
Trace semantics:
towards a unification of

parallel paradigms

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

MFCSIT 2002

1

PARALLEL PARADIGMS

State-based

• Shared-memory

– global state

– concurrent read and write

•Concurrent constraint

– global state

– concurrent ask and tell

Focus on state change

2

PARALLEL PARADIGMS

Communication-based

•Asynchronous

– output always enabled

– input waits until data is available

– channels behave like queues

• Synchronous

– output waits until matching input

– input waits until matching output

– synchronized handshake

Focus on communications

3

SEMANTIC MODELS

• State-based

– sequences of state changes

(s0, s
′
0)(s1, s

′
1) . . . (sn, s′n) . . .

– “transition traces”

•Communication-based

– communication traces + book-keeping

(λ1λ2 . . . λn . . . , X)

– “failures”

4

PROGRAM BEHAVIOR

• Partial correctness

{pre} P {post}

• Total correctness

[pre] P [post]

• Safety properties

pre ⇒ �¬bad

• Liveness properties

pre ⇒ ♦ good

Need to assume fair execution

5

FAIRNESS

For shared-memory
or asynchronous i/o

P‖Q λ−−→ if P λ−−→ or Q λ−−→

• Reasonable to assume that

no process is ignored

• Weak (process) fairness

• Ensures that

stop:=true ‖while ¬stop do go

always terminates

• Satisfied by round-robin scheduler

• Can be modelled using transition traces

6

FAIRNESS

For synchronous i/o

P‖Q λ−−→ if P λ−−→ or Q λ−−→
P‖Q δ−→ if P h!v−−−→ & Q h?v−−−→
• Reasonable to assume that

– no process is ignored

– no synchronization is ignored

• Weak (synchronizing) fairness

local h in (h!0; P)‖(h?x; Q)
= local h in x:=0; (P‖Q)

• Satisfied by variant of round-robin

• Not modelled by failures. . .

7

PROBLEMS

• Different models for different paradigms

– no cross-platform analysis

– hides underlying similarities

– replication of effort

• Lack of uniformity

– some models fair, some not

– some models use state, some don’t

• Lack of robustness

– Failures aren’t fair

– Communication traces ignore state

Need a unifying framework

8

THIS TALK

Action traces

•A fair semantics for CSP

– synchronous communication

– avoids complex book-keeping

– state handled implicitly

– generalization of failures

– fully abstract

•Adaptability

– asynchronous communication

– shared memory

•A unifying framework

– state-based

– communication-based

9

CSP

• Processes

P ::= skip | x:=e | P1; P2 |
h?x | h!e |
P1‖P2 |
if G fi | do G od |
local x, h in P

•Guarded commands

G ::= (g → P) | G1�G2

•Guards

g ::= b | b ∧ h?x | b ∧ h!e

10

ACTIONS

λ ::= x=v read
| x:=v write
| h?v input
| h!v output
| δX wait

where X ⊆ {h?, h! | h ∈ Chan}

TRACES

Finite or infinite sequences of actions

α ∈ Λ∞ = Λ+ ∪ Λω

δλ = λδ = λ

STATES

Characterized implicitly by enabling relation

s λ−−→ s′

11

NOTATION

• Λ is the set of actions

•Dir is the set of directions

Dir = {h?, h! | h ∈ Chan}

• ∆ is the set of waiting actions

∆ = {δX | X ⊆fin Dir}

• δ abbreviates δ{}
• δλ abbreviates δ{λ}

•match(λ1, λ2) iff {λ1, λ2} = {h?v, h!v}

12

ENABLING

s x=v−−−−→ s iff s(x) = v

s x:=v−−−−→ s′ iff s′ = [s | x : v]

s h!v−−−→ s′ iff s(h) = ε & s′ = [s | h : v]

s h?v−−−→ s′ iff s(h) = v & s′ = [s | h : ε]

s δX−−−→ s iff ∀h? ∈ X. s(h) = ε &
∀h! ∈ X. s(h) 6= ε

13

OPERATIONAL SEMANTICS

State is implicit

• Transitions

P λ−−→ P ′

G λ−−→ G′

• Termination

P term

• Fair execution

P α−−→

14

TRANSITION RULES FOR
GUARDED COMMANDS

(h?x → P) h?v−−−→ x:=v; P

(h?x → P) δh?−−−→ (h?x → P)

G1
λ−−→ P1

G1�G2
λ−−→ P1

λ 6∈ ∆

G2
λ−−→ P2

G1�G2
λ−−→ P2

λ 6∈ ∆

G1
δX−−−→ G1 G2

δY−−−→ G2

G1�G2
δX∪Y−−−−−→ G1�G2

15

TRANSITION RULES
FOR PROCESSES

P1
λ−−→ P ′

1

P1‖P2
λ−−→ P ′

1‖P2

P2
λ−−→ P ′

2

P1‖P2
λ−−→ P1‖P ′

2

P1
λ1−−→ P ′

1 P2
λ2−−→ P ′

2

P1‖P2
δ−→ P ′

1‖P
′
2

if match(λ1, λ2)

TERMINATION

skip term

P1 term P2 term

P1‖P2 term

16

FAIR EXECUTIONS

Parallel composition

P‖Q γ−−→ iff

P α−−→ & Q β−−→ &
γ ∈ merges(α, β) &
¬match(blocks(α), blocks(β))

•merges(α, β) allows synchronization

• blocks(α) is set of directions occurring
infinitely often in ∆ steps of α

Local channels

local h in P α−−→ iff P α−−→ & h 6∈ chans(α)

• forces synchronization on h

17

DENOTATIONAL
SEMANTICS

• Define trace sets

T (P) ⊆ Λ∞

with

T (e) ⊆ Λ∗ × Vint
T (g) ⊆ Λ∗ × Vbool
T (G) ⊆ Λ∞

by structural induction

• Designed to match operational semantics

• T (P) only includes fair traces

18

SEMANTIC DEFINITIONS

T (skip) = {δ}

T (h?x) = δh?
∗{h?v x:=v | v ∈ V } ∪ {δh?

ω}

T (h!e) = {α δh!
∗ h!v, αδh!

ω | (α, v) ∈ T (e)}

T (P1‖P2) = {α ∈ merges(α1, α2) |
α1 ∈ T (P1) & α2 ∈ T (P2) &
¬match(blocks(α1), blocks(α2))}

T (local h in P) =
{α\h | α ∈ T (P) & h 6∈ chans(α)}

T (G1�G2) =
{α ∈ T (G1) ∪ T (G2) | α 6∈ ∆ω} ∪
{δX∪Y

ω | δX
ω ∈ T (G1) & δY

ω ∈ T (G2)}

19

RESULTS

•Denotational matches operational

T (P) = {α | P α−−→}

• Traces are sensitive to deadlock

if (a?x → P)�(b?y → Q) fi

has δ{a?,b?}
ω

if (true → a?x; P)�(true → b?y; Q) fi

has δa?
ω and δb?

ω

• Full abstraction

T (P) = T (Q) ⇔ ∀C.B(C[P]) = B(C[Q])

where B observes sequence of states

20

SEMANTIC LAWS

synchronous

Fairness properties

local h in (h?x; P)‖(h!v; Q)‖R
= local h in (x:=v; (P‖Q))‖R

if h 6∈ chans(R)

local h in (h?x; P)‖(Q1; Q2)
= Q1; local h in (h?x; P)‖Q2

if h 6∈ chans(Q1)

local h in (h!v; P)‖(Q1; Q2)
= Q1; local h in (h!v; P)‖Q2

if h 6∈ chans(Q1)

Not valid in unfair semantics

21

RELATED WORK

• Traditional CSP models

– used finite traces and prefix-closure

– cannot model fairness

– treat divergence as catastrophic

• Traces subsume (stable) failures

(α, R) ∈ F(P) ⇔ α(δX)ω ∈ T (P)

for some X such that ¬match(X, R)

•Older’s models

– traces + book-keeping

– different fairness notions

– introduced fairness mod X

– α is fair mod X if blocks(α) ⊆ X

22

ADAPTABILITY

Can handle other parallel paradigms
by making minor changes

• Choose appropriate set of actions Λ

• Adjust relevant semantic definitions

– parallel composition

– input/output

– local channels

In each case:

• Processes denote trace sets

• Full abstraction for safety and liveness

23

ASYNCHRONOUS
COMMUNICATION

λ ::= x=v | x:=v | h?v | h!v | δX

where X ⊆ {h? | h ∈ Chan}

T (h!e) = {α h!v | (α, v) ∈ T (e)}

T (P1‖P2) = {α ∈ merges(α1, α2) |
α1 ∈ T (P1) & α2 ∈ T (P2)}

T (local h in P) =
{α\h | α ∈ T (P) & αdh is FIFO}

•merges(α, β) without synchronization

• αdh is FIFO if every input is justified
by earlier output

24

SEMANTIC LAWS

asynchronous

Fairness properties

local h in (h?x; P)‖(h!v; Q)‖R
= local h in (x:=v; P)‖Q‖R

if h 6∈ chans(R)

local h in (h?x; P)‖(Q1; Q2)
= Q1; local h in (h?x; P)‖Q2

if h 6∈ chans(Q1)

Not valid in unfair semantics

25

SHARED MEMORY

λ ::= x=v | x:=v | 〈α〉 (α finite, sequential)

T (P1‖P2) = {α ∈ merges(α1, α2) |
α1 ∈ T (P1) & α2 ∈ T (P2)}

T (local x in P) =
{α\x | α ∈ T (P) & αdx sequential}

T (await b then a) = wait∗go ∪ waitω

wait = {〈α〉 | (α, false) ∈ A(b)}
go = {〈αβ〉 | (α, true) ∈ A(b) & β ∈ A(a)}

• αdx sequential iff every (non-initial)
read is justified by previous writes

26

COMMON THEME

• Programs denote sets of traces

– built from action set Λ

• Fully abstract for safety and liveness

• Can extract traditional semantics

• Trace sets form complete lattice

• Program constructs denote monotone
functions on trace sets

T1 ⊆ T2 ⇒ F (T1) ⊆ F (T2)

• Recursive constructs denote fixed points

– least fixed point = finite traces

– greatest fixed point = countable traces

27

UNIFICATION

Action traces can be used to model

• shared-memory

• asynchronous communication

• synchronous communication

Can extract traditional semantics

• transition traces

• failures

28

FUTURE RESEARCH

•Other fairness notions

– strong, weak / process, channel

• Partial order semantics

– “truly fair” concurrency

• Low-level traces

– pointers, stores, heaps

• Procedures

– possible worlds, parametricity

• Intensional traces

– abstract runtime

• Probabilistic traces

– “fairly true” correctness

29

REFERENCES

• Full abstraction for a shared-variable
parallel language, S. Brookes, LICS’93

• On the Kahn Principle and Fair
Networks, S. Brookes, MFPS 14 (1998)

• Communicating Sequential Processes,
C. A. R. Hoare, CACM (1978)

• A Framework for Fair Communicating
Processes, S. Older, MFPS 13 (1997)

• On the semantics of fair parallelism,
D. Park, Springer LNCS 86 (1979)

• The Theory and Practice of Concurrency,
A. W. Roscoe, Prentice-Hall (1998)

30

PARTIAL ORDER
SEMANTICS

• Process denotes set P(P) of pomsets

• Pomset (T,<)

– multiset T of actions

– partial order < on T

• A pomset determines a trace set L(T, <)

– traces built from T consistent with <

• Recovering traces:

T (P) =
⋃
{L(T, <) | (T, <) ∈ P(P)}

• Transfer Principle:

P(P1) = P(P2) ⇒ T (P1) = T (P2)

31

BUFFER PROCESSES

• buff1(in, out) =def

while true do (in?x; out !x)

• buff∗(in, out) =def

local mid in
buff1(l,mid)‖buff1(mid , r)

• buff2(in, out) =def

local mid , ack in
while true do (in?x; mid !x; ack?)

‖ while true do (mid?y; ack ! ; out !y)

32

BUFFER BEHAVIOR

• Safety: FIFO order

• Liveness: Every input is output

CAPACITY

• buff1

– synchronous: 1-place

– asynchronous: 1-place

• buff∗
– synchronous: 2-place

– asynchronous: unbounded

• buff2

– synchronous: 2-place

– asynchronous: 2-place

33

Asynchronous traces of buff1

Typical unblocked case:

in?v1

in?v2

in?v3

in?vk

out!v1

out!v2

out!v3

out!vk

-

-

-

-

........

........

�
�	

�
�	

�
�	

�
�	

where each vi ∈ V

(in?v out !v | v ∈ V)ω

34

Asynchronous traces of buff1

Typical blocked case:

in?v1

in?v2

in?v3

in?vk

δin?

δin?

out!v1

out!v2

out!v3

out!vk

-

-

-

-

........

@
@R

....

�
�	

�
�	

�
�	

�
�	

where k ≥ 0 and each vi ∈ V

(in?v out?v | v ∈ V)∗ δin?
ω

35

Asynchronous traces of buff∗

Typical unblocked case:

in?v1

in?v2

in?v3

in?vk

out!v1

out!v2

out!v3

out!vk

-

-

@
@R

@
@R

-

-

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

.....
.....

@
@R

........
........

where each vi ∈ V

any trace consistent with this

36

Asynchronous traces of buff∗

Typical blocked case:

in?v1

in?v2

in?v3

in?vk

δin?

δin?

out!v1

out!v2

out!v3

out!vk

-

-

@
@R

@
@R

-

-

@
@R

@
@R

@
@R

@
@R

@
@R

@
@R

.....
.....

@
@R

@
@R

....
where k ≥ 0 and each vi ∈ V

any interleaving consistent with this

37

Asynchronous traces of buff2

Typical unblocked case:

in?v1

in?v2

in?v3

in?v4

in?vk

out!v1

out!v2

out!v3

out!v4

out!vk

-

-

@
@R

@
@R

-

-

@
@R

@
@R

@
@R

@
@R

@
@

@R

........
@

@
@R

@
@R

@
@R

?

?

?

?

-

........
where each vi ∈ V

any trace consistent with this

38

Asynchronous traces of buff2

Typical blocked case:

in?v1

in?v2

in?v3

in?v4

in?vk

δin?

δin?

out!v1

out!v2

out!v3

out!v4

out!vk

-

-

@
@R

@
@R

-

-

@
@R

@
@R

@
@R

@
@R

@
@

@R

........
@

@
@R

@
@R

?

?

?

?

-

@
@R

.......
where k ≥ 0 and each vi ∈ V

39

Synchronous traces of buff1

Typical unblocked case:

in?v1

in?v2

in?v3

in?vk

out!v1

out!v2

out!v3

out!vk

-

-

-

-

........

........

�
�	

�
�	

�
�	

�
�	

where each vi ∈ V

(in?v out !v | v ∈ V)ω

40

Synchronous traces of buff1

Blocked on input:

in?v1

in?v2

in?v3

in?vk

δin?

δin?

out!v1

out!v2

out!v3

out!vk

-

-

-

-

........

@
@R

....

�
�	

�
�	

�
�	

�
�	

where k ≥ 0 and each vi ∈ V

(in?v out?v | v ∈ V)∗ δin?
ω

41

Synchronous traces of buff1

Blocked on output:

in?v1

in?v2

in?v3

in?vk

δout !

δout !

out!v1

out!v2

out!v3

δout !

-

-

-

-

........

?

.......

�
�	

�
�	

�
�	

@
@R

where k ≥ 0 and each vi ∈ V

(in?v out?v | v ∈ V)∗ (in?v | v ∈ V)δout !
ω

42

Synchronous traces of buff ∗

Typical unblocked case:

in?v1

in?v2

in?v3

in?v4

in?vk

out!v1

out!v2

out!v3

out!v4

out!vk

-

-

@
@R

@
@R

-

-

@
@R

@
@R

@
@R

@
@R

@
@

@R

........
@

@
@R

@
@R

@
@R

?

?

?

?

-

........
where each vi ∈ V

behaves like a 2-place buffer

43

