
satisfactory trace semantics. Indeed, the same notion of trace can be used both
for synchronously and asynchronously communicating processes. In each case we
model a weak form of fairness consistent with a form of round-robin scheduling,
so that we obtain a good abstraction of process behavior independent of imple-
mentation details3. The trace semantics is compositional, and supports safety
and liveness analysis. Indeed our semantics is fully abstract, in the sense that two
processes have the same trace set if and only if they exhibit identical communi-
cation behavior, including any potential for deadlock, in all program contexts.
We do not augment traces with extraneous book-keeping information, or impose
complex closure conditions. Instead we incorporate the crucial information about
blocking directly in the internal structure of traces, in a manner reminiscent of
Phillips-style refusal testing [30].

Our achievement is noteworthy, perhaps even surprising, given the history
of separate development of semantic frameworks for the two communication
paradigms. Traditional denotational models of asynchronous communication and
synchronous communication have frustratingly little in common, as shown by the
lack of family resemblance between failures and transition traces. In contrast,
we treat both kinds of communication as straightforward variations on a trace-
theoretic theme, so that we achieve a semantic unification of paradigms. Given
prior results concerning the utility of trace semantics for shared-memory paral-
lelism [5, 6], and the availability of trace-based models for concurrent constraint
programs [4], the unification goes further still.

We also provide a partial-order model for processes assuming synchronous
communication and fair execution [31, 32]. We define a semantics in which a
process denotes a set of partially ordered multisets of actions (pomsets). Each
pomset determines a set of traces, those obtainable by fair interleaving and syn-
chronizations consistent with the partial order. The trace set of a process can
be recovered in this way from its pomset semantics. The pomset semantics sup-
ports a style of reasoning which avoids dealing explicitly with interleaving, and
this may help to tame the combinatorial explosion inherent in analyzing parallel
systems. We can also adapt pomset semantics to model asynchronous commu-
nication, with a small number of simple changes to the semantic definitions.

We focus on a CSP-style language with blocking input and output, but our
definitions and results can be adapted to handle alternative language design
decisions, for example non-blocking guards, mixed boolean and input/output

3 By this we mean that a family of simple round-robin schedulers can be defined, such
that each member of this family ensures weakly fair execution, and every weakly
fair execution is allowed by some such scheduler. To handle synchronization we
assume that if the process currently scheduled is waiting for communication the
scheduler will use a round-robin strategy to see if another process is ready to perform
a matching communication.

guards, and general recursive process definitions. We summarize the adjustments
required to deal with asynchronous communication.

2 Syntax

Let P range over processes, G over guarded processes, given by the following
abstract grammar, in which e ranges over integer-valued expressions, b over
boolean expressions, h over the set Chan of channel names, x over the set Ide
of identifiers. We omit the syntax of expressions, which is conventional.

P ::= skip | x:=e | P1; P2 | if b then P1 else P2 | while b do P |
h?x | h!e | P1‖P2 | P1 u P2 | G | local h in P

G ::= (h?x → P) | G1 G2

As in CSP, P1 u P2 is “internal” choice, and G1 G2 is “external” choice4.
The construct local h in P introduces a local channel named h with scope

P . One can also allow local variable declarations, as in local x in P , but we omit
the semantic details in what follows. We write chans(P) for the set of channel
names occurring free in P . In particular, chans(local h in P) = chans(P)−{h}.

3 Actions

Let Z be the set of integers, with typical member v. An action has one of the
following forms:

– An evaluation of form x=v, where x is an identifier and v is an integer.
– An assignment of form x:=v, where x is an identifier and v is an integer.
– A communication h?v or h!v, where h is a channel name and v is an integer.
– A blocking action of form δX , where X is a finite set of directions.

An input action h?v or output action h!v represents the potential for a process to
perform communication, and can only be completed when another process offers
a matching communication on the same channel (h!v or h?v, respectively). We
write match(λ1, λ2) when λ1 and λ2 are matching communication actions, and
we let chan(h?v) = chan(h!v) = h. Each communication action has a direction;
let Dir = {h?, h! | h ∈ Chan} be the set of directions. A blocking action δX

represents an unrequited attempt to communicate along the directions in X .
When X is a singleton we write δh? or δh!. When X is empty we write δ instead
of δ{}; the action δ is also used to represent a “silent” local action, such as a
synchronized handshake or reading or writing a local variable. We let X\h =
X−{h?, h!}. Let Σ be the set of actions, Λ = {h?v, h!v | h ∈ Chan & v ∈ Z} be
the set of communications, and ∆ = {δX | X ⊆fin Dir} be the set of blocking
actions.
4 Our syntax distinguishes between guarded and general processes merely to enforce

the syntactic constraint that the “external choice” construct is only applicable to
input-guarded processes, as in Hoare’s original CSP language. This allows certain
simplifications in the semantic development, but is not crucial.

4 Traces

A trace is a finite or infinite sequence of actions representing a potential behavior
of a process. We model persistent waiting for communication and divergence
(infinite local activity) as an infinite sequence of blocking actions. We assume
that unless and until blocking or divergence occurs we only care about the non-
silent actions taken by a process5. Accordingly, we assume when concatenating
that δλ = λδ = λ for all actions λ, and we suppress waiting actions which lead to
successful communication, so that δ∗h?h?v = h?v for example. A trace of the form
αδX

ω describes an execution in which the process performs α then gets stuck
waiting to communicate along the directions in X . For a trace β let blocks(β) be
the set of all directions which occur infinitely often in blocking steps of β. For
example, blocks(a!0(δb?δc?)

ω) = {b?, c?}.
Let Σ∞ = Σ∗ ∪ Σω be the set of traces. We use ε for the empty sequence,

and α, β, γ as meta-variables ranging over Σ∞.
We write αβ for the concatenation of β onto α, which is equal to α if α is

infinite. For trace sets T1 and T2 we let T1T2 = {α1α2 | α1 ∈ T1 & α2 ∈ T2}. For
a trace set T we define T 0 = {δ}, T k+1 = TT k for k ≥ 0, and T ∗ =

⋃∞
n=0

T n.
We also let T ω be the set of all traces of form α0α1 . . . αn . . . where for each
n ≥ 0, αn ∈ T . Note that δω is distinct from δ.

Given two traces α1 and α2, α1‖α2 is the set of all traces formed by merging
them fairly, allowing (but not necessarily requiring) synchronization of matching
communications. We let α‖ε = ε‖α = {α}. When α1 and α2 are finite and non-
empty, say αi = λiβi, we use the standard inductive definition for α1‖α2:

(λ1β1)‖(λ2β2) = {λ1γ | γ ∈ β1‖(λ2β2)} ∪ {λ2γ | γ ∈ (λ1β1)‖β2}
∪ {δγ | γ ∈ β1‖β2 & match(λ1, λ2)}

When α1 and α2 are infinite, we let α1‖α2 = {} if some direction in blocks(α1)
matches a direction in blocks(α2), since it is unfair to avoid synchronizing two
processes which are blocked but trying to synchronize on a common channel.
Otherwise, when α1 and α2 are infinite and ¬match(blocks(α1), blocks(α2)), we
let α1‖α2 consist of all traces of form γ1γ2 . . . where α1 can be written as a
concatenation of finite traces α1,1α1,2 . . ., α2 can be written as a concatenation
of finite traces α2,1α2,2 . . ., and for each i ≥ 1 we have γi ∈ α1,i‖α2,i.

For example, δh!
ω‖δh?

ω = {} and (a!0δh!
ω)‖(b!1δh?

ω) = {}. However, δa!
ω‖δb?

ω

is non-empty and can be written in the form (δa!
∗δb?δb?

∗δa!)
ω.

We write chans(α) for the set of channels occurring in input or output actions
along α, and when h 6∈ chans(α) we let α\h be the trace obtained from α by
replacing every δX with δX\h. For instance, the trace (a!0 δh?

ω)\h is a!0 δω.

5 Denotational Semantics

We now define a synchronous trace semantics for our programming language.
We assume given the semantics of expressions: T (e) ⊆ Σ∗ × Z describes all

5 Other notions of observable behavior, such as the assumption that we see all actions,
including blocking steps, can be incorporated with appropriate modifications.

possible evaluation behaviors of e, and consists of all pairs (ρ, v) where ρ is a
sequence of evaluation steps which yield value v for the expression. (We do not
need to assume that expression evaluation is an atomic action.) For example,
for an identifier y we have T (y) = {(y=v, v) | v ∈ Z} and for a numeral n

we have T (n) = {(δ, n)}. For a boolean expression b we assume given T (b) ⊆
Σ∗ × {true, false}, and we let T (b)true = {ρ | (ρ, true) ∈ T (b)} and, similarly,
T (b)false = {(ρ | (ρ, false) ∈ T (b)}.

For a process P , the trace set T (P) ⊆ Σ∞ describes all possible executions,
assuming fair interaction between the process and its environment.

Definition 1 (Synchronous Trace Semantics)
The synchronous trace semantics of processes is defined compositionally by:

T (skip) = {δ}
T (x:=e) = {ρ x:=v | (ρ, v) ∈ T (e)}
T (P1; P2) = T (P1)T (P2) = {α1α2 | α1 ∈ T (P1) & α2 ∈ T (P2)}

T (if b then P1 else P2) = T (b)true T (P1) ∪ T (b)false T (P2)
T (while b do P) = (T (b)true T (P))∗T (b)false ∪ (T (b)true T (P))ω

T (h?x) = {h?v x:=v | v ∈ Z} ∪ {δh?
ω}

T (h!e) = {ρ h!v, ρ δh!
ω | (ρ, v) ∈ T (e)}

T (P1‖P2) =
⋃
{α1‖α2 | α1 ∈ T (P1) & α2 ∈ T (P2)}

T (P1 u P2) = T (P1) ∪ T (P2)
T (local h in P) = {α\h | α ∈ T (P) & h 6∈ chans(α)}

T (h?x → P) = {h?v x:=v α | v ∈ Z & α ∈ T (P)} ∪ {δh?
ω}

T (G1 G2) = {α ∈ T (G1) ∪ T (G2) | α 6∈ ∆ω} ∪
{δX∪Y

ω | δX
ω
∈ T (G1) & δY

ω
∈ T (G2)}

The traces of a guarded process G have two possible forms: either beginning
with an input action h?v ∈ Λ, or an infinite sequence of blocking actions δX for
the set X = inits(G) given inductively in the obvious manner: inits(h?x → c) =
{h?}, inits(G1 G2) = inits(G1) ∪ inits(G2).

It is easy to prove that the above semantics satisfies standard algebraic laws,
such as associativity of parallel composition and both forms of choice:

Theorem 1 For all processes P1, P2, P3 and all guarded processes G1, G2, G3,

T (P1‖(P2‖P3)) = T ((P1‖P2)‖P3)
T (P1 u (P2 u P3)) = T ((P1 u P2) u P3)
T (G1 (G2 G3)) = T ((G1 G2) G3)

6 Operational Semantics

A state s is a mapping from program variables to values.6 An action may or may
not be enabled in a given state: the action x=v is only enabled in a state for

6 Since channels are only used for synchronized handshaking there is no need to treat
channel contents as part of the state.

h?x, s
h?v−−−→ x:=v, s h?x, s

δh?−−−→ h?x, s

h!v, s
h!v
−−−→ skip, s h!v, s

δh!−−−→ h!v, s

G1, s
λ−−→ P1, s

′ λ 6∈ ∆

G1 G2, s
λ
−−→ P1, s′

G2, s
λ−−→ P2, s

′ λ 6∈ ∆

G1 G2, s
λ
−−→ P2, s′

G1, s
δX−−−→ G1, s G2, s

δY−−−→ G2, s

G1 G2, s
δX∪Y−−−−−→ G1 G2, s

while b do P, s
δ−→ if b then P ;while b do P else skip, s

P1 u P2, s
δ−→ P1, s P1 u P2, s

δ−→ P2, s

P1, s
λ
−−→ P ′

1, s
′

P1‖P2, s
λ−−→ P ′

1
‖P2, s′

P2, s
λ
−−→ P ′

2, s
′

P1‖P2, s
λ−−→ P1‖P ′

2
, s′

P1, s
λ1−−−→ P ′

1, s P2, s
λ2−−−→ P ′

2, s match(λ1, λ2)

P1‖P2, s
δ−→ P ′

1
‖P ′

2
, s

P, s
λ
−−→ P ′, s′ chan(λ) 6= h

local h in P, s
λ−−→ local h in P ′, s′

P, s
δX−−−→ P ′, s

local h in P, s
δX\h

−−−−−→ local h in P ′, s′

skip, s term

P1, s term P2, s term

P1‖P2, s term

P, s term

local h in P, s term

Fig. 1. Operational semantics for processes

which the value of x is v, and in fact a state is uniquely determined by the set
of evaluation actions which it enables. We write [s | x : v] for the state obtained
from s by updating the value of x to v.

The operational semantics for expressions involves non-terminal transitions
of form e, s

µ−−→ e′, s and terminal transitions of form e, s
µ−−→ v, where µ is an

evaluation action and v is an integer. Similarly for boolean expressions. The op-

erational semantics for processes involves transitions of form P, s λ−−→ P ′, s′ and
a termination predicate P, s term. Some transition rules are listed in Figure
1. (We omit several rules, including those dealing with sub-expression evalua-
tion and the rules for sequential constructs, which are standard.) Note that an
external choice G1 G2 is “resolved” only when a communication occurs.

A transition sequence of process P is a sequence of transitions of form

P, s0
λ0−−→ P1, s

′
0 P1, s1

λ1−−→ P2, s
′
1 P2, s2

λ2−−→ P3, s
′
2 . . .

either infinite or ending in a terminal configuration. A computation is a transition
sequence in which the state never changes between steps, so that s′i = si+1. A
transition sequence (or a computation) of P is fair if it contains a complete
transition sequence for each syntactic sub-process of P , and no pair of sub-
processes is permanently blocked yet attempting to synchronize. For example,

the computation

a?x‖a!0, s
δa?−−−→ a?x‖a!0, s

δa!−−−→ a?x‖a!0, s
δa?−−−→ a?x‖a!0, s

δa!−−−→ · · ·

is not fair, because the two processes block on matching directions. However,

a?x‖a!0, s a?1−−−→ x:=1‖a!0, s x:=1−−−−→ skip‖a!0, s′
δa!−−−→ skip‖a!0, s′

δa!−−−→ · · ·

where s′ = [s | x : 1], is fair because only one process is blocked; there is a fair
computation of the process a!1‖(a?x‖a!0) in which the first process performs a!1
and the second performs the above transition sequence. Similarly, the sequence

a!0‖b!1, s
δa!−−−→ a!0‖b!1, s

δb!−−−→ a!0‖b!1, s
δa!−−−→ a!0‖b!1, s

δb!−−−→ · · · qualifies as fair,
and corresponds to the trace (δa!δb!)

ω of process a!0‖b!1. We write P α−−→ when
P has a maximal fair transition sequence on which the actions form the trace α.

7 Semantic Properties

The denotational and operational characterizations of fair traces coincide:

Theorem 2 (Congruence of Operational and Denotational Semantics)
For every process P , T (P) = {α | P α−−→}.

Suppose we can observe communication sequences, including persistent block-
ing and the values of non-local variables, but we cannot backtrack to try alterna-
tive runs. This notion of observable behavior suffices to allow safety and liveness
analysis and is equivalent to observing traces. It is an obvious consequence of
compositionality that our trace semantics is fully abstract for this notion of
behavior:

Theorem 3 (Full Abstraction for Synchronous Trace Semantics)
Two processes P1 and P2 have the same trace sets iff they have the same observ-

able behavior in all contexts.

This generalizes the analogous well known full abstraction results for failures
semantics, which hold in a much more limited setting, without fairness [33]. The
significance is not full abstraction per se but the construction of a simple trace-
based semantics that incorporates a reasonable form of fairness and synchronized
communication while supporting safety and liveness analysis.

To demonstrate that trace semantics distinguishes between processes with
different deadlock capabilities, note that:

δX
ω
∈ T ((a?x → P) (b?x → Q)) ⇐⇒ X = {a?, b?}

δX
ω
∈ T ((a?x → P) u (b?x → Q)) ⇐⇒ X = {a?} or X = {b?}.

If we run these processes in a context which is only capable of communicating
on channel b, such as local a, b in ([−]‖b!0), the first process would behave like
x:=0; local a, b in Q but the second would also have the possibility of behaving
like local a, b in ((a?x → P)‖b!0), which is deadlocked and has trace set {δω}.

The following semantic equivalences, to be interpreted as equality of trace
sets, illustrate how our model supports reasoning about process behavior.

Theorem 4 (Fair Synchronous Laws)
The following laws of equivalence hold in synchronous trace semantics:

1. local h in (h?x; P)‖(h!v; Q) = local h in (x:=v; (P‖Q))
2. local h in (h?x; P)‖(Q1; Q2) = Q1; local h in (h?x; P)‖Q2

provided h 6∈ chans(Q1)
3. local h in (h!v; P)‖(Q1; Q2) = Q1; local h in (h!v; P)‖Q2

provided h 6∈ chans(Q1).

These properties reflect our assumption of fairness, and are particularly helpful
in proving liveness properties. They are not valid in an unfair semantics: if
execution is unfair there is no guarantee in the first law that the synchronization
will eventually occur, and there is no guarantee in the second or third laws that
the right-hand process will ever execute its initial (non-local) code.

8 Pomset Semantics

We now introduce a “truly concurrent” interpretation for our process language
and show that it is a natural generalization of the trace semantics. We adapt
Pratt-style “pomsets” to handle synchronization and our notion of fairness.

A pomset (T, <) is a partially ordered countable multiset of actions: T is a
multiset whose elements are drawn from the set Σ of actions, and < is a partial
order on T , representing a “precedence” relation on action occurrences in T .
Actually we allow the precedence relation to be a pre-order: when T contains a
pair of matching communication occurrences which precede each other this will
force a synchronization. We also assume that every action dominates finitely
many actions, so the precedence relation is well founded. We write |T | for the
cardinality of T , which is either finite or ω.

The kernel of an ordering relation < is the subset consisting of the pairs
(µ, µ′) such that µ < µ′ and there is no µ′′ such that µ < µ′′ < µ′. The full
ordering relation can be recovered by taking the transitive closure of the kernel.
We also elide non-final occurrences of δ, for example replacing µ < δ < µ′ by
µ < µ′. (This is analogous to our earlier convention for concatenating δ.)

Each pomset (T, <) determines a set of traces, those traces containing all of
the action occurrences from T in a linear order consistent with the precedence
relation, modulo synchronization. We will refer to these as the traces consis-

tent with the pomset. A single trace can be viewed as a pomset with a linear
precedence order. A pomset consists of a number of connected components, or
threads.

We define T1; T2 = T1 if |T1| = ω, otherwise T1; T2 is the ordering on T1 ∪ T2

obtained by putting T2 after T1. Likewise we define T 0 = {δ}, T k+1 = T ; T k

for k ≥ 0, and T ω. T1‖T2 is the disjoint union of T1 and T2 ordered with the
disjoint union of the orderings from T1 and T2. We say that a pomset is fair iff
it does not contain a pair of concurrent threads which eventually block on a pair
of matching directions. For example, the pomset {a!0δb!

ω, a?0δb?
ω} is unfair. We

write T fair to indicate that T is a fair pomset.

We define T �h T ′ to mean that T ′ arises by choosing for each occurrence
of h?v (or h!v) in T a unique concurrent matching action occurrence h!v (re-
spectively, h?v) in T , and augmenting the ordering accordingly, with an arrow
each way between the matched pairs. This can be formalized as a synchronizing

schedule for channel h. For a given T and h there may be no such T ′, or there
may be multiple such T ′, each corresponding to a sequence of synchronization
choices. Given a pomset T ′ in which all visible actions on h are matched, we
define T ′\h to be the result of replacing all matching pairs by δ (i.e. enforcing
synchronization), replacing every δX by δX\h, and eliding non-final δ actions.

We assume that the pomset semantics of expressions is given, so that for
an expression e, P(e) is a set of pairs of the form (T, v), where v ∈ Z and
T is a pomset of evaluation actions. Intuitively, (T, v) ∈ P(e) means that if
the evaluation trace of e is consistent with T then v is a possible final value.
We also assume given the pomset semantics of boolean expressions, and we let
P(b)true = {T | (T, true) ∈ P(b)} and similarly for P(b)false. A process P

denotes a set (or “family”) P(P) of pomsets.

Definition 2 (Synchronous Pomset Semantics)
The pomset semantics P(P) is given compositionally by:

P(skip) = {{δ}}
P(x:=e) = {T ; {x:=v} | (T, v) ∈ P(e)}
P(P1; P2) = {T1; T2 | T1 ∈ P(P1) & T2 ∈ P(P2)}

P(if b then P1 else P2) = P(b)true;P(P1) ∪ P(b)false;P(P2)
P(while b do P) = (P(b)true;P(P))∗;P(b)false ∪ (P(b)true;P(P))ω

P(h?x) = {{h?v} | v ∈ Z} ∪ {{δh?
ω}}

P(h!e) = {T ; {h!v} | (T, v) ∈ P(e)} ∪ {{δh!
ω}}

P(P1‖P2) = {T1‖T2 | T1 ∈ P(P1) & T2 ∈ P(T2) & (T1‖T2) fair}
P(P1 u P2) = P(P1) ∪ P(P2)

P(local h in P) = {T ′\h | T ∈ P(P) & T �h T ′}
P(h?x → P) = {{h?v}; T | v ∈ Z & T ∈ P(P)} ∪ {{δh?

ω}}
P(G1 G2) = {T ∈ P(G1) ∪ P(G2) | T ∩∆ω = {}} ∪

{{δX∪Y
ω} | {δX

ω} ∈ P(G1) & {δY
ω} ∈ P(G2)}

It can be proven by structural induction that every pomset T ∈ P(P) is fair.

An Example

Let buff 1(in ,mid) be local x in while true do (in?x;mid !x), which behaves
like a 1-place buffer. Let buff 1(mid , out) be similarly defined. It is easy to prove
using pomsets that with synchronized communication

buff 2(in , out) =def local mid in buff 1(in ,mid)‖buff 1(mid , out)

behaves like a 2-place buffer. One can also use the semantics to analyze a variety
of alternative buffer-like constructs, such as

local mid in buff 2(in,mid)‖buff 2(mid , out)

and one can validate a number of general buffer laws as in [33].

9 Recovering Traces

The pomset semantics determines the trace semantics in a natural manner.

Definition 3 The set of synchronous traces consistent with a pomset T , written

L(T), consists of all traces which arise by fair interleaving the threads of T ,

possibly allowing synchronization.

Equivalently, L(T) is the set of all linear orders on the multi-set T which extend
the order of T , allowing for the possibility of synchronization.

Note that distinct pomset families may determine the same trace sets. For
example the pomset families {{a!0, b!1}, {a!0, δb!

ω}, {b!1, δa!
ω}, {δa!

ω, δb!
ω}} and

{{a!0 b!1}, {b!1 a!0}, {a!0, δb!
ω}, {b!1, δa!

ω}, {δa!
ω, δb!

ω}} both determine the trace
set of a!0‖b!1.

Assuming that the pomset semantics of expressions is consistent with the
trace semantics, i.e. that for all e, T (e) = {(ρ, v) | ρ ∈ L(T) & (T, v) ∈ P(e)},
with a similar assumption for boolean expressions, we can prove the analogous
property for processes by structural induction:

Theorem 5 For all processes P , T (P) =
⋃
{L(T) | T ∈ P(P)}.

Note the obvious but useful corollary:

Corollary 6 For all P1 and P2, if P(P1) = P(P2) then T (P1) = T (P2).

Many laws of process equivalence hold for pomset semantics, and can be proven
without dealing with fully expanded trace sets. For example, the pomset se-
mantics also satisfies standard algebraic laws, such as associativity of parallel
composition and both forms of choice:

Theorem 7 For all processes P1, P2, P3 and all guarded processes G1, G2, G3,

P(P1‖(P2‖P3)) = P((P1‖P2)‖P3)
P(P1 u (P2 u P3)) = P((P1 u P2) u P3)
P(G1 (G2 G3)) = P((G1 G2) G3)

Using the above Corollary such laws transfer immediately to trace semantics,
giving an alternative proof of the validity of these laws in the trace semantics.
Pomset semantics thus provides a potentially more succinct model of process
behavior and an alternative compositional approach to parallel program analysis.

Our pomset semantics and even our trace semantics make certain behav-
ioral distinctions which might seem more consistent with the philosophy of
“true concurrency” than with the trace-theoretic rationale for our models. In
particular the so-called “interleaving law” [23, 18, 21] does not hold, and par-
allel composition cannot be “expanded away” and expressed equivalently as a
guarded choice of interleavings. For example, P(a!0‖b!1) is given above, whereas
P(a!0; b!1 u b!1; a!0) is the family

{{a!0 b!1}, {b!1 a!0}, {a!0 δb!
ω}, {b!1 δa!

ω}, {δa!
ω}, {δb!

ω}}

so that a!0‖b!1 is not pomset-equivalent to (a!0; b!1) u (b!1; a!0). Indeed this
distinction also holds in the trace semantics, since

T (a!0‖b!1) ∩∆ω = δa!
ω‖δb!

ω = (δa!
∗δb!δb!

∗δa!)
ω

T (a!0; b!1 u b!1; a!0) ∩∆ω = {δa!
ω, δb!

ω}.

This difference in trace sets can be explained intuitively, without appealing to
considerations of true concurrency, since a!0‖b!1 can be observed (if placed in a
suitable environment) waiting repeatedly for action on one of the two channels,
whereas the other process makes a non-deterministic choice and thereafter fixates
on one particular channel. Note that a!0‖b!1 also fails to be trace- or pomset-
equivalent to (a!0 → b!1) (b!1 → a!0), since

T ((a!0 → b!1) (b!1 → a!0)) ∩∆ω = {δ{a!,b!}
ω},

so neither form of non-deterministic choice can be used to expand away a parallel
composition.

10 Asynchronous Communication

Now suppose that communication is asynchronous, as in non-deterministic Kahn-
style networks, so that output actions are always enabled, and channels behave
like unbounded queues; a process wishing to perform input from a channel must
wait (only) if the queue is empty. We can easily adapt the trace semantics to
model asynchronous communication. We only need to include blocking actions
δX where X is a set of input directions7. We redefine α1‖α2 to be the set of fair
interleavings of α1 with α2, without allowing any synchronization. We say that
α is local for h if the communications on h along α obey the queue discipline,
and we redefine α\h to replace all communications on h by δ and replace δX by
δX\h.

Definition 4 The set AT (P) of asynchronous traces of P is defined compo-

sitionally, exactly as for the synchronous traces but with modifications in the

clauses for output, parallel composition, and local channels, which become:

AT (h!e) = {ρ h!v | (ρ, v) ∈ T (e)}
AT (P1‖P2) =

⋃
{α1‖α2 | α1 ∈ AT (P1) & α2 ∈ AT (P2)}

AT (local h in P) = {α\h | α ∈ AT (P) & α local for h}

The asynchronous trace semantics also validates the associativity laws for par-
allel composition and both forms of choice.

The asynchronous operational semantics is obtained by making similar ad-
justments to the rules for output, parallel composition, and local channels, and

7 It would obviously suffice to work with blocking actions decorated with the set of
channel names h rather than the corresponding input directions h?, but we resist
this temptation to emphasize the similarity with the synchronous case.

including channel contents as part of the state. The operational notion of fair
transition sequence is as before, except that the transition relation no longer
includes synchronizing steps. Again the denotationally characterized trace set
coincides with the operationally characterized trace set, and we have full ab-
straction with respect to communication behavior.

Theorem 8 (Congruence of Denotational and Operational Semantics)
For every process P , AT (P) consists of the traces generated by the fair asyn-

chronous transition sequences of P .

Theorem 9 (Full Abstraction for Asynchronous Trace Semantics)
Two processes P1 and P2 have the same asynchronous trace sets iff they have

the same asynchronous communication behavior in all contexts.

We can define an asynchronous pomset semantics AP(P), again adjusting
the clauses for output, parallel composition and local channels. We no longer
need a side condition in the clause for P1‖P2: every trace consistent with the
disjoint union T1‖T2 will represent a fair asynchronous behavior of the parallel
process. We redefine T �h T ′ to mean that T ′ arises by choosing, for each input

occurrence h?v in T an output occurrence h!v in T which justifies it, all choices
respecting the precedence order of T and the queue discipline of the channel, and
augmenting the ordering so that each input is preceded by its justifying output.
This can be viewed as imposing an asynchronous schedule. For a given T and h,
there may be no such T ′, in which case T does not describe any traces which are
local for h, or there may be multiple such T ′, each corresponding to a different
sequence of scheduling choices. Given a pomset T ′ in which all inputs on h are
justified in this manner, we define T ′\h to replace each communication on h by
δ, replace δX by δX\h, and elide non-final δ actions.

Definition 5 (Asynchronous Pomset Semantics)
The asynchronous pomset semantics is given compositionally as for the syn-

chronous pomset semantics, with the following modifications:

AP(h!e) = {T ; {h!v} | (T, v) ∈ P(e)}
AP(P1‖P2) = {T1‖T2 | T1 ∈ AP(P1) & T2 ∈ AP(P2)}

AP(local h in P) = {T ′\h | T ∈ AP(P) & T �h T ′}

Definition 6 The asynchronous trace set denoted by a pomset T , written AL(T),
is the set of all traces which arise by fair interleaving the threads of T .

Again the asynchronous traces of a process can be recovered naturally:

Theorem 10 For all processes P , AT (P) =
⋃
{AL(T) | T ∈ AP(P)}.

Corollary 11 For all P1 and P2, if AP(P1) = AP(P2) then AT (P1) = AT (P2).

The process local mid in buff 1(in ,mid)‖buff 1(mid , out) behaves like a finite
unbounded buffer if we assume asynchronous commuication, in contrast to the
2-place buffer which described its behavior under synchronous communication.

The following laws hold for asynchronous trace semantics, and are analogues
of the first two laws given earlier for synchronous communication. The third law
does not hold, because of the assumption that output is always enabled.

Theorem 12 (Fair Asynchronous Laws)
The following laws of equivalence hold in asynchronous trace semantics:

1. local h in (h?x; P)‖(h!v; Q) = local h in (x:=v; P)‖Q
2. local h in (h?x; P)‖(Q1; Q2) = Q1; local h in (h?x; P)‖Q2

provided h 6∈ chans(Q1).

These laws also hold for asynchronous pomset semantics.

11 Related Work

Hoare’s “trace model” of CSP [20] interpreted a process as a prefix-closed set of
finite communication traces, recording only visible actions such as h!v and h?v.
Each such trace represents a partial behavior. Hoare’s model did not treat infi-
nite behaviors, and is mainly suitable for proving safety properties. The failures
semantics of CSP [11] modelled a process as a set of failures (α, X) consisting
of a finite sequence α of communications and a “refusal set” X . Our notion of
trace subsumes failures: a process with failure (α, X) would have a trace αδY

ω,
for some set Y disjoint from X . Our notion of trace is more general, allowing
for instance traces of form α(δAδB)ω which cannot be represented in failure for-
mat. The extra generality is needed in order to cope properly with fair parallel
composition. Our traces represent entire computations, so our trace sets are not
prefix-closed. Again this is more than a philosophical difference: one cannot de-
duce the fair traces of a parallel process by looking at the prefixes of the traces
of its constituent processes. The failures semantics and its later more refined ex-
tensions, all building on a prefix-closed trace set, were not designed with fairness
in mind [33].

Our use of traces in which blocking actions play a crucial role is reminiscent of
Phillips-style refusal testing, although Phillips did not incorporate fairness [30].
Refusal testing assumes that under certain circumstances one may detect that a
process is unable to perform a communication; one may obviously view a process
which is capable of performing δX as being (potentially) unable to perform h?v
for any h? ∈ X . It is not clear how to generalize Phillips’s testing equivalence to
deal properly with fairness.

Older’s Ph.D. thesis [24] provides a framework capable of modelling several
forms of fairness in the synchronous setting. She introduced generalized notions
of fairness and blocking modulo a set of directions, and her models incorporated
extensive book-keeping information concerning enabling, together with cleverly
devised but complex closure conditions designed to achieve full abstraction [25,
10]. As Older comments, it is questionable if these fairness notions are useful ab-
stractions of realistic schedulers, since their implementation requires meticulous
attention to so much enabling information. Moreover, these forms of fairness

tend to lack equivalence robustness, being sensitive to subtle nuances in the
formulation of the operational semantics [1].

In contrast we assume a robust yet simple form of weakly fair execution, suit-
ably adapted to deal reasonably with synchronization to ensure that two pro-
cesses waiting to perform matching communications will not be ignored forever.
This property would be guaranteed for instance by any round-robin scheduler
which runs each process for an randomly chosen number of steps, and also uses a
round-robin strategy to look for matching communications if the chosen process
blocks while attempting input or output. This form of fairness is a simple variant
of weak process fairness and we believe this is a reasonable abstraction from the
behavior of realistic implementations. Furthermore, in adopting this notion of
fairness we avoid the need for separate book-keeping: the traces themselves can
be designed to carry the relevant information in their δ actions. Older’s notion
of being blocked but fair modulo a set X of directions corresponds to a trace
β such that blocks(β) ⊆ X . It would be interesting to see if the other forms of
fairness discussed by Older can be treated within our framework.

Hennessy [17] gave an earlier treatment of a CCS-like language with weakly
fair execution. Parrow [29] discusses various fairness notions for CCS-like pro-
cesses. Costa and Stirling gave an operational semantics for a CCS-like language
assuming either weak or strong process fairness [13, 14].

Partial-order semantics of various kinds, such as Pratt-style pomsets [31, 32],
Winskel’s event structures [35]8, and Petri nets [28] have been widely used, with
parallel composition interpreted as so-called “true concurrency” rather than in-
terleaving. Avoiding explicit interleaving can be advantageous, both in avoiding
a combinatorial explosion and in side-stepping the need to define fairmerge oper-
ations. Indeed our motivation in developing a pomset formulation was to obtain
an alternative and more tractable methodology for dealing with trace sets. The
pomset union operation nicely handles weakly fair parallel composition in the
absence of blocking. We show how to extend these ideas to incorporate blocking.

References

1. K. R. Apt, N. Francez, and S. Katz, Appraising fairness in languages for distributed
programming, Distributed Computing, 2(4):226-241, 1988.

2. J. A. Bergstra and J.-W. Klop, Process Algebra for Synchronous Communication,
Information and Computation, 60(1/3):109–137, 1984.

3. J. A. Bergstra, J.-W. Klop, and J. Tucker, Process algebra with asynchronous com-
munication mechanisms, Seminar on Concurrency, Springer LNCS 197, pp. 76–95,
1985.

4. F. de Boer, J. Kok, C. Palamidessi, and J. Rutten, The failure of failures in a
paradigm for asynchronous concurrency, CONCUR’91, Springer LNCS 527, pp.
111-126, 1991.

8 Event structures can be seen as pomsets equipped with a “conflict relation”, although
this characterization does not reflect their original, independent, development and
subsequent usage.

5. S. Brookes, Full abstraction for a shared-variable parallel language, Information
and Computation, 127(2):145-163, June 1996.

6. S. Brookes, The Essence of Parallel Algol, 11th LICS, pp. 164-173, July 1996.
7. S. Brookes, Idealized CSP: Combining Procedures with Communicating Processes,

Proc. MFPS XIII, ENTCS 6, Elsevier Science, 1997.
8. S. Brookes, On the Kahn Principle and Fair Networks, MFPS XIV, Queen Mary

Westfield College, University of London, May 1998.
9. S. Brookes, Deconstructing CCS and CSP: Asynchronous Communication, Fair-

ness and Full Abstraction, MFPS XVI, 2000.
10. S. Brookes and S. Older, Full abstraction for strongly fair communicating processes,

MFPS XI, ENTCS 1, Elsevier Science, 1995.
11. S. Brookes, C. A. R. Hoare, and A. W. Roscoe, A Theory of Communicating

Sequential Processes, JACM 31(3):560-599, July 1984.
12. S. Brookes, and A. W. Roscoe, An improved failures model for CSP, Seminar on

concurrency, Springer-Verlag, LNCS 197, 1984.
13. G. Costa and C. Stirling, A fair calculus of communicating systems, ACTA Infor-

matica 21:417-441, 1984.
14. G. Costa and C. Stirling, Weak and strong fairness in CCS, Technical Report

CSR-16-85, University of Edinburgh, January 1985.
15. N. Francez, Fairness, Springer-Verlag, 1986.
16. R. van Glabbeek, The Linear Time–Branching Time Spectrum, Handbook of

Process Algebra, Elsevier, 2001.
17. M. Hennessy, An algebraic theory of fair asynchronous communicating processes,

Theoretical Computer Science, 49:121-143, 1987.
18. M. Hennessy and R. Milner, Algebraic laws for nondeterminism and concurrency,

JACM 32(1):137–161, 1985.
19. C. A. R. Hoare, Communicating Sequential Processes, CACM 21(8):666–677, 1978.
20. C. A. R. Hoare, A Model for Communicating Sequential Processes, Technical Mono-

graph PRG-22, Oxford University, June 1981.
21. C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
22. R. Milner, A Calculus of Communicating Systems, Springer LNCS 92, 1980.
23. R. Milner, Communication and Concurrency, Prentice-Hall, London, 1989.
24. S. Older, A Denotational Framework for Fair Communicating Processes, Ph.D.

thesis, Carnegie Mellon University, December 1996.
25. S. Older, A Framework for Fair Communicating Processes, Proc. MFPS XIII,

ENTCS 6, Elsevier Science, 1997.
26. S. Owicki and L. Lamport, Proving liveness properties of concurrent programs,

ACM TOPLAS, 4(3): 455-495, July 1982.
27. D. Park, On the semantics of fair parallelism. Abstract Software Specifica-

tions, Springer-Verlag LNCS vol. 86, 504–526, 1979.
28. C. A. Petri, Concepts of Net Theory, Symposium on Mathematical Foundations of

Computer Science, September 1973.
29. J. Parrow, Fairness Properties in Process Algebras, Ph. D. thesis, University of

Uppsala, 1985.
30. I. Phillips, Refusal testing, Theoretical Computer Science, 50(2):241–284, 1987.
31. V. Pratt, On the Composition of Processes, Proc. 9th ACM POPL Symp., 1982.
32. V. Pratt, Modeling concurrency with partial orders, International Journal on Par-

allel Processing, 15(1): 33–71, 1986.
33. A. W. Roscoe, The Theory and Practice of Concurrency, Prentice-Hall, 1998.
34. V. Saraswat, M. Rinard, and P. Panangaden, Semantic foundations of concurrent

constraint programming, Proc. 18th ACM POPL Symposium, 1991.
35. G. Winskel, Events in Computation, Ph. D. thesis, Edinburgh University, 1980.

