Fair Communicating Processes

Stephen Brookes

Published in
A Classical Mind: Essays in Honour of C. A. R. Hoare,
edited by A. W, Roscoe. Prentice-Hall International, January 1994.

1 Introduction

In an article published in August 1978 Tony Hoare introduced the program-
ming language CSP (Communicating Sequential Processes) [7]. Although
Hoare himself stated that the concepts and notations used in this paper
“should not be regarded as suitable for use as a programming language, ei-
ther for abstract or for concrete programming”, these concepts and notations
have had significant impact on the design of languages such as Ada [9] and
occam [10]. In addition Hoare’s ideas have stimulated much research on the
development of semantic models and proof methodologies for parallel lan-
guages.

The original CSP language is a simple yet powerful and elegant gen-
eralization of Dijkstra’s guarded commands [4], permitting parallel execu-
tion of sequential commands (“processes”). Processes have digjoint “local”
states and may communicate by synchronized message-passing: communica-
tion occurs when one process names another as destination for output and
the second process names the first as source for input, whereupon they per-
form a synchronized handshake. The syntax of CSP was closely based on
Dijkstra’s notation for guarded commands, generalized to permit communi-
cation guards, and using an n-ary parallel composition of named sequential
processes. Nested parallel compositions were not allowed, and only input
commands were allowed as guards. These restrictions were imposed mainly
for pragmatic reasons, and have often been relaxed or removed in later de-
velopments. For instance, it i common to permit output guards; occam uses
channel names rather than process names, has a binary associative form of

parallel composition, and allows nested parallelism; Plotkin {15] discusses a
variant of CSP with a more general scoping facility for process names.

Hoare’s work on semantic models for communicating processes has fo-
cussed mainly on a more abstract process language, which has come to be
known as Theoretical CSP (or TCSP) [2, 8]. Like Milner’s Calculus of Com-
municating Systems (CCS) [11, 12], TCSP provides a collection of primitive
processes and operations (like parallel composition} for building complex pro-
cesses from simpler ones. Atomic actions (like input and output) are treated
as events drawn from some given alphabet. Processes may be characterized in
terms of the sequences of events {or traces) that they may perform. Thus, in
the trace model of 6] the denotation of a process is taken to be a non-empty,
prefix-closed set of finite sequences of events.

In many applications it is reasonable to assume that programs executing
in parallel are not delayed forever. This is known as a fairness assump-
tion [5]. Hoare remarked in [7] that “an efficient implementation (of CSP)
should try to be reasonably fair and should ensure that an output command
is not delayed unreasonably often after it first becomes executable.” Hoare
also stated that he was “fairly sure”! that a programming language defini-
tion should not specify that an implementation must be fair, and that the
programmer should be responsible for proving that his program terminates
correctly without relying on fairness in the implementation.

Hoare's trace model [6] was not designed to incorporate fairness; indeed,
this model ignores the possibility of infinite computation and it is difficult to
reconcile fair infinite traces with the prefix-closure assumption. The prob-
lem remained of finding a satisfactory semantic account of communicating
processes that accurately supports reasoning about programs under fairness
assumptions. This ig the problem addressed by our paper.

We propose a mathematically straightforward trace semantics for a lan-
guage of fair communicating processes, and we explore some of its properties.
We build on the foundational work of David Park, who gave a semantics for a
fair shared variable parallel programming language, based on an elegant char-
acterization of a “fairmerge” operation on finite and infinite sequences [14].
Park’s model is tailored specifically to the purpose of modelling the inter-
actions of parallel programs that share a global state. Since we focus on
a CSP-like language, with no sharing of state, a rather different model is
appropriate. We adapt and generalize Park’s definitions in a natural way.

IThe pun was {presumably) intended.

The language discussed in this paper is essentially a hybrid derived from
the original CSP and CCS. As in CSP we require that processes have disjoint
local states. As in occam we permit nested parallelism and communication
uses named channels rather than process names. We also prefer an abstract
syntax less closely tied to the guarded command notation, using a binary
form of parallel composition. Thus we obtain a language in which processes
themselves may be parallel combinations of processes, so that it might be
preferable to refer to “communicating parallel processes”.

We give an operational semantics, then a denotational semantics, and we
show that the two semantic definitions essentially coincide. We then prove
that the denotational semantics is fully abstract [13] with respect to a natural
notion of program behavior. This means that the semantics distinguishes
between two commands if and only if they induce different behavior in some
program context. We discuss a few well known examples, and we suggest
directions for further research.

2 Syntax

The abstract syntax of our programming language is defined as follows. There
are five syntactic sets: Ide, the set of identifiers, ranged over by /; Exp, the
set of expressions, ranged over by F; BExp, the set of boolean expressions
{or conditions), ranged over by B; Chan, the set of channel names, ranged
over by h; and Com, the set of commands, ranged over by C. The abstract
syntax for identifiers, channel names, expressions and conditions will be taken
for granted; all we assume is that identifiers and expressions denote integer
values, boolean expressions denote truth values, and the language contains
the usual arithmetic and boolean operators and constants. For commands
we specify the following grammar:

C .= skip| [:=E | C;;Cy | if B then C) else Cy | while B do C'|

k
WL | RE | GGy | (o= Ci) | C\R,

i=1

where the p; each have one of the forms A7 or AlE.
We refer to h?1 as an input command and hlE as an output command.
The form 3> ,(p; — C;) corresponds to a guarded command whose guards

involve input or output?. The command C\h is C restricted on channel A:
it will behave like C except that its ability to communicate on channel £ is
removed. Note that processes may have internal actions (like assignments to
local variables) in addition to communication capabilities.

Parallel composition is denoted C1]|Cs, and we impose the syntactic con-
straint that in all such commands the components ¢ and Cy; must have
disjoint sets of variables. Formally, we make use of the set free[C] of identi-
fiers occurring free in C, given as usual by structural induction on C-

free[skip] = {}

freefI:=E] = {I'} U free[E]

free[C; Cy] = free[C1] U free[Cy]

free[if B then C) else Cy] = free[B] U free[Ch] U free[Cy]
free[while B do C| = free|B] U free[C]

free[n?I] = {I}

free[h! E] = free[F]

free[C1||C;] = free[C1] U free[Cy]

free[SE, (1 — C)] = Uy (freelp] U Eroe[1))

free[C\h] = free[C]

We say that C is well-formed iff for every sub-command of C with form C1{|Cy
we have free[C) |Nfree[Cy] = {}. For example, (a?z; z:=z+1; alz)||(y:=0; aly; a?z)
is well formed, bui z:=0; [a7z||z:=z + 1] is not. Throughout the paper we
assume that we deal with well-formed commands.

We also define chans[C], the finite set of channel names occurring in C,
by structural induction on C:

chans[skip] = {}

chans[I:=FE] = {}

chans|C1; Cy] = chans[C;] U chans[Cq]

chans[if B then C| else (] = chans[C1] U chans[Cy]
chans[while B do C| = chansC]

chans[r?I] = {h}

chans[h!E] = {h}

chans[Ch||Cs] = chans[C1] U chans[Cs]

chans[>%_ (p; — C;)] = U¥_,(chans[p;] U chans[C;])
chans[C\A] = chans[C] — {h}

2We omit “mixed” guards with an additional boolean component, since this permits a
simpler presentation.

3 Operational Semantics

A state is a finite partial function from identifiers to integer values. We use
N for the set of integers, and we let S = [Ide —, N] denote the set of states.
A typical state will be written in form [[y = ny, ..., Iy = ng). We use s as
a meta-variable ranging over S, and we write {s | I = n| for the state which
agrees with s except that it gives identifier I the value n. The domain of a
state, denoted dom(s), is the set of identifiers for which the state has a value.
'Two states s; and sy are disjoint, if and only if their domains do not overlap:

disjoint(sq, sg) <=> dom({s;} Ndom(ss) = {}.

We assume for simplicity that expression evaluation always terminates
and causes no side-effects, and we assume given the evaluation semantics for
boolean and integer expressions: we write (E,s) —* n to indicate that F
evaluates to value n in state s, with a similar notation for boolean expressions.

For commands, in order to model communication properly we use a la-
belled transition system, much as in [15]. Configurations have the form (C, s),
where s is a state defined at least on the free identifiers of C*:

Conf = {{C, s} | free[C] C dom(s)}.

We decorate transitions with a label indicating the type of atomic action
involved: e represents an internal action, A?n represents receiving value n on
channel A, and hln represents sending value n along channel A. We let A be
the set of all labels: A = {e} U{ A?n,hln | n e N,h ¢ Chan}. We use A as a
meta-variable ranging over action labels, and we write

(C,8) =25 (C7, &)

to indicate that command C in state s can perform an action labelled A,
leading to ¢ in state 8. Two labels A\; and Xy match iff one has form A7n
and the other Aln for some channel name h and value n; when this holds we
write match{Ag, A).

We identify the successfully terminated (or terminal) configurations by
means of a predicate term. The termination predicate and the transition

relations —— () e A) are defined to be the least relations on configurations

3This means that we need not be concerned with the possibility of uninitialized iden-
tifiers in our semantics.

{skip, s)term

(E,8) =" n
(I.=F,s) —— (skip, [s |] = n]}

(C1,s) = {C1, 8
(Cy; Cy, 8) 2= (T Cy, 6

{Cy, s)term
(C1; Ca, s) === {Ch, s)

(B, s) =" tt

(if B then C; else Cy, s) — (C, s)

(B,s) —" ff
(if B then C else Cy, 8) — (C3, s)

(while B do C,s) — (if B then C; while B do C else skip, s)
Figure 1: Transition rules for sequential constructs

satisfying the axioms and rules of Figures 1 and 2. The rules specify that a
parallel composition terminates when all of its components have terminated®.

Parallel execution is modelled by interleaving, but with the extra pos-
sibility of communication. The transition rule for communication between
parallel processes is carefully constructed so as to make precise the intuitive
description given earlier of the synchronized handshake mechanism. The dis-
jointness assumption on states s; and sg, together with the implicit require-
ment that free[C,] C dom(s;) and free{Cy] C dom(ss), are enough to make
the communication rule unambiguous. (To make this precise, we should first
note that commands can only affect and be affected by the values of their

“We do not model the “distributed termination convention” used in the original paper
on CSP.

foreachne N
(h?l,s) 2 (skip,[s | I = n])

(F, s) —*n

(hE, s) =2 (skip, s)

(pi, sy — (skip, &'}

foreachiel... k

(p; = Cy),8) 2 {Ch, &)

=1

(C,s5) = (C',9))
(C\h, 5) == {C'\h,)

i X {hin,hln |necN}

{C, syterm
(C\h, sjterm

(Ch,8) = (CF,)
<Ol||c27 S) _L (Oi”c% Sr)

<OZ} S> i) (Cé, SI)
(C1]|Ca, 5) -2 (Ch]|Cs, ')

(C1,81) 255 (CL,85) (Cay80) 22 (Ch, 54)

(C1]|Ca, 81 U s3) == (C1|C, 87 U s)
provided match({Ay, As) and disjoint{s;, $2)

{Cy, s)term {(Ch, s)term
{C1]|Cy, s)term

Figure 2: Transition rules for parallel constructs

free identifiers.)
We will write A* for the set of finite sequences of communications:

A* = {e} U{ h7n,h!n | n e N,h e Chan}t,

where A™ is the set of non-empty sequences over A. This definition of A* is a
slight abuse of notation, since the usual form of Kleene star operation would
include “mixed” sequences containing communications and occurrences of ¢;
our definition absorbs such occurrences of €, and this corresponds to the fact
that e represents the empty sequence, which is a unit for concatenation. We
also define {with a similar abuse of notation)

A ={ae” | ae A" U{ hTn,hln | ne N,h e Chan}*.

Again this definition builds in the property that € is a unit for concatenation
(even for infinite sequences). However, it is important to note that € is
not the same as e; the former represents divergence, the latter represents
termination. Finally, we let A = A* U A¥., For a ¢ A® we denote by
chans(«) the set of channel names occurring in o.

We now define generalized transition relations ==, where o ¢ A>®:

e For finite o, (C, s) == (C', s') means that C from state s may perform
the sequence of communications «, leading to the configuration €' in
state g'; finitely many e-transitions are permitted between communica-
tions. Note the special case when « is ¢, representing a finite (possibly
empty) sequence of e-transitions.

e For infinite a, (C, s) == means that there is a fair infinite computation
of € from initial state s in which the action labels form the sequence
a. The special case o = €¥ indicates that C has a fair infinite internal
computation starting from s.

To be precise about fairness we should tag each transition with an indication
of which sub-commands are responsible for the atomic action that causes it,
and ensure that the interleaving operation takes proper account of tags. For
instance, see [5, 1].

Examples

. Let a be a channel name. Then the possible transition sequences of
a?z||a!0 from an initial state in which the value of z is 1 are:

(a?z||al0, [z = 1]) — o, (SkipHa‘O [z = n|} ﬂ (skip||skip, [z = n])
(a?z)al0, [z = 1)) =% (a?z|skip, [z = 1]) <= (skip|skip, [z = n])
{a72]al0, [z = 1]) — (skip||skip, [z - 0})

In each case the final configuration is terminal.

. In contrast, restricting on @ in the previous example forces the commu-
nication to take place:

((a72]|at0)\a, [z = 1]) — ((skip[skip)\a, [z = 0).

Again the final configuration is terminal.
. Let By, By, Bys be the processes defined by:

By = while true do (in?z; link!i)
By = while true do (link?y; outly)
Blg = [B1||B2]\lﬁnk§

Intuitively, B, behaves like a buffer of capacity 1, repeatedly inputting
a value on channel in and outputting it on channel link. Similarly, By
is a buffer with input link and output out. By behaves like a buffer
from input 4n to output ouf, with capacity 2. A discussion of similar
processes (in a non-imperative setting) occurs in [8].

. The program [C ||C,!|Cs)\left\right, where

C; = while true do (left?z — out!z) + (right’z — outlz)
(Cy = while true do left!0
(3 = while true do right!l,

performs a “merge” of a sequence of 0's with a sequence of 1’s. Ac-
cording to the transition rules, this program has an infinite transition
sequence corresponding to the sequence of communications out!0. This
is an wunfair computation sequence for this program, because it can-
not be obtained by fairly interleaving communication traces for each

9

5

of the constituent processes: the only way for this sequence to arise is
by ignoring the communication capability for Cs. The fair communica-
tion traces of this program have form outlvg.outlvi.outlv,. ... outly, . . .,
where vty ... vy, ... is a fair merge of 0¥ and 1¢, so that it contains
infinitely many 0’s and infinitely many 1’s.

. Consider the processes (7 and Cy given by

Ci1 = (a?z — ((blz — skip) + (clz — skip)))

Cy = (a?z — blz) + (a?z — clz)

Each can perform the sequence of communications a?nbln and can per-
form a?ncln, for each n e N. But the second process has two essentially
different a?n transitions, leading to configurations where either the only
possible next step involves channel b or the only possible next step in-
volves ¢. In the first process, after doing input on channel a it will be
possible to do output on b or on c.

Program behavior

The only important attribute of an expression in the transition system for
commands (Figures 1 and 2) is its value. We therefore define evaluation
functions £ : Exp — P(S x N) and B : BExp — P(S x V), where V =
{tt, ££} is the set of truth values:

ElE] = {(s,n) | (E,s) =" n}
B[B] = {(s,v) | (B,s) —*v}.

We want to be able to reason about the effect of command execution,

including whether or not it terminates successtully, assuming fair execution.

We therefore define the “state transformation” behavior of a command C,
denoted M[C], as follows:

Definition 5.1 The behavior function M : Com — P(S x 5,) is defined

by:

MICT = {(5,¢) | {C, s} = (C', Nterm} U {(s, 1) | (C,s) ==1.

10

We use L to represent non-termination, and §; = SU{L}. A command C
has a fair infinite computation (involving only internal actions) from state s
if and only if (s, .L) e M[C].

We have defined this behavioral notion by reference to the transition
system given above: this is an operational characterization. It is obvious
that M cannot be defined compositionally, since (for instance) M[C1|C5]
cannot, be determined from M[C1] and M[Cs]. We now give a compositional
notion of behavior generalizing M in a natural way.

Definition 5.2 The trace semantic function 7 : Com — P(S x A® x §))
is characterized operationally by:

TIC] = {(s,,8) | (C,s) == {C", s term}
U{(s, e, L) | v € AY & (O, 5) ==}.

In contrast to [6], our traces are adapted to the imperative setting: we model
state changes explicitly. Moreover, since we focus only on the terminal finite
traces we do not impose the prefix-closure condition on trace sets. Nor do
we require that an infinite trace be included in a trace set if each of its
prefixes is present in the set: this would be incompatible with our desire to
model fairness properly. From now on, we use the term trace for a triple of
form (s,a,s") (where s’ ¢ S), and we will refer to the o component as a
commaunication trace.

The state transformation behavior of a command is derivable from its
traces:

MICT = {(s,5) | (s,,8) e T[C]} U {(s, L) | (s.¢*, L} « T[CT}.

This obvious property will be useful later.

6 Denotational Semantics

We now show that 7 can be defined compositionally. This gives a denota-
tional characterization to complement the operational characterization just
given.

To start, notice that we can regard the semantic domain P(S x A% x S)
as a complete partial order (in fact, a complete lattice), with set inclusion as
the underlying order.

11

We begin by defining a semantic analogue to the syntactic operation of
sequential composition. For trace sets 7] and 75 we define

Ty T ={(s,83,8") | 3. (s,,8") e Ty & (¢, 5,5") € Tu}
U{(s, e, L) | (8,0, L) e T },

where concatenation of communication sequences is defined as usual, so that
aff = « when « is infinite.

" Next we generalize from concatenation to iteration. For a trace set T' we
define T™, the n-fold iteration of T, by induction on n:

7% = {(s,¢,5) | s € S}
TE = T:T¢ (k> 0).

We then define 7% and T by:

T — U?LQ:OTR
™ = {(So, (87516 3 PN 0 PRI J_) | Vﬂ.(Sn, Xy s Sn-i—l) € T}

Note that {{s,¢,s) | s € S} is a unit for sequential composition of trace sets,
and 7% =T for all trace sets T

Parallel composition is modelled by a form of interleaving of traces, allow-
ing for synchronized communication. We need to define a fairmerge operator
on traces, so that we only include interleavings corresponding to fair be-
haviors. The following definitions are based on [14], adapted to deal with
communicating processes and synchronization. Let 77 and Ty represent the
trace sets of disjoint processes. Then we define T1{|T%, the set of all fair
synchronizing merges of a trace from 71 and a trace in T3, as follows:

T1||T2 = {(81 LJ 82,7, S’l L S"Z) | 3(81, , 8’1) € Tl, (Sg,ﬁ, SIQ) € Tg.
- disjoint(sy, $2) & (o, 8,7) € fairmerge},

where
fairmerge = (L*RR*LY U (LUR)*A,
L = {(MeMN) | AeAtUM,
R = {{&)] AeA} UM,
M = {()\1,}\2,6) ‘ m&tCh()\l,)\g)},
A = {{o,e,0),(e,0,a) | v e A®},

In this definition we extend the set-theoretic union operator to §; xS in the
obvious way, defining | Us=sU L = L. We also extend the concatenation

12

operation to triples of traces in the obvious componentwise way and we use
the pointwise extension to sets of triples.

When {a, 3,7) ¢ fairmerge we say that v is a fair synchronizing merge
of o and 3. Intuitively, the definition is intended to specify that v is con-
structed from « and 3 by a combination of interleaving and synchronization
of matching input and output, and in the construction all actions from «
and 3 are used up. If « is finite then as soon as all of & has been used up
there is no further fairness requirement to fulfill, and similarly if 8 is finite;
all such cases give rise to triples (e, 8,) expressible in the form (L U R)*A.
The term (L*RR*L)¥ deals with the cases where o and 3 are both infinite.
Apart from the difference in the underlying notion of atomic action, this
fairmerge definition is obtained from Park’s by adding states, taking advan-
tage of the disjointness assumption (so that states may be combined using
union), and by including a component M dealing with synchronization. Note
that a synchronized pair of communications produces an e-step and counts
as an atomic action by both of the participating processes; this is important
in ensuring a proper account of fair execution.

For example, the possible fair merges of a?n and a!0 are a?n.all, a!0.a?n
and €. The fair merges of a70.670.a70 and al0 include 570.470, «70.b70,
2?0.670.270.a!0, but not ¢!0.670.a70 and not a!0.a70.670. The only fair merge
of € with G is 7 itself if 4 is infinite, and Fe* if 3 is finite. The fair merges
of (a70) and (al0)¥ include (a?0)"¢* and (a!0)"¢ (for all n > 0), but not
(a?0) or (al0)¥.

With these definitions in hand, it is now easy to give a denotational
description of 7.

13

Proposition 6.1 The trace semantics T . Com — P(S x A® x §)) s
characterized by the following clouses:

Tlskip] = {(s,¢,8) | se S}

T:=E] = {(s,e,[s I =n])| (s,n) c E[E]}

T[Cy Ce] = T[] TCH]

T[if B then (4 else O3] = T[B]; T[Ci] U T[-B]; T[C:]
where T[B] = {(s,¢,3) | {s,tt) ¢ B[B]}

Twhile B do O] = (7[B];7T[C])~7T[-B] U (T[B];TIC])~

TIhM) = {(s,h™n,[s|I=mn])|seS neN}

T[RE] = {(s,hln,s) | (s,n) € E[E]}

TS (s — C)] = UL (Tlp]; TIC)

T[C\h] = {(s,0,8) ¢ T[C] | h ¢ chans(a)}

TIC:|C] = TIGITICH

Proof: Tt is straightforward to show, for each command €, that the oper-
ational description of 7 [C] coincides with the set 7]C prescribed by this
denotational definition. The details for parallel composition rely on the op-
erational characterization of fair infinite computation. (End of Proof)

This semantic description makes certain equivalences obvious. For in-
stance, writing € = Uy to mean that ¢ and C; have the same trace seman-
tics, it is easy to verify the following laws:

C:skip C

skip; C' o

while B do C = if B then (C;while B do C) else skip
(RPI|WEVZ\R = I=E

Cliskip = C

Cﬂ!C‘z = CgHOl

(CLlC2)ICs = Cu[(Ch]|Ca)

O\ = (C\Ra)\ln

(C\R\\h = C\h

i

The last two laws allow us to write C\{hq,..., hg} for (C\h1) ... \Ag, the
result of restricting C on a finite set of channels.

The following result is an easy consequence of the fact that all operations
on trace sets used in these semantic clauses are monotone with respect to set
inclusion. A program context P[—] is a program containing a hole (denoted
[—]) info which a command may be inserted; P[C] denotes the program

14

obtained by inserting C' into the hole. We restrict attention to contexts P[—]
and commands C' such that P[C] is well-formed.

Proposition 6.2 For every program context P[—| and all commands C and
', we have the following “contextual monotonicity” property:

T[CT € T[C] = TIPICT € TIPICL

7 Examples

1. It is easy to check the following details, illustrating the correspondence
between the denotational and operational definitions of 7

Tla?z] = {(s,a™n,[s|z=mn])|seS &neN}
Tal0] = {(s,al0,s) | s € S}
Tla?z|al0] = {(s,¢,[s |z =10]) | s € S}
U{(s,amn.0l0,[s |z =mn|} |seS &ne N}
U{(s,al0.a?n,[s |z =mn])|seS &neN}
T[(a?z|al0)\a] = {(s,¢,[s|z=10])]|secS}

2. Recall the processes B, By, B2 discussed earlier:

By, = while true do (in?z; linklz)
By = while true do (link?y; outly)
Blg = [BﬂlBg]\l’L?’Lk

One can use the denotational semantics to show that B, and B, behave
like 1-place buffers and Bj, behaves like a 2-place buffer.

3. Consider again the program [C1]|Ca[{Cs]\left\right, where

Cy = while true do (left?z — out!z) + (right?z — outlz)
Cy = while true do leftl0
Cy = while true do right!l.

The traces of C3||Cs have form
(le ft10)||(right!1)” = ((lefe!0) right!L{right!1)*le ft!10)*,

each containing infinitely many left and infinitely many right steps. The
traces of C; have form (h,?v,.0utl,)2 o, where each h,, ¢ {left, right}

15

(n > 0). The only fair merges of a trace of C; with a trace of Cq]|Cs,
restricted so as to contain no left and right steps, must therefore involve
all synchronization steps. The possible sequences of values output on
channel out will therefore correspond to the extended regular expression
(0*11*0)¥. As required, this is the set of sequences of 0’s and 1’s that
contain infinitely many of each.

4. The loop while true do skip diverges:

T [while true do skip] = {(s,€, 1) | s e S}.

8 Full Abstraction

Having presented a denotational description of 7 it is clear that we can
use traces to reason compositionally about the communication sequences of
fair parallel programs: 7 distinguishes between a pair of commands C; and
Cy if and only if there is a context P[—] such that T[P{C}]] and T[P[Cs]]
differ. The proof of this is almost trivial, using the contextual monotonicity
property mentioned above.

Since the behavior M[C] can be extracted from 7 [C] the trace semantics
also supports compositional reasoning about behavior. In fact, we obtain
full abstraction: 7 distinguishes between C; and C; if and only if there is a
context P[—] such that M[P[C1]] and M[P[C:]] differ.

Proposition 8.1 The trace semantics T is (inequationally) fully abstract
with respect to M:

T[C] < TICT = VP[-L.M]PIC]] € MIPICT).

Proof: The proof of the forward implication follows easily by contextual
monotonicity and the fact that the behavior of a program is extractable
from its trace set.

For the reverse implication we rely on the following key facts:

1. For a finite communication sequence « containing k output actions, and
k distinct identifiers z1, . .., 2, there is a command D0, (2, .. ., z) that
performs a sequence of communications matching a and uses the z; to
store the values output in «.

16

2. For an infinite sequence «, (€', s) cannot perform « if and only if there
is some finite prefix # of a such that either a = B¢ and no F-derivative
of {C’, 8) can do €”; or « has the form SA~v where A is a communication
(not €), and no fB-derivative of {C’, s} can do .

3. For any configuration (C, s), and any finite communication trace o the
set {C" | 3s".{C, s) == (C”, 5"} is finite.

If (5, 8') is a trace of C' but not of C' there is a finite prefix 4 of « after
which a behavioral difference is detectable, and we may use a parallel context
containing a command of form DOg(z, ..., 2) to distinguish between C and
.
(End of Proof)
As an immediate corollary, we obtain (equational) full abstraction: two
commands have the same trace sets if and only if they may be interchanged
in all program contexts without altering the behavior of the overall program.
Thus all of the semantic equivalences validated by this model can be used in
any program context with the guarantee that replacing any command by an
equivalent one has no effect on program behavior.

9 C(Conclusions

We have presented a semantic model, based on fair traces, for a CSP-like
language of communicating processes. We have shown that this semantics is
tully abstract with respect to a natural notion of program behavior, so that
the semantics exactly supports compositional reasoning about behavior.

A configuration is deadlocked iff it is not terminal but has no transitions.
For a trivial example, the command hl0\A is deadlocked in any state.

Trace models like this are well suited to reasoning about safety proper-
ties but inadequate for reasoning about the possibility of deadlock. A non-
terminal configuration is deadlocked if it has no transitions. Traces do not
provide enough information to distinguish between a process that may either
deadlock or perform a communication and the corresponding deadlock-free
process. It is not even enough to augment the trace model with extra traces
representing communication sequences that lead to deadlock. This is easily
seen in one of the examples discussed earlier: the two commands

C1 = (a?z — ((blz — skip) + (clz — skip)}))
Cy = (a?z — blz) + (a?z — dz).

17

have the same successful traces and no deadlock traces, but they induce dif-
ferent deadlock traces in the context [—||b7y]\b\¢c: only the second command
may deadlock after doing a70.

One way to add appropriate extra structure to the semantic model is to
work with fatlure sets [2]: a failure of a process is a (finite) trace together
with a set of events that the process may be able to refuse after having
performed the trace. The possibility of deadlock is represented by the ability
to refuse all events. To extend this idea to the imperative setting we need to
incorporate a suitable treatment of program states, perhaps along the lines
discussed by Roscoe in [16]. The two commands C; and C, have different
failure sets: the failure (s,a70,[s | z = 0], {bl0}) is only possible for Cb,
corresponding precisely to the behavioral difference noted above.

We plan to investigate further the full abstraction problem for communi-
cating processes and various natural notions of program behavior, including
partial and total correctness, and deadlock-freedom. The analogous problems
for a shared variable parallel language were discussed in [3].

References

[1] Apt, K. R. and Olderog, E.-R., Verification of Sequential and Con-
current Programs, Springer-Verlag, 1991.

[2] Brookes, S.D., Hoare, C.A.R., and Roscoe, A.W., A theory of commu-
nicating sequentiol processes, JACM 31(3):560-599 (1984).

[3] Brookes, S., Full Abstraction for a shared variable parallel language,
Proc. 8** Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society Press, June 1993.

[4] Dijkstra, E. W., Cooperating sequential processes, in: Programming
Languages, NATO Advanced Study Institute, pp. 43-112, Academic
Press, 1968.

[5] Francez, N., Fairness, Springer-Verlag (1986).

[6] Hoare, C. A. R., A model for communicating sequential processes, Tech-
nical Report PRG-22, Oxford University, Programming Research Group,
1981.

18

[7] Hoare, C. A. R., Communicating Sequential Processes, Comm. ACM,
21(8):666-677 (1978).

[8] Communicating Sequential Processes, Hoare, C. A. R., Prentice-Hall
International, 1985.

19] Ichbiah, J. D., Reference Manual for the Ada Programming Language,
ANSI MIT-STD-1815A-1983, 1983.

[10] The occam programming manual, INMOS Ltd, Prentice-Hall, 1984.

[11] R. Milner, A Calculus of Communicating Systems, Springer LNCS 92,
1980,

[12] R. Milner, Communication and Concurrency, Prentice-Hall, Lon-
don, 1989.

[13] Milner, R., Fully Abstract Models of Typed Lambda-Caleuli, Theoretical
Computer Science, vol. 4, pp. 1-22, 1977.

[14] Park, D., On the semantics of fair parallelism, in: Abstract Software
Specifications, pp. 504-526, Springer LNCS 86, 1979.

[15] Plotkin, G. D., An operational semantics for CSP, In D. Bjgrner, edi-
tor, Formal Description of Programming Concepts 11, Proc. IFIP
Working Conference, North-Holland (1983), 199-225.

[16] Roscoe, A. W., Denotational semantics for occam, Seminar on Concur-
rency, Springer-Verlag, LNCS 197, 1984.

19

