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Abstract. CSP was originally introduced as a parallel programming
language in which sequential imperative processes execute concurrently
and communicate by synchronized input and output. The influence of
CSP and the closely related process algebra TCSP is widespread. Over
the years CSP has been equipped with a series of denotational seman-
tic models, involving notions such as communication traces, failure sets,
and divergence traces, suitable for compositional reasoning about safety
properties and deadlock analysis. We revisit these notions (and review
some of the underlying philosophy) with the benefit of hindsight, and
we introduce a semantic framework based on action traces that permits
a unified account of shared memory parallelism, asynchronous commu-
nication, and synchronous communication. The framework also allows a
relatively straightforward account of (a weak form of) fairness, so that we
obtain models suitable for compositional reasoning about liveness prop-
erties as well as about safety properties and deadlock. We show how to
incorporate race detection into this semantic framework, leading to mod-
els more independent of hardware assumptions about the granularity of
atomic actions.

1 Introduction

The parallel programming language CSP was introduced in Tony
Hoare’s classic paper [15]. As originally formulated, CSP is an im-
perative language of guarded commands [11], extended with primi-
tives for input and output and a form of parallel composition which
permits synchronized communication between named processes. The
original language derives its full name from the built-in syntactic con-
straint that processes belong to the sequential subset of the language.
The syntax of programs was also constrained to preclude concurrent
attempts by one process to write to a variable being used by an-
other process: this may be expressed succinctly as the requirement
that processes have “disjoint local states”. These design decisions,
influenced by Dijkstra’s principle of “loose coupling” [10], lead to
an elegant programming language in which processes interact solely
by message-passing. Ideas from CSP have passed the test of time,



having influenced the design of more recent parallel programming
languages such as Ada, occam [18], and Concurrent ML [26].

Most of the subsequent foundational research has focussed on a
process algebra known as Theoretical CSP (or TCSP) in which the
imperative aspects of the original language are suppressed [2]. In
TCSP (and in occam) processes communicate by message-passing
along named channels, again using a synchronized handshake for
communication. TCSP permits nested parallelism and recursive pro-
cess definitions, and includes a form of localization for events known
as hiding. Instead of Dijkstra-style guarded commands TCSP in-
cludes two forms of “choice”: internal choice, and external choice.
The internal form of choice corresponds to a guarded command with
purely boolean guards: if more than one guard is true the selec-
tion of branch to execute is non-deterministic and made “internally”
without consideration of the surrounding context. An external choice
corresponds to a guarded command with input guards, for which the
“truth” of a guard depends on the availability of matching output
in the surrounding context.

Hoare’s early paper on CSP [15] presented an informal sketch of
a semantics for processes, expressed in intuitive terms with the help
of operational intuition. Plotkin later gave a more formal structured
operational semantics for a semantically more natural extension of
the language [25]. Plotkin employed a more generous syntax allowing
nested parallelism, and a more flexible scoping mechanism for process
naming. Over the years CSP has become equipped with a series of
semantic models of successively greater sophistication, each designed
to support compositional reasoning about a specific class of program
property.

In 1980 Hoare introduced a mathematical account of commu-
nication traces that developed more rigorously from the intuitions
outlined in the original CSP paper [16]. In this model a process is
taken to denote a set of communication traces, built from events
which represent abstract records of communication. A trace here
represents a partial history of the communication sequence occurring
when a process interacts with its environment; since communication
is synchronized an input or output event really stands for a potential
for communication. And since traces record a partial behavior it is
natural to work with (non-empty) prefix-closed sets of traces. This



semantics is suitable for reasoning about simple safety properties of
processes, but is too abstract for many purposes since it ignores the
potential for deadlock. For example, the processes

if (true → a?x; h!x) (true → b?x; h!x) fi
if (a?x → h!x) (b?x → h!x) fi

have the same set of communication traces, but only the first one may
deadlock when run in parallel with a process such as b!0. Moreover,
if stop is a process incapable of any communication (so that its only
communication trace is the empty trace), the processes

if (a?x → h!x) fi
if (a?x → h!x) (a?x → stop) fi
if (a?x → h!x) (true → stop) fi

have the same communication traces (because of prefix-closure) al-
though there are clear operational reasons to distinguish between
these processes.

The need to model deadlock led to the failures model of Hoare,
Brookes and Roscoe [2], in which communication traces were aug-
mented with information about the potential for further communi-
cation, represented abstractly (and negatively) as a refusal set. A
failure (α, X) consists of a communication trace α and a set X of
events, representing the ability to perform the communications in α
and then refuse to perform any of the events in X. (Obviously it is
equally reasonable to develop a positively formulated notion of ac-
ceptance set or ready set rather than refusal [22].) Again operational
and observational intuitions suggest that a process should denote a
set of failures closed under certain natural rules. The mathematical
foundations of the failures model were explored more deeply in the
D.Phil. theses of Bill Roscoe and myself [1, 27]. A more readily ac-
cessible account, which also discusses a variety of related semantic
models, is obtainable in Roscoe’s book [28].

The failures model, like the communication traces model from
which it evolved, allows compositional reasoning about safety prop-
erties; but failures also permit distinctions based on the potential for
deadlock. Revisiting the above examples, the processes

if (true → a?x; h!x) (true → b?x; h!x) fi
if (a?x → h!x) (b?x → h!x) fi



do not denote the same set of failures: only the first process can
refuse to input on a (or refuse to input on b). Similarly the processes

if (a?x → h!x) fi
if (a?x → h!x) (a?x → stop) fi
if (a?x → h!x) (true → stop) fi

do not have the same failures. The behavioral distinctions between
these examples, expressible in terms of failures, have a natural op-
erational intuition.

The failures model, although offering good support for safety
properties and deadlock analysis, still suffers from a deficiency with
respect to the phenomenon of infinite internal chatter, or divergence.
We illustrate the problem with an example. The program

chan a in
(while true do a?x) ‖ (while true do a!0)

involves two processes which keep communicating “internally” on the
hidden channel a. Externally, no visible communication is apparent,
and it is natural to ask what responses, if any, the program should
be deemed to provide to its environment if the environment offers
a potential for communication. Presumably the environment cannot
ever discover in a finite amount of time that the program will never
become capable of communication, since the program never reaches
a “stable” configuration. There is no way to represent this kind of
behavior adequately within the confines of the failures model, since
divergence (while doing no external communication) could only be
represented by failures containing the empty trace (and all possible
refusal sets), but this would be tantamount to equating deadlock
with divergence.

In response to this problem, Brookes and Roscoe proposed a fur-
ther augmentation of failures to incorporate divergence traces [3]. A
divergence trace represents a sequence of communications leading to
a possible divergent behavior. For pragmatic reasons, again based
on observability criteria and the view that a well behaved process
should respond to its environment in a finite amount of time, diver-
gence is treated as a catastrophe in this model. Thus, a process is
taken to denote a failure set F , together with a set D of divergence
traces, satisfying the following catastrophic closure rule:



– if α ∈ D then for all traces β and refusal sets X, (αβ, X) ∈ F ,
and for all traces β, αβ ∈ D.

As an example, the simple divergent program listed above has the
empty trace as a possible divergence trace, from which it follows
from the closure rule that its denotation includes all failures and all
divergence traces. In contrast the denotation of a deadlocked process
would consist of all failures involving the empty trace, together with
the empty set of divergence traces.

The failures/divergences model, despite its rather awkward name,
has become the standard semantics for an enormous range of CSP
research and implementation [17]. This model underpins the FDR
model checker [12], which has been used successfully for the analy-
sis of (and detection of bugs in) parallel systems and protocols [30].
Roscoe and Hoare have also shown how to incorporate state directly
into the structure of failure sets, in developing a failure-style seman-
tics for occam [29].

2 Reflection

In these early models of CSP the focus is on finite behaviors, with in-
finite traces either ignored or regarded as being present only by virtue
of finite prefixes. Consequently these models did not take fairness
into account. Yet fairness assumptions, such as the guarantee that a
process waiting for input will eventually be synchronized if another
process is simultaneously (and persistently) waiting for a matching
output, are vital when trying to reason about liveness properties [24,
23]. As a result it can be argued that these models are, by their very
design, less than ideally suited to reasoning about liveness.

Although it is possible to develop straightforward variants of
these models that incorporate infinite traces [28], it is not obvious
how to augment them in such a way that only fair traces get in-
cluded. Indeed there is a plethora of distinct fairness notions in the
literature [13], and it is not clear which (if any) of these notions are
simultaneously a reasonable abstraction from network implementa-
tion and adaptable to CSP. Susan Older’s Ph.D. thesis [21] contains
a detailed discussion of the problems that arise as well as a fam-
ily of models tailored to specific fairness notions. Older’s models



can be regarded as failures/divergences equipped with infinite traces
and book-keeping information about persistently enabled communi-
cation [6]. As Older discovered, it can be very difficult to figure out a
suitable augmentation regime for extending failures/divergences to
match a given notion of fairness, largely because of the fact that en-
abledness of communication for one process depends on enabledness
of matching communication in another process. The difficulties seem
less severe when dealing with asynchronous communication [5].

The models described so far were developed specifically with
TCSP in mind, and serve this role admirably. However, CSP is not
the only paradigmatic parallel programming language and it is natu-
ral to compare the semantic framework built for CSP with the mod-
els developed over the years for shared memory parallel programs
and for networks of asynchronously communicating processes. By
the same token, TCSP is not the only process algebra, and the em-
phasis in CSP on deadlock and divergence is in sharp contrast to the
focus on bisimulation in calculi based on Milner’s CCS [19, 20]. Un-
fortunately there is frustratingly little similarity in structure between
the early semantic models developed for these other paradigms and
these CSP models. For instance the resumptions of Hennessy and
Plotkin [14], and the transition traces of Park [24] (later adapted by
this author [4]), originally proposed to model shared memory parallel
programs, bear no obvious structural relationship with failures.

These semantic disparities make it difficult to apply techniques
successful in one setting to similar problems occurring in the other
settings. For instance, Older’s construction of fair models of CSP
does not immediately suggest an analogous construction for a lan-
guage of asynchronously communicating processes. A further dis-
parity is caused by the emphasis (for obvious reasons) on state in
traditional models of shared memory parallelism, in contrast to the
prevailing tendency in process algebras such as CSP and CCS to
abstract away from state [19, 2].

In a paper presented in tribute to the twentieth anniversary of
CSP [7] this author proposed a semantic model based on transition
traces, suitable for modelling both shared memory parallel programs
and networks of processes communicating asynchronously on named
channels. At that time it seemed unlikely that similar techniques
would prove suitable for modelling synchronized communication, be-



cause of the difficulties encountered by Older in adapting failures to
fairness in the synchronous setting. Nevertheless the author discov-
ered later that essentially the same framework can also be made to
work for synchronously communicating processes, provided a sim-
ple enough notion of fairness is adopted [8]. This is a somewhat
surprising turn of events given the prior history of separate devel-
opment. More recently still, we realized that it is possible to modify
this semantic framework in a natural way to handle race conditions,
leading to an improved semantics in which assumptions about the
granularity of atomic actions become less significant [9]. We will
now summarize the main technical notions behind this semantics.
The key turns out to involve the choice of a suitably general notion
of trace, which can be presented in a process algebraic formulation
and separately instantiated later in a state-dependent setting.

3 Communicating Parallel Processes

We will work with a language combining shared memory parallelism
with communicating processes. Thus processes will be allowed to
share state and will be permitted to interact by reading and writing
to shared variables as well as by sending and receiving messages.
We also include resources and conditional critical regions to allow
synchronization and mutually exclusive access to critical data.

Let P range over processes and G over guarded processes, given
by the following abstract grammar, in which e ranges over integer-
valued expressions, b over boolean expressions, h over the set Chan
of channel names, x over the set Ide of identifiers, and r over resource
names. We omit the syntax of expressions, which is conventional.

P ::= skip | x:=e | P1; P2 | if b then P1 else P2 | while b do P |
P1‖P2 | with r when b do P | resource r in P |
h?x | h!e | if G fi | do G od | P1 u P2 | chan h in P

G ::= (h?x → P ) | G1 G2

As in CSP, P1 u P2 is “internal” choice, and G1 G2 is “external”
choice. We distinguish syntactically between guarded and general
processes merely to enforce the constraint that the “external choice”
construct is only applicable to input-guarded processes. This allows



certain simplifications in the semantic definitions but is not crucial.
It is straightforward to extend our semantics to allow mixed boolean
and input guards.

The construct chan h in P introduces a local channel named h
with scope P . One can also allow locally scoped variable declarations,
but we omit the details. We write chans(P ) for the set of channel
names occurring free in P . In particular, chans(chan h in P ) =
chans(P )− {h}.

A process of form resource r in P introduces a local resource
name r, whose scope is P . A process of form with r when b do P is
a conditional critical region for resource r, with body P . A process
attempting to enter such a region must wait until the resource is
available, acquire the resource and evaluate b: if b is true the process
executes P then releases the resource; if b is false the process releases
the resource and waits to try again. A resource can only be held by
one process at a time. We use the abbreviation with r do P when
b is true.

4 Actions

The behavior of a process will be explained in terms of the actions
that it can perform. An action can be regarded as an atomic step
which may or may not be enabled in a given state, and if enabled
has an effect on the state. Let Vint be the set of integers, with typical
member v. An action has one of the following forms:

– A read x=v, where x is an identifier and v is an integer.
– A write x:=v, where x is an identifier and v is an integer.
– A communication h?v or h!v, where h is a channel name and v

is an integer. Each communication action has a direction: h! for
output, h? for input, on a specific channel h.

– A idling action of form δX , where X is a finite set of directions.
– A resource action of one of the forms try(r), acq(r), rel(r), where

r is a resource name.
– An error action abort.

We will not yet provide formal details concerning states and effects,
relying instead for now on the following intuitions.



A read x=v is enabled only in a state for which the current value
of x is v, and causes no state change. A write x:=v is only enabled
in states for which x has a current value, and its effect is to change
the value of x to v.

An input action h?v or output action h!v represents the potential
for a process to perform communication, and can only be completed
when another process offers a matching communication on the same
channel. We write match(λ1, λ2) when λ1 and λ2 are matching ac-
tions, i.e. when there is a channel h and an integer v such that
{λ1, λ2} = {h?v, h!v}. We let chan(h?v) = chan(h!v) = h.

An idling action δX represents an unrequited attempt to commu-
nicate along the directions in X. When X is a singleton we write δh?

or δh!. When X is empty we write δ instead of δ{}; the action δ is
also used to represent a “silent” local action, such as a synchronized
handshake or reading or writing a local variable.

An action of form try(r) represents an unsuccessful attempt to
acquire resource r, and acq(r) represents a successful attempt to do
so; rel(r) represents the act of releasing the resource. Parallel execu-
tion is assumed to be constrained to ensure that at all stages each
resource is being held by at most one process. Thus at all stages the
sets of resources belonging to each process will be disjoint. Corre-
spondingly, for an action λ and a disjoint pair of resource sets A1

and A2 we define a resource enabling relation (A1, A2)
λ−→ (A′

1, A
′
2),

characterized by the following rules:

(A1, A2)
try(r)−−−−−→ (A1, A2)

(A1, A2)
acq(r)−−−−−→ (A1 ∪ {r}, A2) if r 6∈ A1 ∪ A2

(A1, A2)
rel(r)−−−−→ (A1 − {r}, A2) if r ∈ A1

(A1, A2)
λ−→ (A1, A2) otherwise

Since A1 and A2 are disjoint, if (A1, A2)
λ−→ (A′

1, A
′
2) it follows that

A′
2 = A2, and A′

1 is disjoint from A2. Intuitively, when (A1, A2)
λ−→

(A′
1, A2) holds, a process holding resources A1 can safely perform

action λ in a parallel environment that holds resources A2, and will
hold resources A′

1 afterwards.

The abort action represents a runtime error, is always enabled,
and leads to an error state, which we denote abort.



5 Action traces

An action trace is a non-empty finite or infinite sequence of actions.
Let Tr be the set of action traces; we will use α, β, γ as meta-variables
ranging over traces. We write αβ for the trace obtained by concate-
nating α and β. We assume that δ behaves as a unit for concatena-
tion, and abort behaves as a zero for concatenation, in that αδβ = αβ
and α abort β = α abort , for all traces α and β.

We assume given the trace semantics for expressions, so that
for an integer expression e we have [[e]] ⊆ Tr × Vint . Similarly for
a boolean expression b we have [[b]] ⊆ Tr × {true, false}. We let
[[b]]true = {ρ | (ρ, true) ∈ [[b]]} and similarly for [[b]]false. The only
actions occurring in expression traces are δ and reads.

A process denotes a set of traces, denoted [[P ]] ⊆ Tr. The seman-
tics of processes is defined denotationally, by structural induction.
We list here some of the key clauses.

[[h!e]] = δ{h!}
∞{ρ h!v | (ρ, v) ∈ [[e]]}

[[h?x]] = δ{h?}
∞{h?v x:=v | v ∈ Vint}

[[P1; P2]] = [[P1]] [[P2]]
[[P1‖P2]] = [[P1]] {}‖{} [[P2]]
[[with r when b do P ]] = wait∞ enter

where wait = {try(r)} ∪ acq(r) [[b]]false rel(r)
and enter = acq(r) [[b]]true [[P ]] rel(r)

[[chan h in P ]] = {α\h | α ∈ [[P ]] & h 6∈ chans(α)}

The semantic clauses for input and output commands include traces
that represent infinite waiting for matching output and input, re-
spectively. Sequential composition corresponds to concatenation of
traces. The trace set of a conditional critical region reflects the op-
erational behavior discussed earlier: waiting until the resource can
be acquired and the test expression evaluates to true. In the special
case where b is true we can derive the following simpler formula:

[[with r do P ]] = try(r)∞ acq(r) [[P ]] rel(r).

The clause for a local channel declaration “forces” synchronization
to occur on the local channel. We write α\h for the trace obtained
from α by deleting h! and h? from all sets of directions occurring in
idling actions along α.



The clause for parallel composition involves a form of mutex
fairmerge for trace sets. When A1 and A2 are disjoint sets of resource
names and T1 and T2 are trace sets, T1 A1‖A2 T2 denotes the set of all
(synchronizing) interleavings of a trace from T1 with a trace from T2,
subject to the constraint that the process executing T1 starts with re-
sources A1 and the process executing T2 starts with resources A2, and
at all stages the resources held by the two processes stay disjoint. For
each pair of traces α1 and α2 we define the set of traces α1 A1‖A2 α2,
and then we let T1 A1‖A2 T2 =

⋃{α1 A1‖A2 α2 | α1 ∈ T1 & α2 ∈ T2}.
We design this fairmerge operator so that the potential of a race

(concurrent execution of actions which may interfere in an unpre-
dictable manner) is treated as a catastrophe. We write λ1 ./ λ2 to
indicate a race, given by the following rules:

x=v ./ x:=v′

x:=v ./ x=v′

x:=v ./ x:=v′

h!v ./ h!v′

h?v ./ h?v′

In particular, we regard as a race any concurrent attempt to write
to a variable being read or written by another process. And we also
treat concurrent attempts to input to the same channel, or to output
to the same channel, as a race.

For finite traces (including the empty sequence to allow a simpler
base case) the set of mutex fairmerges using any given pair of disjoint
resource sets can be characterized inductively from the following
clauses:

α A1‖A2 ε = {α | (A1, A2)
α−−→ ·}

ε A1‖A2 α = {α | (A2, A1)
α−−→ ·}

(λ1α1) A1‖A2 (λ2α2) = {abort} if λ1 ./ λ2

(λ1α1) A1‖A2 (λ2α2) =

{λ1γ | (A1, A2)
λ1−−→ (A′

1, A2) & γ ∈ α1 A′
1
‖A2 (λ2α2)}

∪ {λ2γ | (A2, A1)
λ2−−→ (A′

2, A1) & γ ∈ (λ1α1) A1‖A′
2
α2}

∪ {δγ | match(λ1, λ2) & γ ∈ α1 A1‖A2 α2}
if ¬(λ1 ./ λ2)

The above clauses actually suffice for all pairs of traces, one of
which is finite. We can extend this mutex fairmerge relation to pairs



of infinite traces in a natural manner, imposing a fairness constraint
that reflects our assumption that a pair of processes waiting for a
matching pair of communications will eventually get scheduled to
communicate. This is a variant of weak process fairness adapted
to take account of the synchronization mechanism used for CSP-
style communication. Although we omit the full definition, note the
following special case involving two infinite waiting traces:

δX
ω

A1‖A2 δY
ω = {}

if ∃h. (h? ∈ X & h! ∈ Y ) ∨ (h! ∈ X & h? ∈ Y ). This captures
formally the fairness assumption from above: there is no fair way to
interleave the actions of these two traces because there is a persistent
opportunity for synchronization that never gets taken.

6 Examples

We now revisit the examples discussed earlier, previously used to
illustrate communication traces, failures, and divergences.

First, we contrast the action traces of an internal choice with
those of the corresponding external choice.

[[(a?x → h!x) u (b?x → h!x)]] = δ{a?}
∞{a?v x:=v h!v | v ∈ Vint}

∪ δ{b?}
∞{b?v x:=v h!v | v ∈ Vint}

[[if (a?x → h!x) (b?x → h!x) fi]] = δ{a?,b?}
∞{a?v x:=v h!v | v ∈ Vint}

∪ δ{a?,b?}
∞{b?v x:=v h!v | v ∈ Vint}

As with the failures model this semantics distinguishes properly be-
tween these processes. There is an obvious sense in which the ability
to “refuse” input on a is represented here by the presence of a trace
involving infinite waiting for input on b.

Similarly we have

[[a?x → h!x]] = δ{a?}
∞{a?v x:=v h!v | v ∈ Vint}

[[if (a?x → h!x) (a?x → stop) fi]] =
δ{a?}

∞{a?v x:=v h!v | v ∈ Vint}
∪ δ{a?}

∞{a?v x:=v α | α ∈ [[stop]] & | v ∈ Vint}



so that again we distinguish correctly between these processes. (We
note in passing here that every process, even stop, denotes a non-
empty set of traces.)

The divergent program discussed earlier,

chan a in
(while true do a?x) ‖ (while true do a!0),

denotes the action trace set {δω}. We see no compelling reason to
distinguish this program from a deadlocked process such as stop or
the process

chan a in (a?x; h!x),

which will never be able to engage in external communication on
channel h because the local channel a is not in scope for any external
process. This process waits forever for input on the local channel, a
phenomenon that gives rise to the trace δ{}

ω. Indeed our semantics
gives this program the corresponding trace set {δω}. We also choose
not to interpret divergence as catastrophic, although it would be
possible to derive a model along those lines by imposing suitable
closure conditions on action trace sets.

The following semantic equivalences illustrate how our model
supports reasoning about process behavior.

Theorem 1 (Synchronous Laws)
The following laws hold in the synchronous trace semantics:

1. [[chan h in (h?x; P )‖(h!v; Q)]] = [[chan h in (x:=v; (P‖Q))]]

2. [[chan h in (h?x; P )‖(Q1; Q2)]] = [[Q1; chan h in (h?x; P )‖Q2]]
provided h 6∈ chans(Q1)

3. [[chan h in (h!v; P )‖(Q1; Q2)]] = [[Q1; chan h in (h!v; P )‖Q2]]
provided h 6∈ chans(Q1).

These laws reflect our assumption of fairness, and can be particularly
helpful in proving liveness properties. They are not valid in an unfair
semantics: if execution is unfair there is no guarantee in the first
law that the synchronization will eventually occur, and there is no
guarantee in the second or third laws that the right-hand process
will ever execute its initial (non-local) code.



7 Granularity

Our semantics involves actions which represent rather high-level op-
erations, such as assignments of an entire integer value to a variable,
and communication of an entire integer value along a channel. Rather
than assuming that such actions are implemented at the hardware
or network level as indivisible atomic operations, we have designed
our parallel composition so that any concurrent attempt to perform
actions whose combined effect is sensitive to granularity is treated
as a catastrophe. As a consequence, our semantics can be shown to
be independent of granularity in a precise sense.

Specifically, we can give a “low-level” semantics for processes,
based on “low-level” actions that represent fine-grained atomic steps.
At low-level we assume that integers are represented as lists of words,
with some fixed word size W, and that messages are transmitted as
sequences of packets, of some fixed packet size M . A high-level read
of the form x=v then corresponds to a sequence of low-level reads of
the form x.0=w0 . . . x.k:=wk, where x.0, . . . , x.k represent the vari-
ous components of x and the sequence of word values w0 . . . wk rep-
resents the integer v (for word size W ). Similarly a high-level write
corresponds to a sequence of low-level writes. A high-level input ac-
tion h?v corresponds to a sequence of low-level input actions termi-
nated by an end-of-transmission signal, and similarly for an output
action. Let us write v = [w0, . . . , wk]W to indicate that the given
word sequence represents v, i.e. that v = w0 + 2W w1 + · · ·+ 2kW wk,
with a similar notation v = [m0, . . . ,mn]M for messages. In the low-
level semantics, which we will denote [[P ]]low , we would thus have:

[[h!e]]low = {ρ h!m0 . . . h!mn h!EOT | (ρ, v) ∈ [[e]] & [m0, . . . ,mn]M = v}
[[h?x]]low = {h?m0 . . . h?mn h?EOTx.0:=w0 . . . x.k:=wk |

v = [m0, . . . ,mn]M = [w0, . . . , wk]W}

A high-level state σ describes the values of a finite collection
of variables, so that σ is a finite partial function from identifiers to
integers. A low-level state can be regarded as a finite partial function
τ from identifiers to lists of words. The effect of a high-level action λ

can be formalized as a partial function
λ

==⇒ between high-level states,
and similarly for low-level actions and their effect on low-level states.
In both cases we use abort for an error state. There is an obvious way



to define an appropriate notion of correspondence between high- and
low-level states: σ ≈ τ if dom(σ) = dom(τ) and, for each x ∈ dom(σ),
σ(x) = [τ(x)]W . It can then be shown that for all processes P :

– for all high-level traces α of P , if σ ≈ τ and σ
α

==⇒ σ′ 6= abort
then there is a low-level trace β of P and a low-level state τ ′ such

that τ
β

==⇒ τ ′ and σ′ ≈ τ ′;

– for all low-level traces β of P , if σ ≈ τ and τ
β

==⇒ τ ′ then there is
a high-level trace α of P such that either σ

α
==⇒ abort or σ

α
==⇒ σ′

for some high-level state σ′ such that σ′ ≈ τ ′.

This formalizes the sense in which our high-level action trace seman-
tics expresses behavioral properties of programs in a manner inde-
pendent of assumptions about details such as word size or packet
size. The role played in this result by the race-detecting clause in
our definition of parallel composition is crucial.

8 Asynchrony

To model a language of asynchronously communicating processes,
with the same syntax, we need only to make a few modifications in
the key semantic definitions concerning communication. Specifically,
the clauses for input, sequential composition, and conditional criti-
cal regions remain as before but we alter the clauses for input (since
waiting is no longer required), parallel composition (since synchro-
nization is no longer needed), and local channel declaration (since
an output to a local channel can occur autonomously but we still
require the inputs to obey the queueing discipline). The new clauses
are:

[[h!e]] = {ρ h!v | (ρ, v) ∈ [[e]]}
[[P1‖P2]] = [[P1]] {}‖{} [[P2]]
[[chan h in P ]] = {α\h | α ∈ [[P ]]h}

We adjust the definition of interleaving, to delete the synchronization
case:

(λ1α1) A1‖A2 (λ2α2) = {abort} if λ1 ./ λ2

(λ1α1) A1‖A2 (λ2α2) =

{λ1γ | (A1, A2)
λ1−−→ (A′

1, A2) & γ ∈ α1 A′
1
‖A2 (λ2α2)}

∪ {λ2γ | (A2, A1)
λ2−−→ (A′

2, A1) & γ ∈ (λ1α1) A1‖A′
2
α2}

otherwise



We also need to adjust the definition of fairmerge for pairs of infinite
traces to fit with the asynchronous interpretation, along the lines
of [8] but modified to handle race conditions as above.

Given a trace set T and channel h, we let Th be the set of traces
α in T along which the actions involving h obey the queue discipline.
We write α\h for the trace obtained from α by replacing each action
that mentions channel h by δ.

Theorem 2 (Asynchronous Laws)
The following laws hold in the asynchronous trace semantics:

1. [[chan h in (h?x; P )‖(h!v; Q)]] = [[chan h in (x:=v; P )‖Q]]
2. [[chan h in (h?x; P )‖(Q1; Q2)]] = [[Q1; chan h in (h?x; P )‖Q2]]

provided h 6∈ chans(Q1).

Again these laws reflect our assumption of fair execution. There is
an obvious similarity with the corresponding pair of laws from the
synchronous setting, but note the subtly different positioning of the
assignment to x in the first law.

9 Conclusion

We have introduced a semantic framework based on action traces
and a form of resource-sensitive, race-detecting, parallel composition.
This can be used to provide models for a language combining shared
memory parallelism with communicating processes. (We explore the
use of such a semantics for shared memory programs, and connec-
tions with separation logic, in [9].) This language can be viewed as
a generalization of CSP that retains and expands on the imperative
essence of original CSP yet possesses a semantic model that reflects
the elegance of the design principles behind the original language.
Action traces allow the expression of concepts such as failures and
divergences, familiar from the traditional models of CSP, without
the need to commit to a catastrophic treatment of divergence.

The syntactic constraints built into the original version of CSP –
disjoint local states, no nested parallelism, and restricted patterns of
communication between processes because of the naming discipline
– are sufficient to rule out race conditions, so that for programs
in the original CSP we could adapt our semantics in the obvious



manner, by deleting the race-detection clauses. Our language – and
semantics – allow a more generous syntax within which one can
reason about program behavior in a manner independent of hardware
assumptions.
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