Communicating
Parallel Processes

Stephen Brookes

Abstract

Tony Hoare’s 1978 paper introducing the programming language Communicating
Sequential Processes is now a classic. CSP treated input and output as fundamen-
tal programming primitives, and included a simple form of parallel composition
based on synchronized communication. This paper provides an excellent example
of Tony’s clarity of vision and intuition. The notion of processes is easy to grasp
intuitively, provides a natural abstraction of the way many parallel systems behave,
and has an abundance of applications. Ideas from CSP have influenced the design
of more recent programming languages such as occam and Ada. Investigations of
the semantic foundations of CSP and its successors and derivatives have flourished,
bringing forth a variety of mathematical models, each tailored to focus on a par-
ticular kind of program behavior. In this paper we re-examine the rationale for
some of the original language design decisions, equipped with the benefit of hind-
sight and the accumulation of two decades of research into programming language
semantics. We propose an “idealized” version of CSP whose syntax generalizes
the original language along familiar lines but whose semantics is based on asyn-
chronous communication and fair parallel execution, in direct contrast with the
original language and its main successors. This language permits nested and recur-
sive uses of parallelism, so it is more appropriate for us to refer to Communicating
Parallel Processes. We outline a simple semantics for this language and compare
its structure with the most prominent models of the synchronous language. Our
semantic framework is equally well suited to modelling asynchronous processes,
shared-variable programs, and Kahn-style dataflow networks, so that we achieve a
unification of paradigms.

1 Introduction

In a now classic article, published in the CACM in 1978, Tony Hoare proposed
a parallel programming language known as CSP, short for Communicating Se-
quential Processes [17]. This paper introduced a notion of process, intended as a
mathematical abstraction of the interactions between a computing system and its
environment. Building on the sequential control primitives of Dijkstra’s language
of guarded commands [12], CSP treated input and output as fundamental pro-
gramming primitives, and introduced a form of synchronized parallel composition:
a process reaching an input (respectively, output) command waits until the cor-
responding process reaches an output (respectively, input) command, whereupon
they can communicate by handshake, one process sending a data value and the
other receiving it. The paper provides an excellent example of Tony’s clarity of
vision and intuition, and included a wide-ranging collection of parallel program-
ming problems and their solution in CSP. Ideas from CSP have also influenced the
design of more recent parallel programming languages such as occam [21], Ada, and
Concurrent ML (CML) [33].

The original paper contains an informal sketch of a semantics for CSP, couched
in abstract terms but with plenty of operational intuition. The paper discusses a

number of important pragmatic issues and provides a rationale for certain key lan-
guage design decisions and a critique of several alternatives. Subsequently Hoare
and his students and colleagues, including Bill Roscoe and myself, worked on for-
malizing the intuitive semantics of CSP. Many variants of the original language
have been introduced, and much of the work has been concentrated on an abstract
version of CSP (sometimes known as TCSP, or Theoretical CSP [2]) which sup-
presses the imperative aspects of the language, and various generalizations such as
Timed CSP [32]. Somewhat confusingly the name CSP tends to be retained across
many of these successor or derivative languages, even though the bare syntax of
each differs greatly from that of the original language and (more importantly) the
semantic models differ radically.

In this paper we revisit the rationale for some of the original language de-
sign decisions, equipped with the benefit of hindsight and the accumulation of two
decades of research into programming language semantics'. We propose an ide-
alized alternative version of CSP based on asynchronous communication and fair
parallel execution, in direct contrast with the original language and its main suc-
cessors [8]. Like many of CSP’s existing variants we also permit nested parallel
composition and we allow the use of parallel composition inside the body of a re-
cursive procedure, so that our language deserves the title Communicating Parallel
Processes.

We describe a simple semantic model for this language and we compare its
structure and features with those of the most prominent models of the synchronous
language. A virtue of our semantics is that it brings out the underlying essential
similarities between three erstwhile separate paradigms of parallel programming:
(asynchronous) communicating processes, shared-variable parallelism, and Kahn-
style dataflow networks. This kind of unification of paradigms is an achievement
that fits well within the spirit of Tony Hoare’s research principles.

2 The design of CSP

As originally specified CSP augmented Dijkstra’s language of guarded commands
with primitives for input and output, and a form of parallel composition of named
sequential processes.

In a parallel construct of the form [my::Py]| - - ||m,::Py] the processes P; (i =
1,...,n) were built from sequential programming constructs together with input
and output; the process names 7; are assumed to be distinct, and the processes
must be disjoint, in that no variable subject to change by one process is used by
any other process. This means that synchronized input-output is the only way for
processes to influence each other. An input command ;?z in process P; represents
a request for P; to send an update value for the variable z; an output command
m;le in Pj represents a request for P; to receive the value of expression e. If P; and
P; reach such a “matching pair” of communications they may synchronize, with

1Perhaps it is worth remarking that it is now 21 years since the publication of the CACM
paper on Communicating Sequential Processes, so that CSP may be said to have “come of age”.

the effect of assigning the value of e to x, so that this kind of handshake can be
viewed as a “distributed assignment”.

Input commands were also permitted in the guards g; of a guarded conditional
command

if (g1 — P)0---0O(gn — Pp) fi
or a guarded loop
do (91—>P1)D"'D(gn—>Pn) Od,

and in general a guard may be built from a purely boolean component (a boolean
expression b) and an input command?. A guard of form b A m;?z in the body
of process m; is true in any state satisfying b when the process named ; is at
a “matching” output of form m;le. Such a guard fails if no matching output is
available. An input-guarded conditional must wait if necessary until matching
output appears. An input-guarded do-loop terminates when all of the processes
named as sources in its input guards have terminated. The latter requirement,
known as the distributed termination convention, has proven rather controversial,
awkward to model, difficult to implement, and hard to reason about. Hoare’s
misgivings about this feature were clearly stated in the original paper. This seems
to be one of the early language design decisions that has not survived the test of
time, and is not usually regarded as part of the “essence” of CSP.

The form of parallelism provided in CSP is in marked contrast to the kind of
shared memory parallelism characteristic of Dijkstra’s language of cooperating se-
quential processes [11], although the choice of a similar name (together with explicit
acknowledgement by Hoare) emphasizes the common intellectual roots of these two
paradigms. Hoare was also aware of the then recent paper of Kahn, outlining an
extremely simple denotational model of deterministic asynchronous communicating
processes [22]. In Kahn’s semantics a deterministic process computes a continuous
function from input streams to output streams, so that the Kahn paradigm seems
inherently “functional” in contrast to the imperative CSP style of process. Given
the very different intuitive process models inherent in these three paradigms it is
not surprising that over the years the semantic foundations of these paradigms have
grown apart, obscuring their common features and underlying similarities. We will
return to this point later.

As already mentioned, Hoare’s paper included an extensive discussion section
which outlined some of the decisions made in his language design and suggested the
possible advantages or disadvantages of various alternative choices. We will now
revisit some of the main issues, interspersing points from Hoare’s critique with our
own commentary. The reader should of course remember that our comments are
being made with the benefit of hindsight.

2Some versions of CSP also permit output guards in such contexts, but this is a matter of
some contention and is not important for our purposes.

2.1 Communication vs. assignment

Hoare’s use of a special syntax for communication emphasizes his apparent view
that communication and assignment are independent and orthogonal concepts: as-
signment was “familiar and well understood”, input and output “not nearly so well
understood” [17]. A CSP-style notation for input and output is now widespread,
with similar syntax occurring for instance in occam and Ada as well as a host of
other programming languages.

The separation of communication from assignment has also shaped the devel-
opment of semantic foundations for CSP. Since the original language was impera-
tive, state change is an important aspect of program behavior, and we normally use
the term state to refer to the current values of a process’s local variables; but a pro-
cess’s behavior will also depend on what communication possibilities it offers, and
on what matching communications are presented by its environment. Hoare-style
semantics typically contains a separate component representing information about
environmental interactions, such as communication traces and refusal sets, as we
will see in more detail shortly. Our point here is that these semantic models treat
(internal) “state” and (external) “environment” as separate components, rather
than regarding local variables and communication potential together as comprising
the “overall state” of a process. We will see later that it can be advantageous, from
the semantic point of view, to blend communication channels into the “state” and
regard input and output as (special kinds of) imperative operations that cause a
state change, thus blurring the distinction between assignment and communication.

2.2 Nested parallelism

Hoare realized that the sequential restriction on the processes of a parallel compo-
sition was rather severe. Limiting the P; to the sequential subset of the language
means that one cannot “nest” parallel constructs, so that one needs a whole family
of m-ary forms of parallel composition and cannot make do with an associative
binary parallel composition operator. This is especially annoying to semanticists,
who generally prefer dealing with a single binary construct to coping with an entire
family of closely related constructs which cannot be derived from the binary case.

As another consequence of the sequentiality restriction the number of processes
in a program is statically determined by the program’s syntactic structure. This
may prove advantageous when trying to schedule execution of a particular pro-
gram, but prevents the language’s use to describe dynamic or recursively evolving
networks.

Hoare also realized that explicit naming of the processes in a parallel com-
position creates pragmatic difficulties, for instance with library programs. Any
program intended to be used as part of a library must name explicitly all processes
with which it might ever need to communicate, but obviously these process names
are not typically available.

Even if one were to permit nested uses of parallel composition the process-
naming convention would cause difficulties with scoping and associativity. Consider

for example the program
[my::[o1::Pry || 02::Pra] || moiiPy).

How might P, communicate with the process named 71?7 Should P, be permitted
to refer to process names o7 and o directly, or perhaps to employ compound names
m1.01 and w1.027 The latter seems more logical, since we can interpret a compound
name like 7.0 to mean “the sub-process named o of the process named 7”. But
even if we adopt the use of compound names it is difficult to formulate a general
associativity law: the process names get in the way. The kind of name calculus
inherent in such an approach seems clumsy and unappealing, and the awkwardness
becomes more painful still when we generalize to n processes.

Considerations like these suggest a de-coupling of the naming mechanism from
the parallel construct, as proposed in Plotkin’s operational semantics for CSP [31].
A more flexible mechanism, based on named channels, was adopted subsequently,
notably in occam and TCSP. These and other derivatives of CSP have typically
included binary parallel operators and a separate scoping construct; the hiding
operator in TCSP serves to localize certain communications between processes,
and plays a role analogous to a local declaration in limiting the visibility of actions
and names construed to be local.

2.3 Channel names vs. process names

Aware of the “library problem” outlined above, Hoare cited port naming (or named
channels) as an attractive and more general alternative to process naming. The
rigid use of process names in the manner of the original paper is tantamount to
assuming a single port or channel connecting each pair of processes. Most sub-
sequent work in the CSP framework assumes channel-based communication: an
output command hle represents an attempt to output the value of e on channel h;
and input command h?x represents an attempt to receive a new value for variable
x off channel h; when two processes reach a matching pair of communications (on
a particular channel) they can synchronize and perform a handshake.

Although the move to named channels rather than named processes is a very
natural generalization it raises further pragmatic and semantic issues. The most
fundamental questions concern the nature and usage of a channel. Intuitively, we
regard a channel as an abstraction of a communication path between processes.
Consequently a channel is naturally to be regarded as shared between the pro-
cesses which use it. CSP insists that processes do not share variables, but it would
obviously not be sensible to insist that processes do not share channels. (There
is also the question of whether to allow more than two processes to share a single
channel.) In any case we will see that there are good semantic reasons to blur the
distinction between variables and channels, and it will turn out to be straightfor-
ward to give an account of a language permitting both variables and channels to
be shared among processes.

2.4 Synchrony vs. asynchrony

CSP assumed a synchronous implementation of communication, so that an input
or output command in one process is delayed until the other process is ready with
corresponding output or input, such delay being “invisible” to the delayed process.
All traditional models of CSP reflect this assumption, and abstract away from any
delay implied by this mechanism, so that one typically deals with “events” whose
occurrence is assumed to be instantaneous.

As Hoare commented, it would have been equally reasonable to adopt and
assume an asynchronous notion of communication in which a process attempting
output should always proceed and a process wanting input should only wait if a
matching output is not yet available. Indeed this is the form of communication
assumed in Kahn’s dataflow semantics, and Kahn even used a CSP-like notation
for input and output.

An obvious way to implement asynchronous communicating processes is to
employ buffers to hold data waiting to be consumed. Hoare argued against adopting
asynchrony as the underlying mechanism, partly because he regarded it as “less
realistic to implement”, and partly because buffering can “readily be specified”
using the synchronous primitives. With characteristic honesty he also admitted
that the second of these reasons is uncompelling, since one could equally well
argue that a synchronization can be specified readily with a pair of asynchronous
operations. In retrospect the argument against implementability of asynchronous
communication is also weak, and an argument at least as forceful could have been
made that instantaneous synchronized handshakes are hard to implement. Perhaps
it is best to agree that both synchrony and asynchrony are implementable, with
manageable cost and overhead. Modern communication-based parallel languages
such as Concurrent ML (CML) include asynchronous primitives as basic constructs
and implement their synchronous cousins on top of them [33].

Given these philosophical and pragmatic considerations one might be led to
believe that the decision to assume synchrony or asynchrony has little direct pay-
off. Programmers wishing to work in the “other” setting can always do so with a
little extra effort, either inserting buffer processes to simulate asynchrony in the
synchronous language, or using request-acknowledge protocols to enforce synchro-
nization on top of an asynchronous implementation. Yet the decision turns out to
have deep ramifications, especially for semantic foundations. A major case in point
concerns fairness.

2.5 Fairness

It has long been recognized that fairness is important when reasoning about par-
allel programs, since the assumption that parallel processes are executed without
unreasonable delay is vital in establishing many liveness properties of networks [29].
A fairness assumption allows us to abstract away from imponderable details of pro-
cess scheduling, to prove program properties that can safely be asserted to hold in
any “reasonable” implementation.

Around the time of Hoare’s paper fairness seemed to be semantically awkward,
because of the apparent difficulty of reconciling fairness with powerdomains, which
were currently being used by Hennessy and Plotkin for modelling non-determinism
and concurrency [16]. Park’s 1979 paper on the semantics of fair parallelism (albeit
for shared-variable programs) was not yet in print. In the prevailing climate of
1978 fairness may have seemed to be more trouble to model than it was worth. For
example, the history tree semantics of CSP [15], couched in terms of powerdomains,
did not attempt to model fair execution.

Moreover the concept of fairness is not so simple to formalize. The informal
description of fairness given above, which seems to be consistent with Hoare’s
intended usage, is not precise enough. Many alternative formalizations of fairness
notions have since been proposed?. For our purposes it suffices to focus on strong
and weak fairness. A scheduler is said to be strongly fair if it guarantees that
every process that becomes “enabled” infinitely often will eventually be scheduled;
a scheduler is weakly fair if every process that becomes persistently enabled will
eventually be scheduled. In other words, weak fairness means that continuously
enabled processes get scheduled, and strong fairness means that continually enabled
processes get scheduled.

The following example is adapted from Hoare’s original paper, presented here
in a slightly more modern notation. We also include the key points made in Hoare’s
analysis of the example, although we will draw rather different conclusions. Hoare
made no explicit distinction between weak and strong forms of fairness.

Assume that a represents an integer-carrying channel, and that go and n are,
respectively, a boolean variable and an integer variable. Consider the program

al0 || n:=0; go:=true;
do
(go N a?x — go:=false)
O (go —ni=n-+1)
od

The first process wants to output on channel a. The second process initializes its
variables and enters a guarded loop, using go as a flag to cause termination, which
can only occur if the first guard gets selected.

Hoare says that it would be unfair to keep executing the second alternative of
the do-loop, since this would keep ignoring the potential for synchronized commu-
nication between the two processes, which could have been performed on an infinite
number of occasions. Since synchronization is only enabled when both processes
are ready, such communication is only intermittently possible during such an exe-
cution, continually enabled but not continuously enabled, infinitely often but not
forever. An execution which keeps choosing the second guard and incrementing
n is thus not strongly fair, which is presumably what Hoare meant by “unfair”.
(After all, such an execution is weakly fair.) If we assume that the scheduler is
strongly fair the above program is guaranteed to terminate, but the final value of

3A panoramic survey of a plethora of fairness definitions is provided in Nissim Francez’s
book [14]. It is doubtful if most of these truly constitute reasonable abstractions.

n may be any non-negative integer; if we assume a weakly fair scheduler the ad-
ditional possibility of non-termination arises. In both cases the program exhibits
unbounded non-determinism, since the value of n is unbounded. At the time of
Hoare’s paper the treatment of unbounded non-determinism in the powerdomain
setting seemed technically challenging.

Hoare raised the question: Should a programming language definition specify
that an implementation must be (strongly) fair? In answer, citing unbounded non-
determinism as the main reason, he was “fairly* sure that the answer is NO”. It
is certainly arguable that strong fairness is not a realistic abstraction: a scheduler
can only achieve strong fairness by maintaining book-keeping information, perhaps
using a priority queue, concerning the set of currently enabled processes; it is not
reasonable to assume that this extensive and expensive work is going on in the
background whenever we run a parallel program. I would therefore agree with
Hoare’s dismissal of strong fairness, given that Hoare seems to have used “fairness’
to refer to the strong notion. However these criticisms and defects are not also
relevant for weak fairness.

Weak fairness is a much more reasonable abstraction from realistic schedulers:
any scheduler based on a simple strategy such as round-robin will be weakly fair.
If we assume only that processes are scheduled in a weakly fair manner we will be
able to prove program correctness properties that hold in any reasonable imple-
mentation. The problems caused by modelling unbounded non-determinism can be
handled appropriately with proper choice of semantic model, as shown initially by
Park in 1979 and in later work of other researchers. There is, therefore, a strong
case to be made for building a semantic framework for CSP based on weakly fair
parallel composition.

It is also worth noting that Hoare went on to suggest that “an efficient im-
plementation should try to be reasonably fair” and should ensure that “an output
command is not delayed unreasonably often after it first becomes executable”. Per-
haps, looking back, this can be read as an implicit nod in the direction of weak
fairness, if we assume that Hoare intended “reasonably fair” to mean “weakly fair”.

3 The models of CSP

Following the initial CSP paper, with its appealingly simple notion of process but
only informal discussion of semantic issues, a veritable industry grew up, largely
based at the Programming Research Group under Tony Hoare’s supervision, with
the aim of developing semantic foundations for communicating processes. We will
now summarize some of the semantic design issues that arose in those investigations,
and which led to the formulation of TCSP, a simple traces model [19], the failures
semantics [2], and later to the more refined failures+divergences semantics [3, 20].
Many of the foundational details were developed in the D.Phil. theses of Bill Roscoe
and myself [35, 1]. Alternative models have also been developed, notably [27]. We
supply only a truncated and grossly over-simplified picture; the reader is referred
to Roscoe’s book for a more systematic account [36].

4The pun was presumably intended.

10

In providing a formal semantics it is desirable to work with a streamlined or
stripped-down programming language with a minimum of constructs, so that fewer
semantic clauses need be specified. Correspondingly these semantic investigations
began with an abstract channel-based version of CSP, so that parallel composi-
tion could be treated as a binary associative operator rather than requiring n-ary
parallel operators for all n > 0. (Actually TCSP included special notation for a
“synchronous” parallel operator, an “asynchronous” or interleaving parallel oper-
ator, as well as a general “mixed” alphabetized form.) Input, output, and local
actions such as assignment were regarded as events. Instead of local variable (and
local channel) declarations a la Algol a similar purpose was served by the hiding
operator. For example in the TCSP process

[(a?x;blx) || al0]\a

channel a is hidden, causing communication on this channel to occur “autonomously”;
this process is equivalent to x:=0; b!0.

Hoare’s paper stressed the conceptual distinction between the well known as-
signment operation, which changes the “internal state” of a machine, and the (“less
well understood”) communication primitives, which affect the “external environ-
ment” of a machine. Correspondingly, traditional semantic models of CSP have
been set up to reflect this distinction, and keep “state” (the values of local vari-
ables) separate from “environment” (communication on external channels). Our
discussion is hampered by the fact that many of these models ignore imperative
features and that TCSP is usually presented as a process algebra over an “alpha-
bet” of abstract events. In our presentation we will put the state back in, so as to
facilitate comparison with the original language.

3.1 Communication traces

An early semantic model for CSP [19] was based on communication traces, which
describe the sequences of communications a process can perform in a finite amount
of time if placed in an environment that offers a sequence of matching actions. Such
traces represent partial histories of interaction up to some finite stage of execution,
so that the trace set of a process is naturally non-empty and prefix-closed. This
model has the virtue of extreme mathematical simplicity, but is too abstract for
many purposes, because it abstracts away from deadlock. For example the processes

P =if (true — a?z)0(true — b7x) fi
and
Q = if (a?z — skip)O(b?x — skip) fi

have identical trace sets, but (P||al0)\a can deadlock and (Q]/a!0)\a cannot.

11

3.2 Failures

The desire to interpret deadlock properly led to the failures semantics of TCSP, in
which a process denotes a set of failures, closed under certain natural conditions [2].
A failure has the form (s, o, X, s’), where s and s’ are states describing the values
of the variables used by the process, « is a communication trace as above and X is
a refusal, a set of events that the process can fail to accept. A process P exhibits
such a failure if it is possible for P to reach deadlock in state s’, when executed
from state s in an environment that permits the sequence o and then wants to
perform any event from X. Such a deadlock is caused by the process “refusing”
the set X, which prevents further communication because the environment’s next
step must correspond to a member of X.

The failures model distinguishes between the above processes P and) appro-
priately: P can (initially) refuse communication on a, but @ cannot. Technically
this difference manifests itself in the existence of failures such as (s, ¢, {a?,al},s)
for P but not for (). Failure semantics can be defined denotationally, yielding a
compositional model of TCSP tailored to reasoning about communication traces
and deadlock. However, there is a further behavioral phenomenon not properly
handled using failures: divergence.

3.3 Failures + divergences

A process is said to diverge if it can perform an infinite sequence of “internal”
actions. Such a potential may be regarded as bad, because it could prevent the
process from responding (either by accepting or refusing a communication offered
by the environment) in a finite amount of time. In any case it is natural to ask
what failures should be taken to represent the behavior of a diverging program
such as

[do true — a?z od || do true — a!l0 od]\a

Obviously no visible communication ever occurs here, but equally well the process’s
environment will never discover in a finite time whether a matching communication
might become available, so no refusals will occur either. Simply put, there is no
way to represent this kind of behavior inside the failures framework.

A slightly more complicated example raises a further issue with divergence.
What if a program may either diverge or do something visible by communicating?
Consider for instance the following program:

[do (a?x — skip) O (in?y — outly) od || do (true — a!0) od]\a

This program has executions in which it diverges, forever assigning 0 to x; it also
has the potential to keep behaving like a 1-place buffer between channels in and
out. The question is: to what extent should the potential for divergence influence
our view of this program?

An analogous issue arises when modelling non-deterministic sequential pro-
grams, for instance in Dijkstra’s language of guarded commands. There are three
obvious alternatives in the sequential setting:

12

e ignore non-termination
e insist on termination

e model non-termination and termination separately

In fact three distinct powerdomains have become associated with these three alter-
natives: respectively, the Hoare powerdomain — so called because of its connection
with partial correctness and hence with Hoare logic®; the Smyth powerdomain [39],
reflecting total correctness; and the Plotkin powerdomain [30], providing a more
general account that deals properly with non-termination as a legitimate form of
behavior.

For CSP semantics concerns other than termination per se are vital; we want
to be able to reason about communication sequences and deadlock. It is obviously
inappropriate to ignore non-termination completely; indeed if we did this we would
run into technical difficulties with the failures approach, since a divergent process
would have an empty set of failures. The choice made in the early development of
CSP models was to argue that even potential divergence is “catastrophic”, since
processes really ought to be designed so as to respond in a finite amount of time
to their surrounding environment. We will see later that the third alternative is
equally tenable.

The first model to provide a proper account of divergence, modulo the catas-
trophic assumption, is now known as failures-divergences semantics [3]. A process
is modelled by a set of failures as above, together with a set of divergence traces;
a divergence trace (s,) for process P means that, when P is run from start state
s in an environment that allows the sequence of communications «, it is possible
for P to begin to diverge. In line with the desire to treat divergence as a disaster,
the model imposed certain closure conditions on the failures and divergences of a
process, so that all potentially divergent processes are “equally bad” and become
indistinguishable. Note, for instance, that the two programs discussed above, one
simply diverging and the other only potentially diverging, are ascribed identical
meanings in this model.

Despite the historical adoption of the Smyth-style approach to divergence and
the persistence of this philosophy in the CSP school of research it is natural to
ask what might have been done differently if we had instead taken a Plotkin-style
view of divergence. Indeed Roscoe’s book does discuss a more refined treatment
of divergence, based on joint work with Albert Meyer and Lalita Jategaonkar, and
closely related to work of Valmari [41]. We will see shortly that a simpler approach
also works, provided we make a few alterations in the surrounding semantic fabric.

3.4 Assessment

All of the early models of CSP shared a common philosophy: aiming for mathe-
matical simplicity, focussing on a specific combination of program properties, and
dealing in terms of “partial” computations. The most sophisticated of these, the

5As far as I know the attribution of this powerdomain to Hoare is by acclamation; the “Hoare
powerdomain” did not appear first in a paper of Hoare.

13

failures-divergences model, viewed divergence as catastrophic. The success of this
semantic framework is quite striking. CSP has been applied in a huge variety of
settings, ranging from standard chestnuts (such as Dining Philosophers) to systolic
arrays [20] and security protocols [23]. Yet it is worth examining what developments
might have occurred if we had begun by adopting a different set of philosophical
principles. We should also note that as a consequence of the way the traditional
framework evolved it is a rather difficult to incorporate some of the features missing
in the original CSP.

In particular none of the now traditional semantic models of CSP has em-
braced fairness (either weak or strong) as a foundational assumption. As Roscoe
describes, in order to cope with fairness in the failures-divergences framework one
must incorporate infinite communication sequences as well as finite. This seem-
ingly natural step is actually far from straightforward [36]. The problems that
arise, and the book-keeping intricacies with which it is necessary to dress up the
semantic details, are set out in Sue Older’s Ph.D. thesis [26]. The conclusion is
that the synchronous nature of communication in CSP makes it extremely difficult
to deal tractably with fairness, since “enabledness” of a process depends on the
ability of other processes to agree to a matching communication and this forces us
to push around (in the semantic clauses) information about the sets of potential
communications at all stages of an execution.

4 ldealized CSP

We will now introduce an “idealized” version of CSP based on asynchronous com-
munication and (weakly) fair parallel composition [8]. The language can also be
viewed as generalizing Reynolds’ Idealized Algol by adding input and output prim-
itives and the ability to spawn parallel processes. Our generalization of Hoare’s
language allows nested and recursive uses of parallelism, and we use named chan-
nels, as in occam, rather than process names, since this yields a more flexible com-
munication mechanism. The inclusion of nested parallelism makes the language
more uniform and causes no extra difficulties from a semantic point of view.

The combination of procedures and parallelism was already suggested in the
original paper on CSP: Hoare commented on the similarity between his notation for
an array of processes and Algol-like procedures. We permit recursive procedures,
and even the use of parallel composition inside a procedure body, so that it becomes
straightforward to specify dynamic process creation. Procedures can also be used to
encapsulate common communication protocols, such as the alternating-bit protocol.
Local variable declarations and local channel declarations provide a way to delimit
the scope of interference between parallel agents.

A raw syntax for our language is pretty standard, and is described as follows.
(We omit the details concerning proper usage of types, which can easily be handled
in a conventional manner.) For simplicity we will let z,y,... range over (integer-
valued) identifiers and h range over (integer-carrying) channel names; d ranges
over declarations, which for simplicity we write as a sequence of identifiers and
channel names. We also let e range over integer-valued expressions and b range

14

over boolean-valued expressions, whose syntax is not further specified here. An
abstract grammar for processes P, guarded commands gc, and guards g is given
by:

P = skip | z:=e | P;; P, | h?z | hle |
if gcfi | do gcod
Pi||Py | locald in P

ge i= (g—P) | ge,Oge,

g == b | bAR

We use an Algol-like notation for procedures. For example, the following procedures
encapsulate a common way to build one-place and unbounded buffers in CSP:

procedure buffi(in, out) =
local z in do (in?z — outlz) od;

procedure buff(in, out) =
local mid in buff1(in, mid) || buff1(mid, out);

In any call to buff, locality of the channel mid guarantees that the actual parameters
of the call are distinct from mid. The correct behavior of this procedure depends
crucially on the inability of the two calls to buff! to interact except via the local
channel.

For another example here is one way (cf. [22]) to program the Sieve of Eratos-
thenes in our language:

procedure filter(p, in, out) =

local z in do (in?z — if £ mod p # 0 then out!z) od
procedure sieve(p,c) =

(clp; local h in filter(p, h,c) || sieve(p + 1, h));

If ¢ is an integer-carrying channel the call sieve(2,c) results in the outputting of
the prime numbers in ascending order on this channel. Note that each recursive
call to steve introduces new parallel processes sharing a local channel, and each call
to filter makes use of a local variable to hold the integer currently being tested for
divisibility.

Combining procedures and communicating processes raises significant seman-
tic problems. Indeed, the early semantic models for CSP did not incorporate
procedures, and most existing semantic models for procedures seem unsuitable
for a process language like CSP. Nevertheless, despite the fundamental differences
in the underlying model of computation, the ideas behind our earlier work on
shared-variable parallelism [4, 7] can be adapted to the setting of communicating
processes. In [4] we used “transition traces” to build a simple fully abstract model
for a shared-variable parallel language. In [7] we showed how to incorporate a pro-
cedure mechanism based on the simply typed call-by-name A-calculus, obtaining an
idealized language called Parallel Algol. Our semantics for Parallel Algol combined
transition traces with “possible worlds”[28, 34] in a “modular” style, bringing out

15

the orthogonality of procedures and shared-variable concurrency. With suitable
generalization and adjustment, we can obtain a semantics for Idealized CSP by
similar means.

The advantage of this approach is that transition traces, which were origi-
nally tailored for the shared-variable paradigm, and possible worlds, which ap-
pear best suited for modelling imperative programming, can be adapted to deal
with communication-based programs. As shown in [9] transition trace semantics
also provides a model for non-deterministic Kahn-style dataflow networks. Thus
transition traces can serve as a unifying common semantic basis for three parallel
paradigms.

To facilitate comparison between our semantics and traditional models of CSP
we now summarize briefly some of the key ideas.

4.1 Transition traces

A “transition trace” is a finite or infinite sequence of pairs of states,

(50,50)(s1,81) . (sn,80) ...

representing a generalized computation of a command during which the state is
changed as indicated: steps from s; to s, being caused by the command, changes
from s, to s; 41 being made by the command’s environment. This kind of structure
is very natural for modelling shared-variable parallelism, since interference is cap-
tured precisely by state changes “across step boundaries”. Transition traces have
been used to give denotational semantics to a simple shared-variable language, orig-
inally by Park [29], and by the author in [4] to achieve full abstraction, by imposing
certain closure conditions on trace sets. In particular, a trace set T is said to be
closed under stuttering if every trace obtained from a trace in T' by inserting steps
of the form (s, s) also belongs to T; and T is closed under mumbling if every trace
obtained from a trace in T by replacing adjacent steps of the form (s, s")(s’, s”) by
(s,s") is also in T. In Park’s traces each step represents a single atomic action,
while in [4] a step represents a finite sequence of atomic actions.

4.2 Blending communication with state

Channel names (or process names, or some similar kind of communication label)
play a prominent role in traditional accounts of the semantics of communicating
processes. Yet from an abstract point of view the reliance on channel names seems
awkward. By analogy, the traditional reliance on a location-based model of machine
state causes semantic problems that motivated the search for more abstract models
in which location names become implicit [24, 28, 25]. The decision to treat local
state and channels as separate aspects of a process’s behavior, state being affected
by assignment and environment being affected by communication, is the main
reason for the prominence of channel names. Nevertheless it is possible to treat
channels as just another kind of “variable”.

16

A channel potentially carries a sequence of data values. Over the course of an
entire computation an individual channel may participate in an infinite sequence
of communications, but at each stage only finitely many actions have occurred so
far. It follows that we can regard a channel as a variable holding a finite sequence
(actually, a queue) of data, representing those items that have been output to
the channel but not yet consumed by an input operation. We can then treat
input and output as operations which modify the queue associated to a channel
name; of course an input operation must wait if the channel is currently empty.
We can thus blend channels into the state, so that a state describes the current
contents of both variables and channels. This paves the way for an adaptation of
the transition traces approach to the setting of communicating processes. A trace
of the form indicated above now represents a possible computation of a process
assuming certain patterns of communication with its environment (modelled as
“state changes between steps”).

When a process wants to perform input but the intended channel is empty, it
seems reasonable to model this situation as a form of busy waiting, since such a
process will keep waiting for an output to the channel by another process; while
waiting, the process never changes the state, and the waiting continues provided
the channel stays empty. In trace-theoretic terms this amounts to a form of infinite
stuttering.

As usual, sequential composition is modelled by concatenation of traces. As-
signment, conditional and while-loops may be handled in the standard way too, as
in our earlier treatment of shared-variable parallelism. Recursion and while-loops
are interpreted via greatest fized-points [40] in order to deal appropriately with
both finite and infinite traces. Assuming a fair scheduler, the behavior of a paral-
lel system of processes can be built by fairly interleaving traces of the individual
processes. The fairmerge relation on traces can be defined in a straightforward
manner, again by means of greatest fixed points [29, 4].

Local channel declarations can be handled rather simply using an extension
of the idea used in our shared-variable semantics. The traces of local h in P are
obtained by projecting away the h-component from (the states in) traces of P in
which the initial contents of h is the empty sequence and the contents of h are
never changed across step boundaries. This “interference-freedom” constraint on
local variables reflects the scoping rules: only P has access to the local channel.

Transition traces provide a semantic framework for compositional reasoning
about safety and liveness properties of parallel processes, assuming (weakly) fair
execution. This semantics validates a collection of useful laws of program equiva-
lence, including several which rely on and reflect the fairness assumption; these are
especially helpful in proving liveness properties [9, 10].

Traditional CSP also enjoys a large battery of laws of equivalence, which have
been used to great effect in the development of model checking tools [13]. Natu-
rally the move to asynchrony means that we need to work with laws tailored to
asynchronous communication. For instance, we obtain the equivalence

local h in (h!0; P) = P

17

if h does not occur free in P. Note also that
local h in (h?z; P) = while true do skip,

having only infinite stuttering traces, because of the unrequited request for input.
Notice how these laws reflect our assumptions that an attempt to input from an
empty channel is blocked, but output is asynchronous. By analogy the TCSP law

(e — P)\e =P\e

models the assumption that a hidden event can occur “autonomously”; in the
asynchronous world this would be reasonable for an output event (as in the first
law above) but not for an input.

In our semantics divergence is not interpreted as catastrophic. We see no
good reason to insist that a process which may diverge is “as bad” as any other
process at all. The rationale typically given for assuming that any possibility of
divergence is a disaster is tantamount to insisting that processes should be designed
to terminate, and this seems excessive in the concurrent setting. Consider for
example the program

do (true — skip) od || buff1(in, out).

Assuming fair parallel composition there is no reason to distinguish this from
buff1(in, out). The transition traces of both of these processes are identical, so
that our model equates them. It would be unreasonable to interpret the first pro-
cess differently simply because one of its component processes can diverge®.

5 Conclusions

CSP has proven to be a highly influential contribution to the literature. Its effects
have been felt in language design, as witnessed by the rendezvous mechanism of
Ada, the occam language, and the input-output and synchronizing primitives of
Concurrent ML. An enormous body of research has grown up dealing with vari-
ants and derivatives of CSP, concerning logics for reasoning about programs, the
construction of special-purpose semantic models, and specification and verification
of program properties by automated techniques [13, 38].

In this paper we have re-examined some of the language design alternatives
that were not adopted in the original paper. We have shown that it is possible to
build a simple and flexible semantic framework based on asynchronous communi-
cation and fair parallelism, simultaneously suitable for interpreting programs from
the shared-variable paradigm and the communicating process paradigm. Despite
being based “only” on a form of traces, our semantics provides a proper account
of deadlock and divergence. In certain respects our framework has advantages: it
provides a much more natural account of fairness than seems possible in the syn-
chronous setting, and we achieve a unification of parallel paradigms belied by the

6This example is also closely related to the “potentially divergent” example discussed earlier,
which was presented in TCSP-style notation.

18

very disparate collection of semantic models that have evolved historically. This
kind of unification and its reaffirmation of the common roots of these paradigms,
along with the simplicity and generality of our framework, are surely resonant of
the research principles and philosophy that characterize Tony Hoare’s work.

As shown in [7] our semantics may be recast into a relationally parametric
setting [25]. This permits an elegant generalization of the principle of represen-
tation independence, familiar from the use of abstract datatypes and modules in
sequential programming. This provides another link to an important early paper
of Hoare, on proving the correctness of data representations [18].

The traditional CSP models were developed within the established bounds of
Scott-Strachey denotational semantics: all program constructs were taken to de-
note continuous functions on a semantic domain, and the meaning of a recursive
definition was interpreted as a least fixed-point. Relying implicitly on the finitistic
nature of the failures model (and on “constructivity” properties of program con-
structs) Hoare’s book [20] showed how to reason in a straightforward manner about
the correctness of recursive process designs, taking advantage of the fact that (in
the failures semantics) any guarded recursive definition has a unique solution. We
cannot adopt such an approach in our idealized setting, since our decision to build
in fairness means that our model is no longer finitistic, and guarded equations may
have more than one solution. Indeed our approach uses greatest fixed-points to
interpret recursion, in order to give a proper account of infinite behaviors. Despite
these complications one can develop a straightforward style of reasoning about fair
recursive processes, as outlined in [10].

In summary, Idealized CSP and its semantic framework provides a satisfying
alternative to synchronous CSP. It remains to be seen to what extent it is possible
to emulate the successes of the original CSP school, for instance by developing
automated tools for model checking asynchronous processes, or by incorporating
time. Perhaps this will be a suitable topic for discussion when CSP turns 40.

References

[1] Brookes, S., A model for communicating sequential processes, D. Phil. thesis,
Oxford University (1983).

[2] Brookes, S.D. and Hoare, C.A.R., and Roscoe, A.W., A theory of communi-
cating sequential processes, JACM 31(3):560-599 (1984).

[3] Brookes, S. and Roscoe, AW., An improved failures model for CSP, Proc.
Seminar on Concurrency, Springer-Verlag LNCS 197, 1985.

[4] Brookes, S., Full abstraction for a shared-variable parallel language, Proc. 8th
IEEE Symposium on Logic in Computer Science, IEEE Computer Society
Press (1993), 98-109.

[5] Brookes, S., Fair communicating processes, in A. W. Roscoe (ed.), A Classical
Mind: Essays in Honour of C. A. R. Hoare, Prentice-Hall International
(1994), 59-74.

(6]

[9]

[10]

[11]

[12]

[13]

[20]

[21]
[22]

[23]

19

Brookes, S., and Older, S., Full abstraction for strongly fair communicating
processes, Proc. 11th Conference on Mathematical Foundations of Program-
ming Semantics (MFPS’95), ENTCS vol. 1, Elsevier Science B. V. (1995).

Brookes, S., The essence of Parallel Algol, Proc. 11th IEEE Symposium on
Logic in Computer Science, IEEE Computer Society Press (1996), 164-173.

Brookes, S., Idealized CSP: Combining Procedures with Communicating Pro-
cesses, Proc. 13th Conference on Mathematical Foundations of Programming
Semantics (MFPS’97), ENTCS vol. 6, Elsevier Science B.V. (1997).

Brookes, S., On the Kahn Principle and Fair Networks, 14th Conference on
Mathematical Foundations of Programming Semantics (MFPS’98), submitted
to TCS (1998).

Brookes, S., Reasoning about Recursive Processes: FExpansion is not always
fair, ENTCS, Elsevier Science B.V., to appear (1999).

Dijsktra, E. W., Cooperating sequential processes, in: Programming Lan-
guages, in F. Genuys (ed.), Academic Press (1968), 43-112.

Dijkstra, E. W., Guarded Commands, Nondeterminacy, and Formal Deriva-
tion of Programs, Comm. ACM 18(8):453-457 (1975).

Formal Systems (Europe) Ltd, Failures-Divergence Refinement: FDR2 Man-
ual, 1997.

Francez, N., Fairness, Springer-Verlag (1986).

Francez, N., Hoare, C.A.R., Lehmann, D., and de Roever, W. P., Seman-
tics of Nondeterminism, Concurrency, and Communication, JCSS 19, 290-308
(1979).

Hennessy, M. and Plotkin, G.D., Full abstraction for a simple parallel pro-
gramming language, Proc. 8th MFCS, Springer-Verlag LNCS vol. 74, pages
108-120 (1979).

Hoare, C. A. R., Communicating Sequential Processes, Comm. ACM,
21(8):666—677 (1978).

Hoare, C.A.R., Proof of correctness of data representations, Acta Informatica
1:271-281 (1972).

Hoare, C.A.R., A model for communicating sequential processes, in: On the
construction of programs, McKeag and McNaughton (eds.), Cambridge
University Press (1980).

Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall
(1985).

Inmos Ltd., occam? reference manual, Prentice-Hall (1988).

Kahn, G., The semantics of a simple language for parallel programming, Proc.
IFIP’ 74, North-Holland, pages 471-475 (1974).

Lowe, G., Breaking and fizing the Needham-Schroeder public-key protocol using
FDR, Proc. TACAS’97, Springer-Verlag LNCS 1055 (1996).

20

[24]

[25]

[26]

Halpern, J. Y., Meyer, A. R., and Trakhtenbrot, B. A., The semantics of local
storage, or What makes the free list free?, ACM Symposium on Principles of
Programming Languages, 1983, pages 245-257.

O’Hearn, P. and Tennent, R., Parametricity and local variables, J. ACM 42(3),
658-709, May 1995.

Older, S., A Denotational Framework for Fair Communicating Processes,
Ph.D. thesis, Carnegie Mellon University, (1997).

Olderog, E-R., and Hoare, C.A.R., Specification-oriented semantics for com-
municating processes, Acta Informatica 23, 9-66, 1986.

Oles, F.J., A Category-Theoretic Approach to the Semantics of Programming
Languages, Ph.D. thesis, Syracuse University, 1982.

Park, D., On the semantics of fair parallelism. In D. Bjgrner, editor, Abstract
Software Specifications, Springer-Verlag LNCS vol. 86 (1979), 504-526.

Plotkin, G.D., A power domain construction, STAM J. Comput. 5 (3), Sept.
1976.

Plotkin, G. D., An operational semantics for CSP, In D. Bjgrner, editor, For-
mal Description of Programming Concepts II, Proc. IFIP Working Con-
ference, North-Holland (1983), 199-225.

Reed, G.M. and Roscoe, A.W., A timed model for communicating sequential
processes, Theoretical Computer Science 58: 249-261 (1988).

Reppy, J., Concurrent ML: Design, Application and Semantics, in: Func-
tional Programming, Concurrency, Simulation and Automated Rea-
soning, P. Lauer (ed.), Springer-Verlag LNCS 693, 165-198 (1993).

Reynolds, J. C., The essence of Algol. In van Vliet and de Bakker, editors,
Algorithmic Languages, North-Holland, Amsterdam (1981), 345-372.

Roscoe, A.W., A mathematical theory of communicating processes, D. Phil.
thesis, Oxford University (1982).

Roscoe, A.W., The Theory and Practice of Concurrency, Prentice-Hall
(1998).

Roscoe, A.W. and Hoare, C.A.R., The laws of occam programming, Theoretical
Computer Science, 60:177-229 (1988).

Roscoe, A.-W., Model checking CSP, in A classical mind: essays in honour
of C.A.R. Hoare, Prentice-Hall (1994).

Smyth, M.B., Power domains, JCSS 16(1):23-36, Feb. 1978.

Tarski, A., A lattice-theoretical fixpoint theorem and its applications, Pacific
Journal of Mathematics, 5 (1955).

Valmari, A., The weakest deadlock-preserving congruence, Information Pro-
cessing Letters 53, 341-346, 1995.

