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Traditional logic

Resource-sensitive partial correctness

Γ specifies resources ri , protection lists Xi , and invariants Ri

p, q describe unprotected variables

Static constraints guarantee race-freedom

Owicki/Gries ’76

Γ ⊢ {p} c {q}



Parallel rule

Γ ⊢ {p1} c1 {q1}    Γ ⊢ {p2} c2 {q2}

Γ ⊢ {p1 ∧ p2} c1||c2 {q1 ∧ q2}

provided
free(p1,q1) ∩ writes(c2) = ∅
free(p2,q2) ∩ writes(c1) = ∅

free(c1) ∩ writes(c2) ⊆ owned(Γ)
free(c2) ∩ writes(c1) ⊆ owned(Γ)

Owicki/Gries

critical variables
are protected



Resource rules

Γ ⊢ {(p∧R)∧b} c {q∧R}

Γ, r(X):R ⊢ {p} with r when b do c {q}

Γ, r(X):R ⊢ {p} c {q}

Γ ⊢ {p∧R} resource r in c {q∧R}

Owicki/Gries

(subject to static constraints)



Validity

Γ ⊢ {p}c{q}  is valid iff...

Every finite computation of c
   in an environment that respects Γ,
      from a state satisfying p∧R1∧...∧Rn,
respects Γ, is race-free,
and ends in a state satisfying q∧R1∧...∧Rn

Definition

(state = store)



Soundness

Owicki-Gries logic is sound,                           
for simple shared-memory programs

Every provable program is race-free



Problem

Owicki-Gries logic is unsound for pointer programs

Static constraints cannot prevent pointer races

⊢ {[x]=0} [x]:=1 {[x]=1}    ⊢ {[y]=0} [y]:=1 {[y]=1}  
⊢ {[x]=0 ∧ [y]=0} [x]:=1 || [y]:=1 {[x]=1 ∧ [y]=1}

valid premisses, invalid conclusion



Concurrent separation logic

Combine Owicki-Gries with separation logic

Let resource invariants be precise formulas

Static constraints ensure race-freedom for variables

Use ✶ to enforce mutual exclusion for heap

O’Hearn ’02
Brookes ’04

(s,h) ⊨ φ1✶φ2

iff ∃h1⊥h2. h=h1∪h2 & 
      (s,h1) ⊨ φ1 & (s,h2) ⊨ φ2



Parallel rule

Γ ⊢ {p1} c1 {q1}    Γ ⊢ {p2} c2 {q2}

Γ ⊢ {p1✶p2} c1||c2 {q1✶q2}

provided
free(p1,q1) ∩ writes(c2) = ∅
free(p2,q2) ∩ writes(c1) = ∅

free(c1) ∩ writes(c2) ⊆ owned(Γ)
free(c2) ∩ writes(c1) ⊆ owned(Γ)

O’Hearn ’02

same as before

✶ for ∧



Resource rules

Γ ⊢ {(p✶R)∧b} c {q✶R}

Γ, r(X):R ⊢ {p} with r when b do c {q}

Γ, r(X):R ⊢ {p} c {q}

Γ ⊢ {p✶R} resource r in c {q✶R}

O’Hearn ’02

✶ for ∧

✶ for ∧

(subject to static constraints)



Validity

Γ ⊢ {p}c{q}  is valid if:

Every finite computation of c
   in an environment that respects Γ,
     from a state satisfying p✶R1✶...✶Rn,
respects Γ, is race-free,
and ends in a state satisfying q✶R1✶...✶Rn

Can be formalized using 
action trace semantics

(state = store + heap)



Ownership transfer

The logic allows proofs in which heap ownership           
transfers between processes and resources

for each available resource, invariant holds separately

when acquiring a resource, process claims ownership      
of protected variables + sub-heap

when releasing a resource, process must guarantee that 
invariant holds separately, and cedes ownership



Soundness

Based on action trace semantics 
formalizes notion of validity

supports rigorous account of ownership transfer

Brookes ’04

precision plays a crucial role
in the soundness proof

Every provable formula is valid



Problems

Concurrent separation logic is too rigid

Cannot handle concurrent reads of heap cells

⊢ {z ↦ 0} x:=[z] || y:=[z] {z ↦ 0 ∧ x=y=0}

valid but not provable

⊢ {z = 0} x:=z || y:=z {z = 0 ∧ x=y=0}

valid, provable



Reason

Concurrent separation logic                                
treats store and heap differently

store handled in side conditions

heap managed in logic, with ★

z↦0 ★ z↦0  = false



Concurrent permission logic

Blend Owicki-Gries with permission logic

Treat store and heap identically

Augment state with permissions

Use a more permissive form of ✶                  to 
allow concurrent reads but not writes

Parkinson, Bornat, Calcagno ’06

... no side conditions!

... no protection lists!



Parallel rule

Γ ⊢ {p1} c1 {q1}    Γ ⊢ {p2} c2 {q2}

Γ ⊢ {p1✶p2} c1||c2 {q1✶q2}

 Where’s the
 side condition?

as before

PBC ’06



Resource rules

Γ ⊢ {(p✶R)∧b} c {q✶R}

Γ, r:R ⊢ {p} with r when b do c {q}

Γ, r:R ⊢ {p} c {q}

Γ ⊢ {p✶R} resource r in c {q✶R}

PBC ’06

as before

(no need for static constraints)



Validity

Γ ⊢ {p}c{q}  is valid if:

Every finite computation of c
   in an environment that respects Γ,
     from a state satisfying p✶R1✶...✶Rn,
respects Γ, is race-free,
and ends in a state satisfying q✶R1✶...✶Rn

Can also be formalized with
action trace semantics

(state = store + heap, with permissions)



Permission transfer

The logic allows proofs in which permissions            
transfer implicitly between processes and resources

for each available resource, invariant holds separately

when acquiring a resource, process claims permissions

when releasing a resource, process must guarantee that 
invariant holds separately, and cedes permissions



Summary of talk

Concurrent permission logic is sound

Can use action trace semantics

Soundness proof generalizes earlier proof for 
concurrent separation logic

Crucial role of precision



Actions

δ                               idle

i=v                             read

i:=v                            write

try(r), acq(r), rel(r)        resource actions

abort                          error

heap actions can be
incorporated too



Semantics

A command denotes a set of action traces

Defined by structural induction on c

[[c]] ⊆ Tr

[[c1;c2]] = { α1 α2 |  α1 ∈ [[c1]],  α2 ∈ [[c2]]  }

{ α1||α2 |  α1 ∈ [[c1]],  α2 ∈ [[c2]] }[[c1||c2]] =  ∪
resource-sensitive, race-detecting,

fair interleaving

concatenation



Permissions

 partial commutative cancellative semi-group

 ⊤⊗ p    undefined

  p ⊗ p’ ≠ p

(P, ⊗,⊤)

+ other properties, 
e.g. divisibility

when appropriate

⊤   allows read/write

p ≠⊤ allows read permission



Fractional permissions

P = (0,1]

p ⊗ p’ = p + p’   if in (0,1]

⊤ = 1



Stacks

 Map program variables to (v, p) pairs

  s ✶ s’  combines bindings and permissions,     
when s and s’ are compatible

 Write s ♯ s’ when compatible

s : S = Ide ⇀fin V × P



Stacks

 s ♯ s’  iff ∀i, v, p, v’, p’. 

  s ✶ s’ =def s\dom(s’) ∪ s’\dom(s) 

∪ {(i, (v, p⊗p’)) | s(i)=(v, p) & s’(i)=(v, p’)} 

if       s(i)=(v, p) & s’(i)=(v’, p’) 
then  v=v’ & p # p’



Logical variables

Used in the logic to link pre- and post-conditions

Do not appear in programs

X, Y   are logical variables
x, y   are program variables



Interpretations

 Map logical variables to logical values

integer variables to integers

permission variables to permissions



States

 σ = (s, i)

 (s, i) ♯ (s’, i’)  iff  s ♯ s’ & i = i’

 (s, i) ✶ (s’, i) = (s✶s’, i)

state = stack + interpretation



State formulas

φ  ::=  emp 
      |   Ownp(x) 
      |    E1=E2

      |    ¬φ
      |    φ1✶φ2

      |    φ1 ∧ φ2
      |    φ1 ⇒ φ2

      |    ∃X.φ



Satisfaction

(s,i) ⊨ Ownp(x) iff  ∃v. s={(x, (v, |p|i))}

σ ⊨ φ1✶ φ2   iff 
          ∃σ1,σ2. σ = σ1✶ σ2 & σ1⊨ φ1 & σ2⊨ φ2

(s,i) ⊨ emp iff s={ }

σ ⊨ E1=E2 iff 
          |E1|σ = |E2|σ & free(E1,E2) ⊆ dom(σ)



Examples

true in (s,i) 
iff  

p#q & ∃v. s={(x, (v, |p⊗q|i))}

Ownp(x)✶Ownq(x)

x=3
true in (s,i) 

iff  
∃p. (x, (3, p)) ∈ s



Precision

emp,

ϑ1✶ϑ2 , (B ∧ ϑ1) ∨ (¬B ∧ ϑ2)

Ownp(x) are precise

if  ϑ1, ϑ2  are precise, so are

ϑ is precise iff for all σ there is at most one pair 
(σ1,σ2) such that σ = σ1✶σ2 and σ1 ⊨ ϑ



Ownership claims

Formulas of the form

(always precise!)

Own  (x1) ✶ ...  ✶ Own  (xk)p
1

p
k



Program formulas

Γ of form r1: ϑ1 , ...,  rk: ϑk

ϑ1 , ...,  ϑk  precise

r1 , ...,  rk   distinct 

Φ , Ψ arbitrary state formulas

Γ ⊢vr {Φ}c{Ψ}

no protection lists

no static constraints



SKIP

Γ ⊢vr {φ} skip {φ}

no static constraint



ASSIGNMENT

Γ ⊢vr {Own⊤(x)✶O ∧ X=e} x:=e {Own⊤(x)✶O ∧ x=X}

not the usual
substitution rule!

note how
permission constraints
are expressed for e, x

O ranges over ownership claims



SEQUENCING

Γ ⊢vr {φ} c1 {ψ}    Γ ⊢vr {ψ} c2 {ξ}

Γ ⊢vr {φ} c1;c2 {ξ}

as before



PARALLEL

Γ ⊢vr {φ1} c1 {ψ1}    Γ ⊢vr {φ2} c2 {ψ2}

Γ ⊢vr {φ1✶φ2} c1||c2 {ψ1✶ψ2}

no static constraints



IF and WHILE

ϕ⇒b=b   Γ ⊢vr {ϕ∧b} c1 {ψ}    Γ ⊢vr {ϕ∧¬b} c2 {ψ}

Γ ⊢vr {ϕ} if b then c1 else c2 {ψ}

ϕ⇒b=b   Γ ⊢vr {ϕ∧b} c {ϕ}

Γ ⊢vr {ϕ} while b do c {ϕ∧¬b}

extra premiss ensures 
permission for b



REGION

φ✶θ ⇒ b=b    Γ ⊢vr {(φ✶θ)∧b} c {ψ✶θ}

Γ, r:θ ⊢vr {φ} with r when b do c {ψ}

extra premiss implies 
permission for b



RESOURCE

Γ, r:θ ⊢vr {φ} c {ψ}

Γ ⊢vr {φ✶θ} resource r in c {ψ✶θ}

as before



CHANGE of BOUND RESOURCE

Γ ⊢vr {ϕ} resource r’ in [r’/r]c {ψ}

provided r’ not free in c

Γ ⊢vr {ϕ} resource r in c {ψ}



LOCAL

Γ ⊢vr {Own⊤(x’)✶ϕ} [x’/x]c {Own⊤(x’)✶ψ}

Γ ⊢vr {ϕ} local x in c {ψ}

provided x’ not free in Γ, ϕ, ψ, c



FRAME

Γ ⊢vr {ϕ} c {ψ}

Γ ⊢vr {ϕ✶ϑ} c {ψ✶ϑ}

no static constraints



EXISTS

Γ ⊢vr {φ} c {ψ}

Γ ⊢vr {∃X. φ} c {∃X. ψ}

X a logical variable



CONSEQUENCE

φ’⇒ φ    Γ ⊢vr {φ} c {ψ}    ψ ⇒ ψ’    Γ ⇔ Γ’

Γ’  ⊢vr {φ’} c {ψ’}

as before



AUXILIARY  VARIABLES

Γ ⊢vr {φ✶Own⊤(A)} c {ψ✶Own⊤(A)}      

Γ ⊢vr {φ} c\A {ψ}

provided A auxiliary for c
and no variable in A is free in Γ, φ, ψ



A DERIVED RULE

Γ⊢vr {Φ} x:=e {Φ ∧ x=e}

if x not free in e

where  Φ  is

Own⊤(x)✶

and   free(e) = {x1, ..., xk}

Own  (x1) ✶ ...  ✶ Own  (xk)p
1

p
k



Example
concurrent reads

⊢vr {Own⊤(x)✶Own⊤(y)✶Ownq(z)} 
x:=z || y:=z 

 {Own⊤(x)✶Own⊤(y)✶Ownq(z) ∧ x=y=z}

need total permission for x,y
+ any permission for z



Example
race condition

valid, provable

vacuous

⊢vr {Own⊤(x)✶Own⊤(x)} 
x:=x+1 || x:=x+1 

   {Own⊤(x)✶Own⊤(x)}



Example
distributed counter

Let   p1 ⊗ q1 =  p2 ⊗ q2 = ⊤

Γ ⊢vr {Ownq1(x1)✶Ownq2(x2)} 
                        with r do (x:=x+1;  x1:=x1+1)
                     || with r do (x:=x+1;  x2:=x2+1) 

      {Ownq1(x1)✶Ownq2(x2)}

using PAR, REGION

Γ  =  r: Own⊤(x)✶Ownp1(x1)✶Ownp2(x2) ∧ x=x1+x2



Example

  ⊢vr {Own⊤(x,x1,x2) ∧ x=x1+x2} 
         resource r in 
            with r do (x:=x+1;  x1:=x1+1)
         || with r do (x:=x+1;  x2:=x2+1)
       {Own⊤(x,x1,x2) ∧ x=x1+x2 }

distributed counter

by RESOURCE rule



Example

⊢vr {(Own⊤(x) ∧ x=0)✶Own⊤(x1,x2)} 
         x1:=0; x2:=0;
         resource r in 
            with r do (x:=x+1;  x1:=x1+1)
         || with r do (x:=x+1;  x2:=x2+1) 
     {(Own⊤(x) ∧ x=2)✶Own⊤(x1,x2)}

distributed counter

by SEQ rule and CONSEQUENCE



Example

⊢vr {Own⊤(x) ∧ x=0} 
         resource r in 
            with r do x:=x+1
         || with r do x:=x+1
     {Own⊤(x) ∧ x=2 }

distributed counter

by AUX rule



Intuition

Rules designed to ensure                           
writes only with total permission,                  
reads with any permission

Permissions transfer implicitly                         
on acquiring and releasing resources

Old side conditions absorbed                             
into the permission calculus



Validity

Γ ⊢vr {Φ}c{Ψ} is valid iff

For all α∈ [[c]], ∀σ, σ’. 

σ ⊨ Φ  and  σ ⇒ σ’
α
Γ

then  σ’ ⊨ Ψ   

if  

interactive computation
in environment respecting Γ



Logical enabling

When a process with resources A,                     
in “local” state σ, can do α

Assumes environment that respects Γ

Causes abort if α exceeds permissions,          
breaks an invariant, or produces runtime error

(σ, A)  ⇒ (σ’, A’)
α
Γ



Logical enabling

(σ, A)  ⇒ (σ,A) 
x=v

Γ
if  ∃p. σ(x)=(v,p)

(σ,A)  ⇒ abort 
x=v

Γ
if  x∉dom(σ)

(σ,A)  ⇒ ([σ|x:(v,⊤)], A)
x:=v

Γ
if  ∃v0. σ(x)=(v0,⊤)

(σ,A)  ⇒ abort
x:=v

otherwise
Γ

READ

WRITE



Logical enabling

(σ,A)  ⇒    (σ✶σ’,  A ∪ {r})
acq(r)

Γ
if r ∉ A,  r: ϑ ∈ Γ,  σ♯σ’,  σ’ ⊨ ϑ

when acquiring r,
assume invariant holds,

claim extra state

ACQUIRE



Logical enabling

(σ,A)  ⇒    (σ1,  A - {r})
rel(r)

Γ
if r ∈ A,  r: ϑ ∈ Γ,  σ = σ1✶σ2 ,  σ2 ⊨ ϑ

(σ,A)  ⇒    abort
rel(r)

Γ
if r ∈ A,  r: ϑ ∈ Γ,  
∀ σ1♯σ2.  (σ = σ1✶σ2  implies  σ2 ⊨ ¬ϑ)

when releasing r,
ensure invariant holds,

relinquish claim

RELEASE



Theorem

Each inference rule preserves validity

Key lemma: parallel decomposition

Every provable formula is valid



Parallel decomposition

Let α ∈ α1||α2  and  σ = σ1✶σ2

If σ  ⇒ σ’
α
Γ then

σ1 ⇒ abort 
α1

Γ

or σ2 ⇒ abort 
α2

Γ

or  ∃ σ1’, σ2’. σ’ = σ1’✶σ2’ &

σ1 ⇒ σ1’
α1

Γ σ2 ⇒ σ2’
α2

Γ
&

If σ  ⇒ abort
α
Γ then σ1 ⇒ abort 

α1

Γ or σ2 ⇒ abort 
α2

Γ



Race-freedom

Validity of Γ ⊢vr {Φ}c{Ψ} implies

... NO RACES

For all α∈ [[c]], ∀σ, σ’. 

σ ⊨ Φ✶inv(Γ)  and  σ ⇒ σ’
α

then   σ’ ⊨ Ψ✶inv(Γ)  

if  

interference-free 
computation
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Thought for the Day


