PARALLEL ALGOL:
Combining Procedures with
Concurrency

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

ESSENTIALS

e PARALLEL ALGOL =

shared-variable parallel programs

+ call-by-name A-calculus

e simply typed

0 .= exp|r| | var|r| | comm
I (0—=0) | Ox¢
phrase types

T = int | bool
data types

e recursion and conditional at each type

cf. Reynolds: The essence of ALGOL

2

RATIONALE

e Programs can cooperate by reading
and writing shared memory

e Procedures can encapsulate parallel
idioms (e.g. mutual exclusion)

e [ocal variable declarations can be used
to limit the scope of interference

INTUITION

Procedures and parallelism should be
orthogonal:

e combine smoothly
e ‘modular’” semantics

e conservative extension

MUTUAL EXCLUSION

procedure mutex(ny, cy,ny, 2);
boolean s:
begin
s:=true;
while true do
(n1; await s then s:=false;
c1; s:=true)
| while true do
(no; await s then s:=false;
co; s:=true)
end

e Encapsulates common use of a semaphore
e Correctness relies on locality of s

e Independent of n; and c;

4

OUTLINE of SEMANTICS

e Traditional “global state” models tail
to validate natural equivalences, e.g.

new|r| tin P =P
when ¢ does not occur free in P.

e Need to distinguish between global
and local entities

o We adapt “possible worlds” model of
ALGOL to the parallel setting. ..

e ... and extend our “transition trace”
semantics (LICS'93) to include pro-
cedures and recursion.

e We adapt a “parametric” model of
ALGOL to the parallel setting. ..

e ... and introduce a form of relational
reasoning for shared-variable programs.

5

POSSIBLE WORLDS

e The shape of the state changes as
program runs

e A “possible world” Wrepresents the
set of currently allowed states

e For sequential ALGOL, a command
denotes a suitable state transformer

[comm|W =W — W

e The meaning of ¢ varies “uniformly”
across worlds

lco; el]Wu = [e1]Wu o [ep]Wu

Reynolds, Oles

CATEGORY of WORLDS

e Objects are countable sets
e Morphisms are “expansions’”:
h=(f,Q): W — X
— f is a function from X to W

— () is an equivalence relation on X
— f puts each @Q)-class in bijection

with W
INTUITION

e X is a set of “large” states
extending the “small” states of W

e f extracts the “small” part of a state

e () equates states with the same extra
parts

Oles

EXPANSIONS

e For each pair of objects W and V
there is a canonical expansion

—xV W -WxV
given by
—xV=>{ft: WxV =W, Q)
where
((wo, vo), (w1, v1)) € Q <= vo =)

e Up to isomorphism, every morphism
is like this.

INTUITION

— x V- models the introduction of a
local variable of datatype 7.

8

SEMANTICS

e Types denote functors from worlds
to domains, [0] : W — D

e Type environments denote functors

e Phrases denote natural transtforma-

tions
[P]: [x] = [0]
i.e. when h - W — X,
mw— EWfopw

[7]h [01h
)X [0
commutes.

Naturality enforces locality

9

CARTESIAN CLOSURE

e The functor category DW is
cartesian closed.

e Use ccc structure to interpret arrow
and product types

[0 x 6T = [6] x [0']
[0 — 0] =10 = [0]

e Thus, procedures will be natural and
respect locality.

10

PROCEDURES

Procedures of type 8 — 0’ denote, at

world W, natural families of functions
p(—): ifh:W —-Xandh': X =Y,

plx P x
[0]h' 0']h
o1y Y

commutes.

Procedures can be called at expanded
worlds, and naturality enforces
locality constraints.

11

COMMANDS

e Commands denote closed sets of traces:
[comm]W = o (W x W)™>)
e Trace sets are closed under stutters
afeckweW = alw,w)bec
and closed under mumbles
a(w, w)(w', wB ec = alw,w")pcc

e [comm|h converts a trace set over
Wto a trace set over X:

[comm](f,Q)c =
{8 | map(f x f)B € ¢ & map(Q)F}

12

INTUITION

e A trace

(wp, wp) (wy, W) ... (wp,w,) . ..

represents a fair interactive compu-
tation.

e Each step (w;, w}) represents a finite
sequence of atomic actions.

e [comm]hc behaves like ¢ on the
W-component of state, has no effect
clsewhere.

13

EXPRESSIONS

Expressions denote trace sets:

[exp[r]]W = o' (WT x V; U W%)

[exp[r]](f,Q)e = {(p',v) | (mapfp',v) € e}
U {p’ | mapfp' € en W}

VARIABLES

“Object-oriented” interpretation:

variable = acceptor + expression

[var|T||W = (V; — [comm]|W) x [exp|T]|W

14

skip

Finite stuttering:
[skip]Wu = {(w,w) | we W}
= {(w,w) [weW}T

Never changes the state,
always terminates

ASSIGNMENT

Non-atomic; source evaluated first:
[[:=E|Wu =
{(mapAwp)B | (p,v) € [E]Wu
& B e fst([I]Wu)vt!
U {mapAyp | p € [E]Wun W@,

15

PARALLEL COMPOSITION

Fair merging of traces:

[P1][Po]Wu =
{cv ’ E|O41 S [[Pl]]Wu, a9 € [[PQ]]WU.

where

fairmerge 4 = both’y - oney U both%
bothy = {(c. 8, aB), (o, B, Bax) | v, B € AT}

ones = {(a,6,0), (6, a,0) | a € A%)

This 1s natural!

16

LOCAL VARIABLES

[new|7| ¢ in P]Wwu = {map(fst x fst)o |
map(snd X snd)a interference-free &

ae [PJ{W x Vo) ([r](—= x Vo)u | ¢v: (a,e))}

e No external changes to local variable

e (a,e) € [var|T][(W x V;)isa “fresh
variable” representing the V- part of
the state

17

AWAIT

[await B then P|Wu =

{(w,w') € [PIWu] (w,tt) € [B]Wu}
U (w, w) [(w, ££) € [B[Wu}*

U {mapAyp | p € [B]Wun VV“’}]L

e P is atomic, enabled when B is true.

e Busy wait when B is false.

18

A-CALCULUS
[L]Wu = ue
[\ : 0.P]Wuha = [P]W'([x]hu| ¢ : a)
[P(Q)[Wu = [P]Wulidy)([Q]Wu)

e This is the standard interpretation,
based on the ccc structure.

19

RECURSION

Requires a careful use of greatest fixed
POINLS:

e Embed []W in a complete lattice

O|W (like [8]W but without closure
and naturality)

e Generalize semantic definitions to | P|W .
e Introduce natural transformations
stutg : 0] — |#] closg : [0] — [0]
e Can then define [rec ¢.P]|Wu to be
closgW (va.stutgW (|[PIW (u | v : x)))
EXAMPLE

e Divergence = infinite stuttering:

[rec v.Wu = (ve{(w,w)a | a € c})
= {(w,w) | we W}

20

LAWS

e This semantics validates:

new
new
new

7] in P’ =P’
7] v in (P||P’) = (new|r] ¢ in P)||P’
| vin (P; P") = (newl[r] ¢ in P); P’

7]

when ¢ does not occur free in P’

e Also (still) validates:
(Ae:0.P)(Q) = PQ/]

rec 1.P = Plrec 1.P/\

Orthogonal combination of laws of
shared-variable programmaing with

laws of \-calculus

21

PROBLEM
Semantics fails to validate
new|int| 1:=0 in P(v.:=¢+ 1) = P(skip)

where P is a free identifier of suitable
type
REASON

e Equivalence proof relies on relational
reasoning.

e Naturality does not enforce enough
constraints on procedure meanings.

SOLUTION
e Develop a parametric semantics. . .

O’Hearn and Tennent

22

RELATIONS
e Category of relations R : Wy « Wj

e A morphism from R to S is a pair
(hg, h1) of morphisms in W such that

Wy M0 X,

R

]s

7% X

h
i.e. (hg,hy) respects R and S.

23

PARAMETRICITY

e Types denote parametric functors
— 0] R - [6]Wy < [6]W
—[0)Aw = Ay

—\V/(do, dl) S [[QHR.
([0]hodo, [61h1dy) € [6]S

e Phrases denote parametric natural
transformations:

—\V/(UO,ul) S [[W]]R.
([PIWoug, [P]W1uy) € [0] R

e The parametric functor category is
cartesian closed.

24

COMMANDS

When R : Wy < W7 define
(cp,c1) € [comm|R <=
V(po, p1) € map(R).
Vag € ¢g. map fst ag = pg =
Jag € ;. map fst a1 = p1 &
(map snd «q, map snd a;) € map(R)]
&
Vaj € ¢p. map fst a; = p; =
Jag € ¢g. map fst ag = pg &
(map snd ag, map snd «q) € map(R)].

This 1s parametric!

INTUITION

When related commands are
started and interrupted in related
states their responses are related.

25

LAWS
e As before,

new|r| tin P = P’
new|7] . in (P||P') = (new|r] ¢ in P)|| P’
new|7r| . in (P; P') = (newlr] v in P); P’

when ¢ does not occur free in P’.

e As before,

(A:0.P)Q = [Q/|P
rec (.P = [rec 1.P/.|P

e In addition,

newlint| ©:=1in P(t) = P(1)
new(int| .:=0 in P(1.:=t+ 1) = P(skip),

relying crucially on parametricity:.

26

EXAMPLE
The programs

new|int| r:=0 in
(Plr:=z+ 1, z:=x 4+ 1);
if even(x) then diverge else skip)

and
new|int| x:=0 in
(P(x:=x 4 2);
if even(z) then diverge else skip)

are equivalent in sequential ALGOL
but not in PARALLEL ALGOL.

The relation
(w, (W, 2)) e R <= w = w & even(z)

works for sequential model but not for
parallel.

27

BOUNDED SEMAPHORES

The phrases
new|int| r:=0 in
P(await © < n then x:=x + 1,
r=r —1)
and
new|int| z:=0 in
P(await x > —n then z:=z — 1,
r=x+1)
are equivalent in sequential ALGOL
and in PARALLEL ALGOL.

28

COUNTERS

The phrases

new|int| 2:=0 in
P(x:=x + 1, return(z))
and
new|int| x:=0 in
P(x:=x — 1, return(—=x))

are equivalent in PARALLEL ALGOL.

29

MORE COUNTERS

The phrases
new|int| r:=0 in
P(x:=x + 2,
return (z/2))
and
new|int| z:=0 in
Plx:=x+ 1;x:=x + 1,
return (z/2))

are not equivalent.

COUNTEREXAMPLE

P = A(inc, val).(inc||inc; val)

30

CONCLUSIONS

e Can blend parallelism and procedures
smoothly:

x faithful to the essence of ALGOL
x formalizes parallel idioms
* retains laws of component languages

x supports relational reasoning, e.g.
representation independence

e Semantics by “modular” combination:

x traces + possible worlds

x traces + relational parametricity

31

PRO and CON

e Advantages

x full abstraction at ground types:
o validates natural equivalences
x supports common methodology:

o object-oriented style
o global invariants
o assumption—commitment

e Limitations

x doesn’t model irreversibility of
state change

x not fully abstract at higher types
... to be continued?

32

