
A grainless semantics
for

concurrent separation logic
Stephen Brookes

CMU

Géométrie du Calcul
 GEOCAL ‘06

Shared-memory programs

Parallel composition

Conditional critical region

Local resource declaration

c1 || c2

with r when b do c

resource r in c

Traditional semantics

Program denotes a set of traces

Trace = sequence of atomic actions

Parallel composition = fair interleaving

Resource acquisition is mutually exclusive

Granularity

integer assignments

reads and writes to integer variables

reads and writes to machine words

Traditional models assume a
default level of granularity

coarse

fine

word-level

for atomic actions

Example

coarse

fine

word

x := x+1 || x := x+2

x increases by 3

x increases by 1, 2, or 3

depends on word size

Danger

A concurrent write
to a variable being used by another process ...

race condition

unpredictable results
x:=1||x:=2

message d’erreur
404

Danger

A concurrent write
to a variable being used by another process ...

race condition

unpredictable results

Status quo

Traditional models ignore race conditions
by assuming that atomic actions never overlap

Each supports compositional reasoning
for race-free programs

But they each interpret racy programs differently

Race-freedom

Partial correctness behavior of a race-free program
is independent of granularity

Should be able to abstract away from granularity

... but traditional models don’t do this!

The Dijkstra Principle

... processes should be loosely connected;

... apart from the (rare) moments of explicit
communication, processes are to be regarded as
completely independent of each other

Similarly...

The Dijkstra Principle

That is...

... should be able to abstract away from
what happens between synchronizations

The Dijkstra Principle

WARNING
Not reflected in design
of traditional models

That is...

... should be able to abstract away from
what happens between synchronizations

Traditional logic

Resource-sensitive partial correctness

Γ specifies resources ri , protection lists Xi , and invariants Ri

p, q describe unprotected variables

Static constraints guarantee race-freedom

critical variables must be protected

protected variables only allowed inside region

Owicki/Gries ’76

... based on Dijkstra’s Principle

Γ ⊢ {p} c {q}

Parallel rule

Γ ⊢ {p1} c1 {q1} Γ ⊢ {p2} c2 {q2}

Γ ⊢ {p1 ∧ p2} c1||c2 {q1 ∧ q2}

provided
free(p1,q1) ∩ writes(c2) = ∅
free(p2,q2) ∩ writes(c1) = ∅

free(c1) ∩ writes(c2) ⊆ owned(Γ)
free(c2) ∩ writes(c1) ⊆ owned(Γ)

Owicki/Gries

critical variables
are protected

Resource rules

Γ ⊢ {(p∧R)∧b} c {q∧R}

Γ, r(X):R ⊢ {p} with r when b do c {q}

Γ, r(X):R ⊢ {p}c{q}

Γ ⊢ {p∧R} resource r in c {q∧R}

Owicki/Gries

(subject to well-formedness conditions)

Validity

Γ ⊢ {p}c{q} is valid if:

Every finite computation of c
 in an environment that respects Γ,
 from p∧R1∧...∧Rn,
respects Γ, is race-free,
and ends in q∧R1∧...∧Rn

(made formal using a traditional model)

Definition

Soundness

Owicki-Gries logic is sound for pointer-less programs

Every provable formula is valid

Theorem

Can use any of the
traditional semantic models...

Compositionality

Let c1 and c2 be code fragments
that denote the same trace set

Let C[-] be a program context

If Γ ⊢ {p} C[c1] {q} is valid, so is Γ ⊢ {p} C[c2]
{q}

same behavior, in all contexts
⇒

same traces

 Traditional traces support
 compositional reasoning

Theorem

Semantic problems

make too many distinctions

do not reflect Dijkstra’s principle

suffer from combinatorial explosion

[[x:=x+1; x:=x+1]] ≠ [[x:=x+2]]

[[x:=1; y:=2]] ≠ [[y:=2; x:=1]]

These models...

... contain unnecessary traces

... involve unnecessary interleavings

Traditional models
don’t help much!

Logic problems

Owicki-Gries logic is not sound for pointer programs

Static constraints cannot prevent pointer races,
because of aliasing

[x]:=1 || [y]:=2
races

if x and y are aliases

concurrent update

dispose x || dispose y
races

if x and y are aliases

dangling pointer

Traditional logic
doesn’t generalize...

Pointer programs

Lookup

Update

Allocation

Disposal

i := [e]

[e] := e’

i := cons (e1,..., en)

dispose e

Reasoning about pointers

Hoare-style rules for sequential pointer-programs

State = store + heap

Pre- and post-conditions drawn from separation logic

emp : heap is empty

e ↦ e’ : singleton heap

p1✶p 2 : heap can be split so that

Reynolds ’02

p 1 and p 2 hold separately

A proposal

Combine Owicki-Gries with separation logic

Let resource invariants be separation logic formulas

Use ✶ strategically to prevent aliasing

O’Hearn ’02

an apparently simple idea
with deep consequences

Parallel rule

Γ ⊢ {p1} c1 {q1} Γ ⊢ {p2} c2 {q2}

Γ ⊢ {p1✶p2} c1||c2 {q1✶q2}

provided
free(p1,q1) ∩ writes(c2) = ∅
free(p2,q2) ∩ writes(c1) = ∅

free(c1) ∩ writes(c2) ⊆ owned(Γ)
free(c2) ∩ writes(c1) ⊆ owned(Γ)

O’Hearn ’02

Parallel rule

Γ ⊢ {p1} c1 {q1} Γ ⊢ {p2} c2 {q2}

Γ ⊢ {p1✶p2} c1||c2 {q1✶q2}

provided
free(p1,q1) ∩ writes(c2) = ∅
free(p2,q2) ∩ writes(c1) = ∅

free(c1) ∩ writes(c2) ⊆ owned(Γ)
free(c2) ∩ writes(c1) ⊆ owned(Γ)

O’Hearn ’02

✶ for ∧

Parallel rule

Γ ⊢ {p1} c1 {q1} Γ ⊢ {p2} c2 {q2}

Γ ⊢ {p1✶p2} c1||c2 {q1✶q2}

provided
free(p1,q1) ∩ writes(c2) = ∅
free(p2,q2) ∩ writes(c1) = ∅

free(c1) ∩ writes(c2) ⊆ owned(Γ)
free(c2) ∩ writes(c1) ⊆ owned(Γ)

O’Hearn ’02

same as before

✶ for ∧

Resource rules

Γ ⊢ {(p✶R)∧b} c {q✶R}

Γ, r(X):R ⊢ {p} with r when b do c {q}

Γ, r(X):R ⊢ {p} c {q}

Γ ⊢ {p✶R} resource r in c {q✶R}

O’Hearn ’02

Resource rules

Γ ⊢ {(p✶R)∧b} c {q✶R}

Γ, r(X):R ⊢ {p} with r when b do c {q}

Γ, r(X):R ⊢ {p} c {q}

Γ ⊢ {p✶R} resource r in c {q✶R}

O’Hearn ’02

✶ for ∧

Resource rules

Γ ⊢ {(p✶R)∧b} c {q✶R}

Γ, r(X):R ⊢ {p} with r when b do c {q}

Γ, r(X):R ⊢ {p} c {q}

Γ ⊢ {p✶R} resource r in c {q✶R}

O’Hearn ’02

✶ for ∧

✶ for ∧

Validity

Γ ⊢ {p}c{q} is valid if:

Every finite computation of c
 in an environment that respects Γ,
 from p✶R1✶...✶Rn,
respects Γ, is race-free,
and ends in q✶R1✶...✶Rn

An intuitive definition,
in need of formalization...

Ownership transfer

The logic allows proofs in which ownership
of a pointer transfers implicitly between processes
and resources, based on resource invariants

for each available resource, invariant holds in a sub-heap

when acquiring a resource, process assumes invariant,
claims ownership of the protected variables + sub-heap

when releasing a resource, process guarantees that
invariant holds in some sub-heap, cedes ownership

Example

PUT :: with buf when full=0 do (z := x; full := 1)
GET :: with buf when full=1 do (y := z; full := 0)

Let Γ = buf(z,full): (full=1 ∧ z ↦_)∨(full=0 ∧ emp)

Γ ⊢ {x ↦_} PUT {emp}

Γ ⊢ {emp} GET {y ↦_}

Γ ⊢ {x ↦_} PUT || (GET; dispose y) {emp}

1-place shared buffer

ownership
passes

from left to right

Example, take 2

Γ’ = buf(z,full): (full=1 ∧ emp)∨(full=0 ∧ emp)

Γ’ ⊢ {x ↦_} PUT {x ↦_}
Γ’ ⊢ {emp} GET {emp}

Γ’ ⊢ {x ↦_} (PUT; dispose x) || GET {emp}

1-place shared buffer

no transfer
of ownership

Using a different invariant...

Example, take 3 1-place shared buffer

dangling
pointer

And we cannot prove a racy program...

Γ ⊢ {x ↦_} (PUT; dispose x) || (GET; dispose y) {...}
not provable, for any Γ

ownership cannot go both ways!

Soundness?

Far from obvious! Ownership is a tricky concept...
cannot rely on Owicki/Gries

resource invariants must be restricted (Reynolds ’02)

Need a semantics
must account for ownership transfer

ideally, should be grainless

Traditional models won’t work...

A new semantics

No interference except on synchronization

Treats race condition as disaster

Independent of granularity

Footstep traces

based on Dijkstra’s principle

- built into structure of traces

- built into definition of interleaving

- abstracts away from state changes between synchronizations

Advantages

Succinctness

Simplicity

Soundness

big steps, fewer traces, fewer interleavings

supports “sequential” reasoning
for synchronization-free code

can be used to prove soundness of
concurrent separation logic

States

St = Var ⇀ Vint

Var = Ide ⊎ Loc

Loc ⊆ Vint

Definition

A state specifies values for identifiers and heap cells

Let σ range over the set of states...

states

variables

heap cells

Footsteps

(σ, σ’)X

A footstep (σ, σ’)X describes the footprint
of a sequence of state changes:

change σ to σ’,
while only reading the variables in X

σ σ’...

Resource actions

try(r) unsuccessful attempt

acq(r) acquisition

rel(r) release

Used to model synchronization

Traces

Built from catenable actions

Consecutive footsteps get stumbled together

Interference only on synchronization

(σ0, σ0’)X0 acq(r) (σ1, σ1’)X1 rel(r) (σ2, σ2’)X2 ...

([x:0], [x:1])∅ ; ([x:1,y:0], [x:1,y:1]){x} = ([x:0,y:0], [x:1,y:1])∅

([x:0], [x:1])∅ ≍ ([x:1,y:0], [x:1,y:1]){x}

loosely connected
sequences of actions

([v:0], [])∅ ; ([v:0], [])∅ = ([v:0], abort)

Semantics

A command denotes a set of traces

Defined by structural induction on c

[[c]] ⊆ Tr

[[c1;c2]] = { α1;α2 | α1 ∈ [[c1]], α2 ∈ [[c2]], α1≍α2 }

{ α1||α2 | α1 ∈ [[c1]], α2 ∈ [[c2]] }[[c1||c2]] = ∪
resource-sensitive, race-detecting,

fair interleaving

Examples

[[x:=1; y:=2]] = [[y:=2; x:=1]]

= { ([x:v,y:v’], [x:1,y:2])∅ | v, v’ ∈ Vint }

[[x:=x+1 || x:=x+2]]
= { ([x:v], abort) | v ∈ Vint }

[[resource r in
 with r do x:=x+1 || with r do x:=x+2]]

= { ([x:v], [x:v+3])∅ | v ∈ Vint }

Theorem

Every sequential program is resource-free

Footstep traces
allow sequential reasoning
for resource-free programs

Every trace of a resource-free program
is a single footstep

c is resource-free if res(c)=∅ (no free resource names)

Race-free

no trace leads
to an erroriff

c is race-free from σ

∀α∈ [[c]]. ¬ (σ ⇒ abort)
α

Definition

Example

full := 0; resource buf in
 (x := cons(-); PUT; dispose x) || GET

([full:_, x:_, y:_, z:_], [full:0, x:v, y:v, z:v])∅

race-freehas footstep traces

Example

full := 0;
resource buf in
 (x := cons(-); PUT) || (GET; dispose y)

... has the same trace set!
race-free

ownership
transfer

(not true in traditional models)

Explosion?

full := 0;
resource buf in
 (x := cons(-); PUT)N || (GET; dispose y)N

... has the same trace set!

independent
of N

N puts,
N gets

N2
2N

N!

(not true in traditional models)

Racy example

full := 0; x := cons(-);
resource buf in
 (PUT; dispose x) || (GET; dispose y)

([full:_, x:_, y:_, z:_], abort)
race condition

modelled correctly

has traces

Soundness

Every provable formula of concurrent separation
logic is valid, provided resource invariants are precise

Footstep traces permit rigorous treatment of
ownership transfer

Show that each inference rule preserves validity

Brookes ’04

- proof reveals crucial role of precision

Every provable program is race-free

Theorem

Compositionality

Let c1 and c2 be code fragments
with the same footstep traces

Let C[-] be a program context

If Γ⊢{p}C[c1]{q} is valid, so is Γ⊢{p}C[c2]{q}

same behavior, in all contexts
⇒

same traces

 Footstep traces support
 compositional reasoning for
 parallel pointer-programsTheorem

Advantages

makes fewer distinctions

embodies Dijkstra’s principle

ameliorates the combinatorial explosion

[[x:=x+1; x:=x+1]] = [[x:=x+2]]

[[x:=1; y:=2]] = [[y:=2; x:=1]]

Footstep trace semantics...

... only loosely connected traces

... fewer interleavings

significant help for
compositional reasoning!

Conclusions

Semantics abstracts away from inessential details
between synchronizations

Logic provides safe reasoning
about concurrency + pointers

Ideas should be more widely applicable

- facilitates reasoning about loosely connected processes

- every provable program is race-free

