A semantics for
concurrent permission logic

Stephen Brookes
CMU

Cambridge, March 2006

Traditional log

OIIW»‘I JICS /D

[+ {p} c {q}

@ Resource-sensitive partial correctness

® | specifies resources ri, protection lists X;, and invariants R

® p, q describe unprotected variables

@ Static constraints guarantee race-freedom

Parallel rule

[={pi}ci{qi} [F{p2}ca{qz}

[= {p1 A p2} cif|c2{qi A q2}

provided
free(pi,qi) n writes(c2) = @

free(p2,q2) n writes(c|) = & critical variables

are protected

free(ci) n writes(cz2) € owned(I)
free(cz2) n writes(c;) € owned(I)

Resource rules

@Wwicki/(&ries

[= {(pAR)ADb} c {gAR}
[, r(X):R - {p} with r when b do c {q}

[, r(X):R = {p} c {q}
[- {pAR} resource r in c {qAR}

(subject to static constraints)

[{pjc{q} is valid iff...

Every finite computation of ¢ *
in an environment that respects |,

respects |, is race-free,
and ends in a state satisfying G AR A ARy

(state = store)

@ Owicki-Gries logic is sound,
for simple shared-memory programs

@ Every provable program is race-free

@ Owicki-Gries logic is

= UX]=0) [X]=1IX]= 1 = ([y]=0} [yl=1 [y]l= 1)
= AUXI=0 A [Y1=0; [X]:=1H || Y= TAIXI= 1 A [YI= 1
valid premisses, invalid conclusion

@ Static constraints cannot prevent pointer races

@ Combine Owicki-Gries with separation logic

® Let resource invariants be precise formulas
® Static constraints ensure race-freedom for variables

® Use X to enforce mutual exclusion for heap

(s;,h) E ©1XP2
iff 3h) Lh,. h=hjuh; &

(s;h1) E @1 & (s,h2) E P2

Parallel rule

[={pi} ci{qi} T = {p2} ca{qz}

[{p1Xp2} ci|c2{q1%kqa}

provided
free(pi,qi) n writes(c2) = @

same as before

free(p2,92) n writes(c|) = @

free(ci) n writes(cz2) € owned(I)
free(c2) n writes(ci) € owned(I)

Resource rules

[= {(pkR)Ab} c {g*kR}
[, r(X):R - {p} with r when b do c {q}

[, r(X):R = {p} c {q}
[- {p*kR} resource r in c {gkR}

(subject to static constraints)

[= {p}c{a} is valid if:

Every finite computation of ¢ _
In an environment that respects |,
from a state satisfying PR K. KR,

respects |, is race-free,
e cnle 1) S50 SR R

Can be formalized using
action trace semantics

state = store + hea
P

Ownership transfer

@ The logic allows proofs in which heap ownership
transfers between processes and resources

® for each available resource, invariant holds separately

® when acquiring a resource, process claims ownership
of protected variables + sub-heap

® when releasing a resource, process must guarantee that
invariant holds separately, and cedes ownership

Soundness

Every provable formula is valid

@ Based on action trace semantics
® formalizes notion of validity

® supports rigorous account of ownership transfer

@ Concurrent separation logic is too rigid

@ Cannot handle concurrent reads of heap cells

S0P ||| T 2] K20 XSy 20}
alle) bue nee provable

SR Z= 0 =78 [y =78 2= S0 A=Y =0
\Vjﬂw,],{)[;!jlg

@ Concurrent separation logic
treats store and heap differently

@ store handled in side conditions

@ heap managed in logic, with %

z—0 % z—~0 = false

Concurrent permission logic

~arkinson, bornat;(alcagno =06

@ Blend Owicki-Gries with permission logic
@ Treat store and heap identically
@ Augment state with permissions

@® Use a more permissive form of x to
allow concurrent reads but not writes

.. no side conditions!
... o protection lists!

Parallel rule

[={pi} ci{qi} T = {p2} ca{qz}

[= {piXkp2} ci||c2 {qi*kq2}

[= {(pXR)Ab} c {gkR} as before

[,r:R — {p} with r when b do c {q}

[,r:R = {p} c {q}
[- {p*kR} resource r in c {gkR}

(no need for static constraints)

[= {p}c{a} is valid if:

Every finite computation of c ;
In an environment that respects |,
from a state satisfying p><R <. KR,

I'c " S U?)B 1’39941'@3,

Can also be formalized with
action trace semantics

(state = store + heap, with permissions)

Permissio

@ The logic allows proofs in which permissions
transfer implicitly between processes and resources

® for each available resource, invariant holds separately
® when acquiring a resource, process claims permissions

® when releasing a resource, process must guarantee that
invariant holds separately, and cedes permissions

Summary of talk

@ Concurrent permission logic is sound
‘ Can use action trace semantics

@ Soundness proof generalizes earlier proof for
concurrent separation logic

@ Crucial role of brecision

Actions

NEap dctions cdn D€

INC r)rpgrqra.'j 00

idle

read

write
@® try(r), acq(r), rel(r) resource actions

@® abort error

@ A command denotes a set of action traces

@ Defined by structural induction on c

[eiicall = Voo | roare e, oz € el

concatenation

[eiflel = U {effoa | ore e, o2 €[] ¥
resource-sensitive, race-detecting,
fair interleaving

(P, ®,T)

@ partial commutative cancellative semi-group

® 7©p undefined

® rep#p

+ other properties,
e.g. divisibility
when appropriate

tional permissions

® P=(01]
@pop =p+p ifin(0l]
® =1

s:S=Ilde —mV x P

@ Map program variables to (v, p) pairs

@ s ks’ combines bindings and permissions,
when s and s’ are compatible

@ \Write s & s’ when compatible

@ s s iffvivpv,p.

it s()=(v, p) & s()=(v, p")
then v=v' & p # p’

@ s X5 =4rs\dom(s’) u s'\dom(s)
UA((v p®P)) | s()=(vs p) & s()=(v, p')}

@ Used in the logic to link pre- and post-conditions

@ Do not appear in programs

X,Y are logical variables
X,y are program variables

Interpretations

@ Map logical variables to logical values
@ integer variables to integers

(4 permission variables to permissions

state = stack + interpretation

® o=
® Gi)F G, iff sFs'"&i=V

@ G i)k (s,i) = (sks,i)

Qp

emp
OWHP(X)
Ei=E>

(P 1K

P A P2
P = P2

3X.p

(s,i) = emp iff s={ }

(s,i) = Ownp(x) iff 3v.s={(x, (v, |p]i))}

OFE @k ; iff
101,02.0 = 01X 07 & O

O = E|=k; iff

= | & 03

= (D2

|Ei|0 = |E2|O0 & free(EI,E2) € dom(0)

©wnp(X)XOWng(X)
true in (s,i)

Iff
. &avs={(x (v Ipegli)}

(01,02) such that 0 = /%02 and 0 E &

emp, Ownp(x) are precise

if 31,32 are precise, so are

F1%32, (BAX)vV(-BAIR)

@ Formulas of the form

Own (x1) X ... X Own (xi)

(always precise!)

Program formulas

[v {P}c{VY}

no protection lists
® offormri: S, ..., rcSe

® 5 . .. 9 precise

® distinct

@® & V¥ arbitrary state formulas

[{(P} Skip {(P}

no static constraint

[v {Own+(X)kO A X=e} x:=e {Own(x)kO A x=X}

note how
permission constraints
are expressed for e, X

O ranges over ownership claims

[v {P}a{P} T FHw{P}c{E}

[v {P} cr1;c2 {E}

as before

v (@i ci{Wip T v 12} ¢ (W2

[{CPI*CPZ} Ci ”CZ {\PI*LIJZ}

no static constraints

d=b=b [., {dab}ci{®W} [F,{dAr-b}c2{P}

[v {}} if b then c| else c; {W}

(1)=>b=b [—vr {d)/\b} C {CI)}
[v {d} while b do ¢ {dA-b}

extra premiss ensures
bermission for b

@*0 = b=b [{((pkB)Ab} c {W*B}

[, r:0 —, {¢p} with r when b do c {{)}

extra premiss implies
bermission for b

[, r:0 v {®} c {P}

[- {¢p*0} resource r in c {P*0O}

as before

CHANGE of BOUND RESOURE

[v {d} resource r’ in [r'/r]c {W}

[v {$} resource r in c {Y}

brovided r’ not free in c

[o {Own(x) %} [X/x]c {Own+ (X')k}

[~ {$} local x in c {Y}

provided x’ not free in [, ®, W, c

[= {P) c{W]

[v {PkI} c {WkI}

no static constraints

[= {P} c (]

[{3X. @} c {3X P}

X a logical variable

©O=¢@ [Fs{@tc{P} V=20 [<]

" v 1@} c {W'}

as before

AUXILIARY: VARIABL

[v {PkOwn+(A)} c {P>XOwn1(A)}
[v {¢p} \A {W]

provided A auxiliary for c
and no variable in A is free in |, (©, W

[{P} x:=e {® A x=€}

if X not free in e

where @ is

Ownr (X)X Own (xi) * ... % Own (xi)

and free(e) = {xi, ..., X}

concurrentireads

SOWRH(X) XOWAH(y) XOWn! ()}
X:=Z || y:=z
{OWNT(X) XOWNT(Y) XOWN(2) AX=y =7}

need total permission for x,y
+ any permission for z

race condition

qu@E3wM&n§QF3@3wnwn§§ﬂ»
Xi=xH | [X=Xt

(ORI CIFOWIE)

valid, provable

vacuous

distributed counter

Let pI ®qI= p2®q=T

[= r: Ownr(x)*kXOwnp(Xx1)*kOwnpz(Xx2) A X=X|+X2

[E=vr \C)Wﬂg)l(i&j %@wﬁw\(x@)‘}
with r do (x:=xt 15 x:=x+l)

L OWNFI(XT)XOWN(X2)),

using PAR, REGION

distributed counter

Vr S @)\wnr@,s,,s;,,g_), AFAJ‘}‘;@F}
resource rin

with r ¢l~) (x:=x+15 x:=xi+1)
['with r do (x:=x+15Xx:=x2t1)
{{@)‘A‘Iﬂv@&))&j,\xg) ATX=X ,.‘;3339

by RESOURCE rule

distributed counter

— i\(@)\‘”w‘o A ,{:k))«ﬁ@ﬂﬂ r(»&lvs’d)}

resource r in
with r do (x:=x* 15 X :=x1+1)
['with rdo (x:=x+I; x3:=xat 1)
{(OWNT(X) AX=2) XOWNT(XT5X2) ;

by SEQ rule and CONSEQUENCE

distributed counter

o @)\‘A‘I)rA x=0}
w9 5e8)

with r do x:=xt|
||'wWith r do x:=x+|
{ OWNT(X) AXZ24

by AUX rule

@ Rules designed to ensure
writes only with total permission,
reads with any permission

@ Permissions transfer implicitly
on acquiring and releasing resources

@ OId side conditions absorbed
into the permission calculus

[y { DIV} is valid iff

For all e [[c]], VO, C".

if 0= ® and u%@f

then 0" =

(O.A) = (0, A)

@ When a process with resources A,
in “local” state O, can do «

@ Assumes environment that respects I

@ Causes abort if & exceeds permissions,
breaks an invariant, or produces runtime error

() =A@ f 3p.0(x)=(vp)

(GA)F=EborE f x¢dom(0)

(GA) = ([O]x(v,1)]A) - if 3v0.0(x)=(vo, T)

() T abort otherwise

Wnen acquiring:r;

assume Invariant-noldas,

claim extra state

ACQUIRE

IR
() =2 (doh AUH)

ifreA rn3el,cFo, 093

WNEN rEIEAsINg I,
snsSure Itnvariant noids

/r‘J/ng/(;/',h Cidlm

(U]) A - ~{I‘})
freA rndel, =002, O2E 3

el
(OA) ~f zlelo) e

freA rioel,
V 0| H# 02 (0O = 0/X02 implies 03 = ‘@)

Every provable formula is valid

@ Each inference rule preserves validity

@ Key lemma: parallel decomposition

Let @ € &X||&X2 and O = O1X03
X D o » Q28 »
If O T; abortathent o ?) zlele) i (o] ' (O)) ? ADOYC

of :
jf ©) T’) U' tnen x|
g’ — :!he)’f&

W
or Ug-?.wnrs

Or =110 507 410 4=10 | KOs A&

QIR o !ig 2
UI?UI X Ug? o))

Validity of I I, {®}c{V} implies

For all ae [[c]|, VO, .

if o~ ®*iny(l) and 0 = 0

then 0’ = YXinv(I')
... NO RACES

References

@ Brookes '04 A semantics for concurrent separation logic
CONCUR 2004

@ O’Hearn ’04 Resources, concurrency, and local reasoning
CONCUR 2004

@ O’Hearn 02 Notes on separation logic for shared-variable concurrency
Unpublished manuscript

@ Reynolds *02 Separation logic: a logic for shared mutable data structures
LICS 2002

Thought for the Day.

IT \S EASIER TO
e GET FORGIENESS

[= -— A L
|| <=Back v || address |

Forbidden
You don't have permission to access fcgi-binftest-cgt on this server. P E R M \ SS ‘ O N l‘

THAN \T \S TO &ET

Apache/i.3.24 Server at localhost cormorant.com Fort 8U

b

&) Done || @ Local intranet 7

403 - Forbidden -

-You are not authorized to view this page

You do not have permission to view this directory or page using the credentials you supplied.

