TOWARDS A THEORY OF
INTENSIONAL SEMANTICS

Stephen Brookes
Shai Geva

Carnegie Mellon University
School of Computer Science
Pittsburgh
Pa 15213

EXTENSIONAL SEMANTICS

EXAMPLES

e state transformation semantics for while-programs

e Scott model of simply typed A-calculus

FEATURES

e ignores computation details
e models only input-output behavior

e supports reasoning about familiar extensional
properties

— Hoare logic for partial correctness

— LCF

e can use to show correctness-preservation for
program transformations

e cannot distinguish between programs with
same input-output behavior

e cannot reason about intensional properties

2

INTENSIONAL SEMANTICS

EXAMPLES

e Berry-Curien sequential algorithms
on concrete data structures

e Brookes-Geva parallel algorithms
on generalized concrete data structures

FEATURES

e models computation strategy
e reasoning about intensional properties

— order of evaluation

— degree of parallelism

e can use to show efficiency-improvement of
program transformations

e can recover extensional from intensional
e algorithm = function 4+ computation strategy

e intensional models tend to be more concrete

3

RESEARCH AIMS

Develop a theory of intensional semantics:

e allow semantics at differing levels of abstraction

e show relationships between different models
of the same programming language

e show relationship to existing intensional and
extensional models

e use Intensional semantics to reason about
efliciency

THESIS

Category theory provides a general framework:

e cxtensional semantics in a category C

e datatypes as objects of C

e cxtensional meanings as morphisms in C

e notion of computation as a comonad T’

e intensional semantics in Kleisli category Cp

e intensional meanings as morphisms in Cr

4

COMONADS

DEFINITION

A comonad over a category C is a (co-)triple
(T, €,9) where

o[:C — C is a functor
e c:I" = I is a natural transformation
e 0 : T — T?is a natural transformation

and for every object A the following associativity
and identity laws hold:

T(da) 004 = dpa00d4
€ETA004 = T(€A>O(SA — idpy.

INTUITION

e T'A is a datatype of computations over A.
e ct is the value computed by ¢.

e 0t is a computation over T'A that computes ¢.

KLEISLI CATEGORIES

DEFINITION

Given a comonad (7T, €,6) over C, the Kleisli
category Cr is defined by:

e The objects of Cr are the objects of C.

e The morphisms from A to B in Cp are the
morphisms from T'A to B in C.

e The identity morphism idi on A in Cr is
es:TA—C A,

e The composition in Cy of a : A =7 B and
a' . B = C s

! — /
aoa=aoTlaody.

TERMINOLOGY

A morphism in Cp is an algorithm.

INTUITION

e The intensional meaning of a program is a
function from input computations to output
values.

e Programs operate in demand-driven,
coroutine-like manner (Kahn-MacQueen)

— program responds to a request for output
by performing input computation until
it has enough information to determine
what output value to produce

e The identity algorithm from A to A simply
evaluates its input.

e a/ca behaves like a’ using a to generate input.

e A similar, but sequential, operational model
is used by Berry and Curien.

COMONAD DIAGRAMS

A Tf 1t TA_TI TR

€A €ER 5A 53
A B TA T2B
f T2 f
Naturality

TA. €14 24 Tea pu 74 04
idTA 5A idTA 5A
TA T?A

104
Identity and associativity laws

8

COMPUTATIONAL COMONADS

DEFINITION

A computational comonad over a category C
is a quadruple (7T, €, 6,) such that

e (T,¢,0) is a comonad over C

e v : Io — T is a natural transformation such
that, for every object A,

—€4074 = idyg
— 04 0YA = YTAO VA

INTUITION

vz is a degenerate computation that computes .

A dda 40 4 a4 4 f B
”& /4 YA 04 YA VB
TA TA T?A TA TB

1A Tf

9

RELATING ALGORITHMS AND
FUNCTIONS

Let (T, ¢€,9,7) be a computational comonad.

DEFINITION

The functors alg and fun between C and Cp are
given by:

e alg : C — Cr is the identity on objects:
e alg(f) = foey, forevery f: A —C¢ B;
e fun : Cr — C is the identity on objects:

o fun(a) = aoy, foralla: A —°T B.

TERMINOLOGY

e fun(a) is the input-output function of a.

e alg(f)isa (canonical) algorithm computing f.

10

INPUT-OUTPUT EQUIVALENCE

e fun induces an input-output equivalence
relation =" on Cr:

a, =" a; <= fun(a;) = fun(ay).

e This relation is a congruence:

' / ' / ! = ' ! =
ap =""as & ay ="a, = a0a; =" as0as.

e The quotient category of Cp by = is
isomorphic to C.

o Forall f: A—C B, fun(alg f) = f.

e Forall a : A —T B, alg(fun a) =" a.

11

PROPERTIES of KLEISLI CATEGORIES

PROPOSITION

If C has distinguished finite products and
projections 7;, then Cr has distinguished finite
products, with projections

T Al XAQ —Cr Az

i = €a, 01T

= T O€A1><A2'

PROPOSITION

If C is cartesian closed and T preserves finite
products, then Cr is cartesian closed.

[Under more general assumptions the Kleisli
category of T' is weakly cartesian closed.|

12

ALGORITHMS ON DOMAINS

e Let CONT be the category of
Scott domains and continuous functions.

e We define a computational comonad
(T, val, pre,path)

over CONT.

e Let ALG be the Kleisli category of T

e Morphisms in ALG can be viewed as
parallel algorithms.

e CONT and ALG are cartesian closed.

e We give an extensional and an intensional
interpretation for simply typed A-calculus
and prove a Correspondence Theorem.

e CONT and ALG are ordered categories.

e We use <’ for the pointwise order on
algorithms.

e curry and app denote currying and
application on algorithms.

13

COMPUTATION ON DOMAINS

e Let T'D be the set of non-decreasing
sequences over [, ordered componentwise.

etor f:D— D' letTf:TD — TD' be
the function that applies f componentwise:

(Tf) <dn>zo:0 — <fdn>$°=o-

e for t ¢ T'D let valpt be the least upper
bound of t.

e Fort = (d,)>2, let pre,, t be the sequence
of prefixes of t: for all kK > 0,

(pre t)k = do ce dkd%

e For d e D let pathd = d.

14

INTUITION

e A computation in T'D records a sequence
of incremental steps towards a value in D.
Idle steps are permitted.

e Bvery computation is the limit of its prefixes.

e A degenerate computation consists entirely
of idle steps.

15

PARALLEL-OR

e The most eager algorithm:
epPOR((1, T)")

epPOR((T", 1))
epPOR((F, F)*) =

Elias B

e The laziest algorithm:

1pPOR({L, L)" (L, T)*)
1pPOR({ L, L)" (T, L))
1pPOR((L, L)' (F, F")*)

for all n > 0.

. epPOR <’ 1pPOR.

16

Elias Bl

LEFT-STRICT-OR

e The most eager sequential algorithm:

esLOR((T, 1L)*) = T
esLOR((F, LY (F,T)") = T
esLOR((F, L) (F, F)*) = F.

e The most eager parallel algorithm:

epLOR((T, 1)*) = T
epLOR((F,T)") = T
epLOR((F, F)*) = F.

e The laziest parallel algorithm:
1pLOR((L, 1)" (T, 1)*) = T
1pLOR({L, L)" (F, L)™ (F.T)")
1pLOR({L, L)" (F, L)™ (F, F)”)

for all m,n > 0.

N N

. epLOR <’ esLOR <’ 1pLOR.
. epLOR <’ epPOR.
. 1pLOR <’ 1pPOR.

17

DOUBLY-STRICT-OR
e The most eager parallel algorithm:
e The laziest parallel algorithm:

SRR NN
(I T TR TR

3 3 3 3 3 3 3 3

\/\/\/\/\/\/\/\/

SERREERR
RN NE

<</\<<<<<

e & g & 2 g g =g

>\/\/\/\/\/>>

T8989
SIS

N~ S S S S S S S~

E E E E E E E E

AT
Jd444444

18

n > 0.

for all m,

DOUBLY-STRICT-OR

e The most eager sequential left-right
algorithm:

elrSOR((T, L) (T, T)*) = T
elrSOR((T, L) (T, F)*) = T
elrSOR((F, L) (F,T)") = T
elrSOR((F, L) (F, F)*) = F

e The most eager sequential right-left
algorithm:

er1SOR((L,T)
er1SOR((L, T
er1SOR((L, F)))
erlSOR((L, F) (F, F)*) =
N epSOR <’ e1rSOR <’ 1pSOR
o epSOR <’ er1SOR <’ 1pSOR

° elrSOR and er1SOR are incomparable.

19

COMPOSITION

esLOR : Bool* — Bool
1pPOR : Bool x Bool — Bool
curry(1pPOR) : Bool — Bool — Bool
cufry(1pPOR) & esLOR : Bool? — Bool — Bool

This composite algorithm is characterized by:
a((L, L)*)(L"T¥) = T
a((T, L)")(L¥) =

L)”
a((F, L) (F,T)")(L*) =
a((F, L) (F, F)")(L"F*)

for all n > 0.

j}’ﬂll
|Iﬂ

Note the composite computation strategy:
eager sequential in the first argument, lazy in
the second.

20

DE MORGAN ALGORITHMS

e Let INEG and eNEG be the most lazy and
most eager algorithms for boolean negation:

INEG(L"T¥) = F (n>0)
INEG(L"FY) = T (n>0)
eNEG(TY) = F, eNEG(F¥) = T
e [.ct dual be the function
Aa . 1NEG 6 a 6 (INEG x 1NEG).

This transforms an algorithm a for a binary
truth function f into an algorithm for the
dual of f, and interchanges the roles of T’
and F' in the computation strategy.

e For example, dual(esLOR) = esLAND.
e Let DUAL be the canonical algorithm for dual.

e 1NEG o 1NEG is the identity algorithm, and
so 1s DUAL o DUAL.

e Using eNEG instead of 1NEG can alter the
computation strategy:

eNEG o 1pPOR o (eNEG x eNEG) = epAND.

21

SIMPLY TYPED LAMBDA
CALCULUS

e Let p range over a set of atomic types.

e The set Type of simple types is defined by:
Tio=plaxn|T—oT.
e Let crange over a set Con of constants and

X range over a set Ide of identifiers. Each
constant ¢ has a given type ..

e The set of raw terms is defined by:

M = c| X | MMy | XX:7.M |
(My, Ms) | £fst M | snd M.

o A type environment is a finite partial func-
tion w from Ide to Type.

o A type judgement has form w k= M : 7.

22

TYPE JUDGEMENTS

wkc:T,

when X e dom(w)

w = X w[X]

whkM:(r—7) wkM:T
ZU'_MlMQIT/

wlr/ X+ M 7
whk ANXT.MY) 7 — 7

wkEM:mm wk My:m
UJ"(Ml,MQ)Z7'1XTQ

wkEM:m X1 wkEM:m X1

whkfst M :m whksnd M:m

23

TYPE INTERPRETATIONS

e Assume given a domain A, for each atomic
type p.

e The extensional and intensional type inter-
pretations

E = (E; | T < Type)
[=(I;| 7 eType)

are defined by:
E,=A I, = A

p p p p
E’/’lXTQ — ET1 X ETQ [7'1><7'2 —]7'1 X [7'2

b = B — By I = 1; —! L.

e Products and exponentiations are taken in
CONT and ALG, respectively.

o]T —!]T/ = T]T — [T/.

24

ENVIRONMENTS

Let w be a type environment.

e An extensional w-environment maps each
identifier in scope to an extensional value
of appropriate type:

EHVEw == HXedom(w) Ew [X]-

e When w = M : 7 the extensional meaning
of M is a function from Envg, to E..

e An intensional w-environment maps each
identifier in scope to an intensional value of
appropriate type:

Envy, = HXedom(w)[w[[X]] '

e When w = M : 7 the intensional meaning of
M 1is an algorithm from Envy,, to I.

e Since 1" preserves finite products,
T(EDV]w> — HXedom(w)T[w[[X]]a

so identifiers get bound to computations in
the intensional semantics.

25

EXTENSIONAL SEMANTICS

e Assume given an extensional interpretation

[[C]]E < ETC

for each constant c.

e The extensional semantics is the family of
semantic functions

Ewr Term,, , — (Envg, — E;)

defined by:
Ele
elx
E [My M)

ENX:m.M

E[(My, My)]
Elfst M|

E[snd M|

lel 5
e[X]

(app o (
(8 [[Ml]]é

curry(&

— ™
=

26

INTENSIONAL SEMANTICS

e Assume given an intensional interpretation

[[C]]I €]Tc

for each constant c.

e The intensional semantics is the family of
semantic functions

Zyr: Term, , — (TEovy, — I;)

defined by:
1]
7] X]
T My M)

T[AX:m.M]

Z(M, M)
T|fst M|

Z[snd M|

27

RELATING TYPE
INTERPRETATIONS

Define a type-indexed family of relations
~r C]7' X ET

~p, = 1dy,
{((71,192), (e1,€2)) | i1 ~ry €1 & 19 ~p,) €9}
~r—v = {(a, f)|V(i,e) e l. x E..

i ~re = fun(a)i ~ f(e)}

PROPERTIES

e Algorithm compositions relate to function
compositions:

A o p f & CL, Nl 1l f/ = (CL/C_)CL> ~Nr—rl (f/0f>

e Currying of algorithms relates to currying of
functions:

A~ smyort [= CUTry(a) ~r (o curry(f).

28

RELATING ENVIRONMENTS

Let w be a type environment, ¢ € TEnvy,,
€ ¢ Envg,.

DEFINITION

L ~ e iff for all X :7 e w, there is a pair (i, e)
I. x E; such that ([X]| = pathi, ¢|X]
and ¢ ~ e.

S
€,

So ¢ relates to e iff for all relevant identifiers
X, ¢[X] is a degenerate computation of an
intensional value that relates to the extensional

value €| X].

This is similar to a logical relation, but not
identical because of the use of fun.

29

RELATING SEMANTICS

INTUITION

Whenever ¢ ~ €, the intensional meaning of a
well-typed term in ¢ relates to its extensional
meaning in e.

PROPOSITION
e Assume that for each constant c,
[[C]]] ~1e [[C]]E

e Then for all M € Term,,
all « e TEnvy,,, and all € € Envg,,,

L~e = I[M]e~; E[M]e.

PROOF:
by induction on the proof of w = M : 7.

30

EXT and INT

DEFINITION

Define two type-indexed families of functions
ext,: [, — E. int, : B, — I,
by induction on 7:

e for p ¢ Atomic, ext, and int, are the
identity function.

e For product types:
ext, «mn = ext, X ext, int; xn, = 1nt; X int, .
e For an exponentiation 7 — 7’ let:

ext,_» = Aa . extyo fun(a)o int,
int,_ = Af . alg(int of o ext,).

TERMINOLOGY

e ext (a) is the extension of a.

e int,(e) is the intension of e.

31

PROPERTIES of EXT and INT

e Atomic types have no (extra) intensional
content.

e When 7 is a product of atomic types ext_,
is fun, and int._, . is alg.

e For each 7, E; is a retract of I
for all e e B, and all a € I,

e = ext,(int; e),
a <'int,(ext,a).

Thus every extensional value is the extension
of some intensional value.

32

EXTENSIONAL EQUIVALENCE

DEFINITION

e a1 is extensionally below as, written a; <°
as, iff ext,; a; < ext, as.

e a1 and a9 are extensionally equivalent, writ-
ten a1 =° ao, iff they have the same exten-
s1on.

PROPOSITION
o For all ay, as € I, a1 <' as implies a; <€ a,.

e Hence, the quotient of I by extensional equiv-
alence is isomorphic to E., with ext, and
int, inducing the isomorphism:

(I.,<")/—e = (E,,<).

e For all aj,ay ¢ I, a1 <" ay implies
ay Se as.

33

CORRESPONDENCE THEOREM

PROPOSITION

For all 7,and all 7 ¢ I, and e € E,,
e, ~, ¢ = e=ext, 1.

e int e ~ . €.

COROLLARY

Assume that for all ¢ € Con, [c]|; ~. [c]g.
Then for all M € Term,, ; and all © € TEnvy,,,
e c Envp,, t ~ € = ext (Z[M]i) = E[M]e.

INTUITION

e For a well-typed term M and all suitably
related intensional and extensional environ-
ments, the extensional meaning of M is the
extension of its intensional meaning.

e The extensional semantics is faithfully
embedded in the intensional semantics.

34

INTENSIONAL MODELS of PCF

e Choose an intensional interpretation for each
PCF constant: e.g.
— a particular sequential algorithm
— a most eager parallel algorithm

— a most lazy parallel algorithm
for the corresponding function.

e The corresponding intensional model of PCF
will relate sensibly to the standard exten-
sional model.

e For any well-typed closed PCF term, the
extension of its intensional meaning is the
same as its extensional meaning.

e This holds even for terms using the Y -operator
relating the meaning of recursively defined
algorithms and functions.

35

GENERALITY of APPROACH

e Berry-Curien sequential algorithms can be
embedded in the parallel algorithms model.

e Can vary the extensional category, e.g.
— effectively given domains and computable
functions
— concrete domains and sequential functions

— dI-domains and stable functions

e Can vary the comonad, e.g.

— non-decreasing sequences

— increasing sequences

— finite and infinite sequences
— timed data

36

REFERENCES

o Computational Comonads and Intensional Seman-
tics, by S. Brookes and S. Geva. In: Applications of
Categories in Computer Science, LMS Lecture Notes
vol. 177, Cambridge University Press, 1992.

o Continuous Functions and Parallel Algorithms on
Generalized Concrete Data Structures, by S. Brookes
and S. Geva. In: Mathematical Foundations of Pro-
gramming Semantics (MFPS'91), Springer-Verlag LNCS
vol. 598, 1992.

o A Cartesian Closed Category of Parallel Algo-
rithms on Scott Domains, by S. Brookes and S.
Geva. In: Semantics of Programming Languages and
Model Theory, Gordon and Breach Science Publish-
ers, 1992.

o Towards a Theory of Parallel Algorithms on Con-
crete Data Structures, by S. Brookes and S. Geva.
In Semantics for Concurrency (Leicester 1990), Springer-
Verlag, 1991. Extended version in Theoretical Com-
puter Science, 1992.

37

