HOW TO BE FAIR

Stephen Brookes

Carnegie Mellon University
School of Computer Science

FOCUS

e parallel programming

x shared-variable programs

*x communicating processes
e reasoning about programs

x safety and liveness

x falrness assumptions

THEME

Dispelling myths about fairness

SHARED-VARIABLE PROGRAMS

e processes share a global state
e also have private local state

e communicate by reading and writing
to shared variables

e synchronize with conditional atomic
action await B then A

e busy-wait interpretation
COMMUNICATING PROCESSES

e processes have disjoint local states

e communicate by synchronized
input and output along channels

e local actions are autonomous

PROGRAM PROPERTIES

Want to reason about:

e safety
“something bad never happens”

— mutual exclusion

— absence of deadlock

¢ liveness
“something good eventually happens”

— critical code will get executed

— no starvation

SEMANTIC CRITERIA

e Need to model the interaction or
interference between parallel processes

e Properties of sequences of states, not
state transformers

WHAT IS FAIRNESS?

e an assumption
* N0 process is ignored forever
e an abstraction

x every reasonable scheduler is fair

WHY FAIRNESS?

e abstracts away from unknown or
unknowable scheduling details

e robustness of program analysis
e computational analogue of

— justice

— impartiality

— political correctness

5

MUTUAL EXCLUSION

local s:=true in
cobegin
while true do
(n1; await s then s:=false;
c1; s:=true)
| while true do
(no; await s then s:=false;
co; s:=true)
coend

PROPERTIES

e sis a binary semaphore
e c; and c9 never concurrent

e fairness does not prevent starvation

Fairness 1s not a panacea

A GCD PROGRAM

Py || Pyl| P

where
Py :while z #yV x # z do
do
(x >y — xi=x—1y)
O (zx >z — xi=x—2)
od

Py and P, similar

PROPERTIES

e r. 1y, 2 are shared variables

e Only P, changes x

A BAD GCD PROGRAM

Qa[|Qyl1Q-

where
(Qr - while x #yVx # z do
do
(x >y — xi=x—1y)
O (y>r — y=y—x)
od

@)y and @), similar

PROPERTIES

e r. 1y, 2 are shared variables

e (), and (), change x

PROPERTIES

Assuming that initially
r=a>0ANy=06>0 ANz=c>0
the program Py||Py|| P

e preserves t > 0Ay >0A 2z >0

e preserves ged(x, y, 2)=ged(a, b,)

e always terminates with z =y = 2

provided the scheduler is fair.

The program has unfair executions in
which P, never makes a step

e irrelevant, unrealistic

Fairness 1s a reasonable abstraction

9

PROPERTIES
Assuming that initially
r=a>0ANy=0>0 Ax=c>0
the program Qu/|Qy Q-
e may violate positivity of x, y, or z
e may fail to preserve ged(z, vy, 2)
e may loop forever

even 1f the scheduler is fair.

REASON

If x =y + 2z then (), and (), might
cach decide to change x, leaving x = 0.

It’s hard to write correct programs,
let alone deal with fairness!

10

A GCD NETWORK

channels hyo,...,h3
in R;|| Ryl R,
where
Ry, 0 local y,z in
higlz||hsle||hoy Py || hisy 72
while x #yV x # z do
(do
(x >y — xi=x—1y)
O (z >z — xi=x—2)
od;
hiolz||hislx||ho1 Tyl ka1 72)

Ry and R, similar

Distributed snapshot

11

PROPERTIES

Assuming that initially
r=a>0ANy=06>0 ANz=c>0
the program R ||Ry|| R

e preserves t > 0Ay >0A 2z >0

e preserves ged(x, y, 2)=ged(a, b,)

e always terminates with z =y = 2

e is free of deadlock

provided the scheduler is fair.

12

WHAT’S FAIR?

e weak fairness

x every continuously enabled
process is eventually scheduled

e strong fairness

x every continually enabled
process is eventually scheduled

PROPERTIES

e A strongly fair scheduler is also
weakly fair.

e Fasy to build weakly fair schedulers
using roundrobin strategy.

e No implied bound on service time.

13

REALITY CHECK
e shared-variable programs

x enabledness is locally checkable
x real schedulers are weakly fair
x busy wait implies weak=strong

e communicating processes

x enabledness not local
x real schedulers are strongly fair
x weakly fair schedulers less usetul

WAIVER

Other forms of fairness may also be
considered, e.g.

e channel
e communication

e unconditional-I"-extreme

14

SEMANTIC STYLES

e denotational

* semantic domains

x semantic functions defined by
structural induction

* abstract

x compositional
e operational

* abstract machine

x transition relation defined by
inference rules

* detailed

* not compositional

15

MYTHS

e Denotational semantics cannot
incorporate fairness

% inherently non-continuous
* unbounded non-determinism

x problems with powerdomains

e Operational semantics can handle
fairness easily

x Francez-style treatment

SPIN
e Operational treatments are awkward

* t00 sensitive to nuances of presentation

x don’t handle nested parallelism

e Denotational semantics can
incorporate fairness

% monotonicity is enough

x don’t need powerdomains

16

TRADITION

e operational semantics
(co, 8) = (cp, 8')

(coller, s) — (epller, s')
(c1,8) — {e1, ')

(coller, s) — {collcl, &)
x based on single steps

x unfair sequences must be removed

* no nested parallelism
e resumption semantics
R=S5S—p(S+(Rx)S5))
— based on single steps
— recursive domain equation

— powerdomain

— cannot extract fair sequences

17

TRACE SEMANTICS

e Programs denote trace sets
semantic domain is g(3°°),

where 22 = 5 X .S, @ is powerset

e Atrace (sg, s4)(s1,51) ... (sn,80) ...
represents a fair interactive
computation

e “Interference-free” traces represent
fair computations

e Semantic function defined structurally

— traces of cp; c1 by concatenation
— traces of ¢ql|c; by fair interleaving

—traces of a loop by iteration

e All operations on trace sets are
monotone w.r.t. inclusion

18

SEMANTIC PROPERTIES

e Trace sets are closed under stutters
afec&ksesS = als,s)d €c
and closed under mumbles
a(s,s(s',s"\Bec = al(s,s)Bec
e Steps (s;, s;) represent finite sequences
of atomic actions
e Only includes fair traces

e Fully abstract

Semantics only distinguishes terms
if they exhibit different safety or
liveness behavior in some context

19

FAIRMERGE
Let X0 =Y U YV,

(ar, B,7) € fairmerge < v merges o and

Characteristic properties:
e For all o € X%,
(a, €,), (€, a,) € fairmerge;
e Foralla, 3 € X7, (d/, 3,7) € fairmerge,

(ad, B3, a3v) € fairmerge, and
(ad, B3, Bay’) € fairmerge.

FIXED POINT PROPERTY

fairmerge is the greatest fixed point of
the above definition

20

MORALS

e Infinite behaviors and fair merges come
from greatest fixed points

e Fairness is easy, denotationally

— handles nested parallelism

— adapts to communicating processes

e Powerdomains are a red herring

— seem to preclude fairness

— wrong computational intuition

e [t pays to re-examine “tradition”

— “folk theorems” may be myths
It’s not hard to be fair. ..

21

