TRACE SEMANTICS:
TOWARDS A UNIFICATION OF
PARALLEL PARADIGMS

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

MFECSIT 2002

PARALLEL PARADIGMS
State-based

e Shared-memory

— global state

— concurrent read and write

e Concurrent constraint

— global state

— concurrent ask and tell

Focus on state change

PARALLEL PARADIGMS

Communication-based

e Asynchronous

— output always enabled
— input waits until data is available

— channels behave like queues

e Synchronous

— output waits until matching input
— input waits until matching output

— synchronized handshake

Focus on communications

SEMANTIC MODELS

e State-based

— sequences of state changes

(50, 50)(51,87) - - (Sny 80) - - -

— “4ransition traces”

e Communication-based

— communication traces 4+ book-keeping

— “ailures”

PROGRAM BEHAVIOR

e Partial correctness
{pre} P {post}
e Total correctness
pre] P [post]
e Safety properties
pre = [—bad

e Liveness properties

pre = { good

Need to assume fair execution

FAIRNESS

For shared-memory
or asynchronous i/o

PllQ 2 if P4 orQ 4
e Reasonable to assume that
no process is ignored
e Weak (process) fairness
e [insures that
stop:=true || while —stop do go
always terminates

e Satisfied by round-robin scheduler

e Can be modelled using transition traces

FAIRNESS

For synchronous i/o

PlQ & if P& or@Q 2

P|Q & if p -l & Q Ll
e Reasonable to assume that

—no process 1is ignored

—no synchronization is ignored

e Weak (synchronizing) fairness

local h in (h!0; P)||(h?x; Q)
= local A in z:=0; (P||Q)

e Satisfied by variant of round-robin

e Not modelled by failures. ..

PROBLEMS

e Different models for different paradigms

—no cross-platform analysis
— hides underlying similarities
— replication of effort

e Lack of uniformity

— some models fair, some not

— some models use state, some don'’t
e Lack of robustness

— Failures aren’t fair

— Communication traces ignore state

Need a unifying framework

THIS TALK

Action traces

e A fair semantics for CSP

— synchronous communication
— avoids complex book-keeping
— state handled implicitly

— generalization of failures

— fully abstract
e Adaptability

— asynchronous communication

— shared memory

e A unifying framework

— state-based

— communication-based

9

CSP

e Processes
P = skip|xz:=¢e| P; P» |
h?’z | hle |
Pi|| Py |
if G fi|do G od |
local x,h in P

e Guarded commands
G = (¢ — P) | G10Gs
e Guards

g =b|bART |bAhle

10

A= = read
T:=0 write
h'lv input
hlv output
0x wailt

where X C {h?,h! | h € Chan}

TRACES
Finite or infinite sequences of actions
ae A =ATUA
OAN = A0 = A

STATES
Characterized implicitly by enabling relation
Ao

S — S

11

NOTATION

e /\ is the set of actions

e Dir is the set of directions

Dir = {h? h! | h € Chan}

e A is the set of waiting actions

A={0x | X Cgy Dir}

e 0 abbreviates ¢ N
e)\ abbreviates ¢)

e match(A, Ao) iff {\1, Ao} = {h7v, hlv}

12

ENABLING
iff s(z)=w
iff §'=[s|xz:v
iff s(h)=e¢& s =[s|h:v]
iff s(h)=v&s' =[s|h:é€

iff Vh?7e X.s(h)=€&
Vh! e X. s(h) # €

13

OPERATIONAL SEMANTICS

State 1s implicit

e Transitions
P P
G 2 G’
e Termination

P term

e F'air execution

p

14

TRANSITION RULES FOR
GUARDED COMMANDS

(h?x — P) v gi=y; P

(h?x — P) % (h?x — P)

Gy A P

A A
G0Gy A P d

G A, P
G{0Gy 4 Py

A A

G 2% Gy Gy 2% Gy
G1OG, XY, GHOGs

15

TRANSITION RULES
FOR PROCESSES

P2 P Py 2
Pi||Py 2 Pl||Py, P[Py

Py
Py || P

P AL Pl py 22, P
Py[|Py > P[|| P
if match(Ai, \9)

TERMINATION

P term P term

skip term Pi||P, term

16

FAIR EXECUTIONS

Parallel composition
P|lQ L iff
P &Q-L &

v € merges(a, B) &
—match(blocks(a), blocks((3))

e merges(a, 3) allows synchronization

e blocks(a) is set of directions occurring
infinitely often in A steps of «

Local channels
local hin P % iff P -% & h o chans(a)

e forces synchronization on h

17

DENOTATIONAL
SEMANTICS

e Define trace sets

T(P) C A

with
T(e) C A* X Vipy
T(Q) C A* x Vool
T(G) C A

by structural induction

e Designed to match operational semantics

e 7 (P) only includes fair traces

18

SEMANTIC DEFINITIONS

T(skip) = {0}
T(h'x) = o0p " {hTvx:=v |ve V}U{i*}
T (hle) = {ady ™ hlv, adp” | (a,v) € T(e)}

T(Py||P2) = {a € merges(ay, o) |
a1 €T(P)&aneT(P) &
—match(blocks(ay), blocks(as))}

7 (local hin P) =
{a\h | a € T(P) & h & chans(a)}

T(G0Gy) =
{aET(G)UT(GQ)‘O&Q/A(’U}U
{oxuy™ | 0x¥ € T(Gh) & oy™ € T(Go)}

19

RESULTS

e Denotational matches operational
T(P)={a| P}
e Traces are sensitive to deadlock
if (a?z — P)O(b7y — Q) fi
has 5{@?,b?}w

if (true — a?z; P)0(true — b7y; Q) fi

has d,7% and g%

e Full abstraction
T(P)=T(Q) < VC.B(C|P]) = B(C|Q)])

where BB observes sequence of states

20

SEMANTIC LAWS

synchronous

Fairness properties

local h in (h7x; P)||(hlv; Q)| R
= local h in (z:=v; (P||Q))||R
if h & chans(R)

local h in (h7x; P)||(Q1; @Q2)
= @1;local hin (h7z; P)||Q2
if h ¢ chans(Q)

local h in (hlv; P)||(Q1: Q2)
= (1;local h in (hlv; P)||Q>
if h & chans(Q1)

Not valid in unfair semantics

21

RELATED WORK

e Traditional CSP models

— used finite traces and prefix-closure
— cannot model fairness
— treat divergence as catastrophic

e Traces subsume (stable) failures
(a, R) e F(P) & a(dx)*” € T(P)
for some X such that =match(X, R)

e Older’s models

—traces + book-keeping
— different fairness notions

— introduced fairness mod X
— « is fair mod X if blocks(a) C X

22

ADAPTABILITY

Can handle other parallel paradigms
by making changes

e Choose appropriate set of actions A

e Adjust relevant semantic definitions

— parallel composition
— input/output

— local channels

In each case:
e Processes denote trace sets

e Full abstraction for safety and liveness

23

ASYNCHRONOUS
COMMUNICATION

Ai=ax=v|x:=v|htv|hlv|dx
where X C {h? | h € Chan}

T (hle) ={ahlv | (a,v) € T(e)}

T(P||P) = {a € merges(ay, ag) |
a; € T(P) & ag e T(P)}

7 (local h in P) =
{a\h | a e T(P) & a|h is FIFO}

e merges(a,) without synchronization

e o[his FIFO if every input is justified
by earlier output

24

SEMANTIC LAWS

asynchronous

Fairness properties

local h in (h?z; P)||(hlv; Q)|| R
= local h in (z:=v; P)||Q|| R
if h & chans(R)

local h in (h?z; P)||(Q1; Q2)
= (@;local hin (h?z; P)||Q2
if h & chans(Q1)

Not valid in unfair semantics

25

SHARED MEMORY

Ai=x=v | z:=v | (o) («finite,sequential)

T(P||P2) = {a € merges(ay, a9) |
a; € T(P) & ap e T(R)}

7 (local z in P) =
{a\z | o € T(P) & az sequential }

7T (await b then a) = wait*go U wait?

wait = {{a) | (o, false) € A(b)}
go = {{af) | (a,true) € A(b) & € Ala)}

e o x sequential iff every (non-initial)
read is justified by previous writes

26

COMMON THEME

e Programs denote sets of traces
— built from action set A
e Fully abstract for safety and liveness
e Can extract traditional semantics
e Trace sets form complete lattice

e Program constructs denote monotone
functions on trace sets

hCT, = F(I) C F(Ty)

e Recursive constructs denote fixed points

— least fixed point = finite traces

— greatest fixed point = countable traces

27

UNIFICATION

Action traces can be used to model
e shared-memory
e asynchronous communication

e synchronous communication

Can extract traditional semantics
e transition traces

e failures

28

FUTURE RESEARCH

e Other fairness notions

— strong, weak / process, channel
e Partial order semantics

— “truly fair” concurrency
e Low-level traces

— pointers, stores, heaps
e Procedures

— possible worlds, parametricity
e Intensional traces

— abstract runtime
e Probabilistic traces

— “fairly true” correctness

29

REFERENCES

e Full abstraction for a shared-variable
parallel language, S. Brookes, LICS'93

e On the Kahn Principle and Fair
Networks, S. Brookes, MFPS 14 (1998)

e Communicating Sequential Processes,

C. A. R. Hoare, CACM (1978)

o A Framework for Fair Communicating

Processes, S. Older, MFPS 13 (1997)

e On the semantics of fair parallelism,
D. Park, Springer LNCS 86 (1979)

e The Theory and Practice of Concurrency,
A. W. Roscoe, Prentice-Hall (1998)

30

PARTIAL ORDER
SEMANTICS

e Process denotes set P(P) of pomsets
e Pomset (T, <)

— multiset T" of actions

— partial order < on T’
e A pomset determines a trace set L(T, <)
— traces built from T’ consistent with <

e Recovering traces:
T(P) = | J{£(T, <) | (T, <) e P(P)}
e Transfer Principle:

P(P) =P(P) = T(P)=T(P)

31

BUFFER PROCESSES

o buffi(in, out) =gt

while true do (in?z; out!x)

o buff,(in, out) =g

local mid 1n

buffy (1, mid)|| buff;(mid, r)

o buffs(in, out) =qf
local mid, ack in
while true do (in?x; midlx; ack?)
| while true do (mid?y; ack!; outly)

32

BUFFER BEHAVIOR
e Safety: FIFO order

e Liveness: Every input is output

CAPACITY
* buffy

—synchronous: 1-place

— asynchronous: 1-place

® buff,

— synchronous: 2-place

— asynchronous: unbounded

® bUﬁQ

— synchronous: 2-place

— asynchronous: 2-place

33

Asynchronous traces of buff;

Typical unblocked case:

inlv] —— outluy
/
vy . outlug
/
inlvg - outlug

&

vy —- outlvy,
/

where each v; € V

(in?v outlv | v e V)¥

34

Asynchronous traces of buff;

Typical blocked case:

v —— outlyy
/
vy —. outluy
/
in?vy —— outlvs

-

vy, —- outluy,
/
On?
.

5m7

where k > 0 and each v; € V

(in?v out?v | v e V) 9%

35

Asynchronous traces of buff,

Typical unblocked case:

inlv] —— outluy
\ \
vy outlve
\ \
in’vy . outlvs
N N
N\ N\
vy — outlyy,

\ \
where each v; € V

any trace consistent with this

36

Asynchronous traces of buff,

Typical blocked case:

inltv] —— outlog
\ \
vy . outlyg
N \
inlvg - outlug
N N
\ \
inlvy — outluy,
\
5@'72?
.
52'77,?

where k > 0 and each v; € V

any interleaving consistent with this

37

Asynchronous traces of buff

Typical unblocked case:

v —— outlyy

\ \
1N v9 outlvy
\ \
in’v3 outlvs
N N
vy outlvy

NN
v —— outlvy.
\ \

where each v; € V

any trace consistent with this

38

Asynchronous traces of buff

Typical blocked case:

vy —— outlyy

\ \
intvy outlvy
\ \
i3 outlvg
N N
iy outlvy

NN

vy —— outlyy,
\
0?2
.

57/17,7

where k£ > 0 and each v; € V

39

Synchronous traces of buff;

Typical unblocked case:

vy —— outluy
/
vy . outlug
/
in’vg - outlug

&

vy —- outlvy,
/

where each v; € V

(in?v outlv | v e V)¥

40

Synchronous traces of buff;

Blocked on input:

inlv] —— outluy
/
vy —. outluy
/
in’vy - outlug

-

vy, — outluy,
/
On?
.

5m7

where k > 0 and each v; € V

(in?v out?v | v e V) 9%

41

Synchronous traces of buff;

Blocked on output:

intv] —— outlyy
/
vy . outlug
/
vy —— outlug
/
vy, 0 put!
\
50fbt!

where k > 0 and each v; € V

(in?vout? | v e V) (in?v | ve V)i,

42

Synchronous traces of buff ,

Typical unblocked case:

vy —— outluy

\ \
U9 outlvy
\ \
in’v3 outlvs
\ N
vy outlvy

NN
v — outlyy,
\ \

where each v, € V

behaves like a 2-place buffer

43

