
Parallel Algol:
Combining Procedures with

Concurrency

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

1

ESSENTIALS

• Parallel Algol =

shared-variable parallel programs

+ call-by-name λ-calculus

• simply typed

θ ::= exp[τ] | var[τ] | comm
| (θ → θ′) | θ × θ′

phrase types

τ ::= int | bool
data types

• recursion and conditional at each type

cf. Reynolds: The essence of Algol

2

RATIONALE

• Programs can cooperate by reading
and writing shared memory

• Procedures can encapsulate parallel
idioms (e.g. mutual exclusion)

• Local variable declarations can be used
to limit the scope of interference

INTUITION

Procedures and parallelism should be
orthogonal:

• combine smoothly

• “modular” semantics

• conservative extension

3

MUTUAL EXCLUSION

procedure mutex(n1, c1, n2, c2);
boolean s;
begin

s:=true;
while true do

(n1; await s then s:=false;
c1; s:=true)

‖ while true do
(n2; await s then s:=false;
c2; s:=true)

end

• Encapsulates common use of a semaphore

• Correctness relies on locality of s

• Independent of ni and ci

4

OUTLINE of SEMANTICS

• Traditional “global state” models fail
to validate natural equivalences, e.g.

new[τ] ι in P = P

when ι does not occur free in P .

• Need to distinguish between global
and local entities

•We adapt “possible worlds” model of
Algol to the parallel setting. . .

• . . . and extend our “transition trace”
semantics (LICS’93) to include pro-
cedures and recursion.

•We adapt a “parametric” model of
Algol to the parallel setting. . .

• . . . and introduce a form of relational
reasoning for shared-variable programs.

5

POSSIBLE WORLDS

• The shape of the state changes as
program runs

• A “possible world” W represents the
set of currently allowed states

• For sequential Algol, a command
denotes a suitable state transformer

[[comm]]W = W → W⊥

• The meaning of c varies “uniformly”
across worlds

[[c0; c1]]Wu = [[c1]]Wu ◦ [[c0]]Wu

Reynolds, Oles

6

CATEGORY of WORLDS

• Objects are countable sets

•Morphisms are “expansions”:

h = (f,Q) : W → X

– f is a function from X to W

– Q is an equivalence relation on X

– f puts each Q-class in bijection
with W

INTUITION

•X is a set of “large” states
extending the “small” states of W

• f extracts the “small” part of a state

• Q equates states with the same extra
parts

Oles

7

EXPANSIONS

• For each pair of objects W and V
there is a canonical expansion

−× V : W → W × V
given by

−× V = (fst : W × V → W, Q)

where

((w0, v0), (w1, v1)) ∈ Q ⇐⇒ v0 = v1

• Up to isomorphism, every morphism
is like this.

INTUITION

− × Vτ models the introduction of a
local variable of datatype τ .

8

SEMANTICS

• Types denote functors from worlds
to domains, [[θ]] : W→ D

• Type environments denote functors

• Phrases denote natural transforma-
tions

[[P]] : [[π]] ·→ [[θ]]

i.e. when h : W → X ,

[[π]]X

[[π]]W [[θ]]W

[[θ]]X-

[[P]]X

?

[[θ]]h

-
[[P]]W

?

[[π]]h

commutes.

Naturality enforces locality

9

CARTESIAN CLOSURE

• The functor category DW is
cartesian closed.

• Use ccc structure to interpret arrow
and product types

[[θ × θ′]] = [[θ]]× [[θ′]]
[[θ → θ′]] = [[θ]]⇒ [[θ′]]

• Thus, procedures will be natural and
respect locality.

10

PROCEDURES

Procedures of type θ → θ′ denote, at
world W , natural families of functions
p(−): if h : W → X and h′ : X → Y ,

[[θ]]Y

[[θ]]X [[θ′]]X

[[θ′]]Y-

p(h;h′)

?

[[θ′]]h′

-
p(h)

?

[[θ]]h′

commutes.

Procedures can be called at expanded
worlds, and naturality enforces

locality constraints.

11

COMMANDS

• Commands denote closed sets of traces:

[[comm]]W = ℘†((W ×W)∞)

• Trace sets are closed under stutters

αβ ∈ c & w ∈ W ⇒ α(w,w)β ∈ c

and closed under mumbles

α(w,w′)(w′, w′′)β ∈ c ⇒ α(w,w′′)β ∈ c

• [[comm]]h converts a trace set over
W to a trace set over X :

[[comm]](f,Q)c =
{β | map(f × f)β ∈ c & map(Q)β}

12

INTUITION

• A trace

(w0, w
′
0)(w1, w

′
1) . . . (wn, w

′
n) . . .

represents a fair interactive compu-
tation.

• Each step (wi, w
′
i) represents a finite

sequence of atomic actions.

• [[comm]]hc behaves like c on the
W-component of state, has no effect
elsewhere.

13

EXPRESSIONS

Expressions denote trace sets:

[[exp[τ]]]W = ℘†(W+ × Vτ ∪ Wω)

[[exp[τ]]](f,Q)e = {(ρ′, v) | (mapfρ′, v) ∈ e}
∪ {ρ′ | mapfρ′ ∈ e ∩Wω}

VARIABLES

“Object-oriented” interpretation:

variable = acceptor + expression

[[var[τ]]]W = (Vτ → [[comm]]W)× [[exp[τ]]]W

14

skip

Finite stuttering:

[[skip]]Wu = {(w,w) | w ∈ W}†
= {(w,w) | w ∈ W}+

Never changes the state,
always terminates

ASSIGNMENT

Non-atomic; source evaluated first:

[[I :=E]]Wu =
{(map∆Wρ)β | (ρ, v) ∈ [[E]]Wu

& β ∈ fst([[I]]Wu)v}†
∪ {map∆Wρ | ρ ∈ [[E]]Wu ∩Wω}†.

15

PARALLEL COMPOSITION

Fair merging of traces:

[[P1‖P2]]Wu =
{α | ∃α1 ∈ [[P1]]Wu, α2 ∈ [[P2]]Wu.

(α1, α2, α) ∈ fairmergeW×W}†

where

fairmergeA = both∗A · oneA ∪ bothωA
bothA = {(α, β, αβ), (α, β, βα) | α, β ∈ A+}
oneA = {(α, ε, α), (ε, α, α) | α ∈ A∞}

This is natural!

16

LOCAL VARIABLES

[[new[τ] ι in P]]Wu = {map(fst× fst)α |
map(snd× snd)α interference-free &
α ∈ [[P]](W × Vτ)([[π]](−× Vτ)u | ι : (a, e))}

• No external changes to local variable

• (a, e) ∈ [[var[τ]]](W × Vτ) is a “fresh
variable” representing the Vτ part of
the state

17

AWAIT

[[await B then P]]Wu =

{(w,w′) ∈ [[P]]Wu | (w, tt) ∈ [[B]]Wu}†
∪ {(w,w) | (w, ff) ∈ [[B]]Wu}ω
∪ {map∆Wρ | ρ ∈ [[B]]Wu ∩Wω}†.

• P is atomic, enabled when B is true.

• Busy wait when B is false.

18

λ-CALCULUS

[[ι]]Wu = uι

[[λι : θ.P]]Wuha = [[P]]W ′([[π]]hu | ι : a)

[[P (Q)]]Wu = [[P]]Wu(idW)([[Q]]Wu)

• This is the standard interpretation,
based on the ccc structure.

19

RECURSION

Requires a careful use of greatest fixed
points:

• Embed [[θ]]W in a complete lattice
[θ]W (like [[θ]]W but without closure
and naturality)

• Generalize semantic definitions to [P]W .

• Introduce natural transformations

stutθ : [θ] ·→ [θ] closθ : [θ] ·→ [[θ]]

• Can then define [[rec ι.P]]Wu to be

closθW (νx.stutθW ([P]W (u | ι : x)))

EXAMPLE

• Divergence = infinite stuttering:

[[rec ι.ι]]Wu = (νc.{(w,w)α | α ∈ c})†
= {(w,w) | w ∈ W}ω

20

LAWS

• This semantics validates:

new[τ] ι in P ′ = P ′

new[τ] ι in (P‖P ′) = (new[τ] ι in P)‖P ′
new[τ] ι in (P ;P ′) = (new[τ] ι in P);P ′

when ι does not occur free in P ′

• Also (still) validates:

(λι : θ.P)(Q) = P [Q/ι]
rec ι.P = P [rec ι.P/ι]

Orthogonal combination of laws of
shared-variable programming with

laws of λ-calculus

21

PROBLEM

Semantics fails to validate

new[int] ι:=0 in P (ι:=ι + 1) = P (skip)

where P is a free identifier of suitable
type

REASON

• Equivalence proof relies on relational
reasoning.

• Naturality does not enforce enough
constraints on procedure meanings.

SOLUTION

• Develop a parametric semantics. . .

O’Hearn and Tennent

22

RELATIONS

• Category of relations R : W0↔ W1

• A morphism from R to S is a pair
(h0, h1) of morphisms in W such that

W1

W0
6

R
?

X1

X0
6

S
?

-
h0

-

h1

i.e. (h0, h1) respects R and S.

23

PARAMETRICITY

• Types denote parametric functors

– [[θ]]R : [[θ]]W0↔ [[θ]]W1

– [[θ]]∆W = ∆[[θ]]W

– ∀(d0, d1) ∈ [[θ]]R.
([[θ]]h0d0, [[θ]]h1d1) ∈ [[θ]]S

• Phrases denote parametric natural
transformations:

– ∀(u0, u1) ∈ [[π]]R.
([[P]]W0u0, [[P]]W1u1) ∈ [[θ]]R

• The parametric functor category is
cartesian closed.

24

COMMANDS

When R : W0↔ W1 define

(c0, c1) ∈ [[comm]]R ⇐⇒
∀(ρ0, ρ1) ∈ map(R).

[∀α0 ∈ c0. map fst α0 = ρ0 ⇒
∃α1 ∈ c1. map fst α1 = ρ1 &

(map snd α0, map snd α1) ∈ map(R)]
&

[∀α1 ∈ c1. map fst α1 = ρ1 ⇒
∃α0 ∈ c0. map fst α0 = ρ0 &

(map snd α0,map snd α1) ∈ map(R)].

This is parametric!

INTUITION

When related commands are
started and interrupted in related
states their responses are related.

25

LAWS

• As before,

new[τ] ι in P ′ = P ′

new[τ] ι in (P‖P ′) = (new[τ] ι in P)‖P ′
new[τ] ι in (P ;P ′) = (new[τ] ι in P);P ′

when ι does not occur free in P ′.

• As before,

(λι : θ.P)Q = [Q/ι]P
rec ι.P = [rec ι.P/ι]P

• In addition,

new[int] ι:=1 in P (ι) = P (1)
new[int] ι:=0 in P (ι:=ι + 1) = P (skip),

relying crucially on parametricity.

26

EXAMPLE

The programs

new[int] x:=0 in
(P (x:=x + 1; x:=x + 1);
if even(x) then diverge else skip)

and

new[int] x:=0 in
(P (x:=x + 2);
if even(x) then diverge else skip)

are equivalent in sequential Algol
but not in Parallel Algol.

The relation

(w, (w′, z)) ∈ R ⇐⇒ w = w′ & even(z)

works for sequential model but not for
parallel.

27

BOUNDED SEMAPHORES

The phrases

new[int] x:=0 in
P (await x < n then x:=x + 1,
x:=x− 1)

and

new[int] x:=0 in
P (await x > −n then x:=x− 1,
x:=x + 1)

are equivalent in sequential Algol
and in Parallel Algol.

28

COUNTERS

The phrases

new[int] x:=0 in
P (x:=x + 1, return(x))

and

new[int] x:=0 in
P (x:=x− 1, return(−x))

are equivalent in Parallel Algol.

29

MORE COUNTERS

The phrases

new[int] x:=0 in
P (x:=x + 2,

return (x/2))

and

new[int] x:=0 in
P (x:=x + 1; x:=x + 1,

return (x/2))

are not equivalent.

COUNTEREXAMPLE

P = λ(inc, val).(inc‖inc; val)

30

CONCLUSIONS

• Can blend parallelism and procedures
smoothly:

∗ faithful to the essence of Algol

∗ formalizes parallel idioms

∗ retains laws of component languages

∗ supports relational reasoning, e.g.
representation independence

• Semantics by “modular” combination:

∗ traces + possible worlds

∗ traces + relational parametricity

31

PRO and CON

•Advantages

∗ full abstraction at ground types:

◦ validates natural equivalences

∗ supports common methodology:

◦ object-oriented style

◦ global invariants

◦ assumption–commitment

• Limitations

∗ doesn’t model irreversibility of
state change

∗ not fully abstract at higher types

. . . to be continued?

32

