Towards a Theory of Parallel Algorithms
on Concrete Data Structures

Stephen Brookes Shai Geva
brookes@cs.cmu.edu shai@cs.cmu.edu
Carnegie Mellon University

School of Computer Science
Pittsburgh, PA 15213

June 1991

Accepted for publication in Theoretical Computer Science

This research was sponsored by the Defense Advanced Research Projects
Agency (DARPA) and monitored by the Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Aeronautical Systems Division (AFSC), United States
Air Force, Wright-Patterson AFB, OHIO 45433-6543, under Contract F33615-
87-C-1499, ARPA Order No. 4976, Amendment 20.

The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as representing the official policies, either
expressed or implied, of DARPA or the U.S. government.

Abstract

Building on Kahn and Plotkin’s theory of concrete data structures and sequen-
tial functions, Berry and Curien defined an intensional model of sequential algo-
rithms between concrete data structures. In this paper we report on an attempt
to develop a similar intensional model of concurrent computation. We present
a notion of parallel algorithm between concrete data structures, together with
suitable application and currying operations. We define an intensional strict-
ness ordering on parallel algorithms, with respect to which application is well
behaved (at first order types). We define the input-output function computed
by a parallel algorithm, and we show that every parallel algorithm computes a
continuous function. Thus, a parallel algorithm may be viewed as a continuous
function together with a parallel computation strategy. In contrast, a Berry-
Curien sequential algorithm may be viewed as a sequential function together
with a sequential computation strategy. The intensional strictness ordering on
parallel algorithms corresponds to the pointwise ordering on the functions they
compute, in the same sense that the set inclusion ordering used by Berry and
Curien on sequential algorithms corresponds to the stable ordering on the func-
tions they compute.

We believe that the ideas and results presented here constitute a first step
towards a fuller understanding of the intensional semantics of parallelism, even
though the model presented here is not yet general enough to provide a satisfac-
tory account of higher order algorithms, and lacks a notion of composition for
algorithms. We present some ideas for overcoming these deficiencies, and some
directions for further research.

This paper is an expanded and improved version of [7].

1 Introduction

The search for a satisfactory syntactic and semantic account of sequential com-
putation, in particular the desire to achieve full abstraction, has led to a consid-
erable body of research. In the classic paper [4], Plotkin showed that under its
standard interpretation the programming language PCF is inherently sequential,
and that its standard continuous functions semantic model is not fully abstract
because the model contains inherently parallel functions (such as parallel-or)
that cannot be defined in PCF. The continuous functions model is, however,
fully abstract for a parallel version of PCF obtained by including a parallel con-
ditional primitive. A substantial body of work has been directed at obtaining a
truly sequential model for the original PCF with a suitably restricted notion of
function [15].

Milner [1], Sazonov [3], and Vuillemin [10] proposed notions of sequential
functions; however, their constructions make essential use of the number of
arguments to a function but do not adequately reflect the internal structure of
these arguments, so that their notions of sequentiality are not general enough.
Kahn and Plotkin [12] defined concrete data structures, or CDSs, together with

their order-theoretic counterparts, concrete domains, which made possible a
more general definition of sequentiality of functions. Berry [11] introduced the
notion of stability, a property of functions intermediate between sequentiality
and continuity. However, Berry and Curien [13, 16] showed that the category
of concrete domains fails to be cartesian closed when the morphisms in the
category are taken to be the continuous functions, or the stable functions, or the
sequential functions. These negative results paved the way for the development
of an intensional model, since no suitable extensional models were found.

Berry and Curien were able to define an exponentiation for concrete data
structures, by replacing functions by a notion of sequential algorithms. The
resulting category of deterministic concrete data structures (DCDSs) and se-
quential algorithms is cartesian closed. Furthermore, a notation for elements of
DCDSs is a basis for a functional language CDS0 [14], for which the sequential
algorithms model provides a semantics with several interesting properties: The
semantics is fully abstract with respect to a notion of observability that is sensi-
tive to computation strategy; the model is intensional rather than extensional;
sequential algorithms, ordered by set inclusion, form a concrete domain; a se-
quential algorithm may be viewed as a sequential input-output function paired
with a computation strategy. The operational semantics is based on an exten-
sion of Kahn-MacQueen’s coroutine mechanism [6], employing lazy evaluation.

Although it does not solve the original full abstraction problem for PCF, the
Berry—Curien model of sequential algorithms is interesting in its own right. It
provides deep insights into the nature of deterministic sequential computation.
We propose here a generalization of Berry and Curien’s notion of algorithm
that incorporates deterministic concurrency into the framework. We believe
that there are fundamental insights into the semantic treatment of parallelism
to be gained by doing this. Like Berry and Curien, we restrict attention to deter-
ministic computation', although we do allow non-determinism in the scheduling
of parallel computations.

In section 2, based on [16], we summarize the background material on
DCDSs, sequential algorithms, and stable and sequential functions.

In section 3 we present our notion of parallel algorithm between deterministic
concrete data structures. We explain how our construction arises out of an
attempt to generalize the Berry-Curien concepts. The key idea is to replace
the “valof” command of a sequential exponentiation with a “query” command
that spawns parallel sub-computations; the formal treatment of this and its
consequences leads naturally to the use of a powerdomain. We present a variety
of example algorithms, and we define currying and uncurrying operations for
parallel algorithms.

In section 4 we formalize what it means to execute a parallel algorithm by
defining a suitable application operation. We show that our notion of parallel
application is intuitively right by discussing the applicative behavior of several
example algorithms. We explain how our notion of application generalizes the

1Berry and Curien also discussed briefly an attempt to introduce non-determinism into
their model [16, section 2.7], but they were unable to obtain a cartesian closed category for
non-deterministic sequential computation.

sequential application of Berry and Curien. We define the input-output function
computed by a parallel algorithm.

Application for parallel algorithms, unlike its sequential counterpart, is not
continuous with respect to set inclusion. This is not a defect of our model or
of our definition of application, but rather shows that set inclusion is not an
appropriate ordering on parallel algorithms. In section 5 we identify the causes
of this failing and introduce a more appropriate ordering, which we call the
intensional strictness order. Informally, an algorithm o’ is above another al-
gorithm @ in this order if @’ needs less information, at an earlier stage of the
computation, to achieve at least the same output as a. We regard intensional
strictness as a natural generalization to the intensional setting of the standard
extensional ordering on continuous functions. In contrast, the set inclusion
ordering on algorithms used by Berry and Curien corresponds to the stable or-
dering [11] on sequential functions. We show that, at first order types, with
suitable countability assumptions, the intensional strictness order is a directed-
complete w-algebraic pre-order on parallel algorithms. We show that application
and currying are continuous with respect to the new ordering. This implies that
the input-output function computed by an algorithm is continuous, suggesting
that parallel algorithms can be viewed as continuous functions paired with par-
allel computation strategies, by analogy with the result of Berry and Curien
that their sequential algorithms correspond to sequential functions paired with
sequential computation strategies.

In section 6 we point out some limitations of our model and outline how
we intend to overcome them in future work. We discuss a number of topics for
further investigation.

2 Background

2.1 Concrete Data Structures

A concrete data structure, or CDS, (C,V,E,F) consists of a set C of cells, a
set V of values, a set E C C x V of events, and an enabling relation - between
finite sets of events and cells. Events are denoted either (¢, v) or ¢ = v.

For a CDS M = (Cpr, Vi, Enr,bar), 2,y CEpy, and ¢ € Cyy, if y Fag ¢ we
say that y is an enabling of c. If y Fj; c and y C = we say that y is an enabling
of ¢ in z and write y b, c. If () s ¢ we say that c is initial.

We define F(y), the cells filled in y, to be the collection of cells in the events
of y. E(y), the cells enabled in y, is the collection of cells that have an enabling
in y. A(y), the cells accessible in y, is the collection of cells which are enabled
in y but not filled; that is, A(y) = E(y) \ F(y).

For ¢, € Cyy, we say that ¢ immediately precedes ¢/, denoted ¢ <, ¢, iff
there is an enabling y Fys ¢ such that ¢ € F(y). If, moreover, y C x we say
that ¢ immediately precedes ¢’ in x, denoted ¢ <, ¢/. Taking the reflexive and
transitive closure of <, we say that ¢ precedes ¢ iff ¢ <%, ¢/, and analogously
< defines precedence in x. M is well founded iff <, is well founded.

For a well founded CDS M, we say that y C Ejs is functional iff any cell
is filled in y with at most one value; let F(M) be the collection of functional
sets of events. If F(y) C E(y) we say that y is safe, and y is a state of M iff it
is functional and safe. Let D(M) be the collection of states of M. We add a
subscript to indicate finiteness, e.g., Dg, (M) for the collection of finite states.
(D(M),C) is a concrete domain?.

A well founded CDS is stable iff for any state x and cell ¢ enabled in z, ¢
has a unique enabling in . A CDS is a deterministic CDS, or DCDS for short,
iff it is well founded and stable. We will work from now on exclusively with
DCDSs, although some of the development could be carried out more generally.
Throughout the paper, M, M’, M; and so on range over DCDSs.

Example 2.1 The DCDS Null has no cells, values, events, or enablings; its
only state is the empty state ().

The DCDS Bool has a single initial cell b, which may be filled with either
of the values tt or ff, representing the boolean truth values; its states are (),
{b=1tt}and {b = ££}, and thus (D(Bool), C) is isomorphic to the conventional
flat boolean cpo.

The DCDS Nat has a single initial cell n, which may be filled with a nat-
ural number; its states are § and {n =k} for k¥ € IN, so that (D(Nat), C) is
isomorphic to the conventional flat natural numbers cpo.

The DCDS LNat has cells {b,, | n > 0}, values 0 and 1, and enabling relation
given by the rules) FrNat bo and {b; = 1} FrNat bit1, for ¢ > 0. Thus, the
cells are accessed in increasing order of index. We denote the states as follows:
S™M(L) ={v;,=1]i<n}and S*(0) = {b; =1|% <n}U{b, =0}, for n > 0;
and S¥(L) = {b; =1|¢>0}. Thus (D(LNat),C) is isomorphic to the lazy
natural numbers cpo, described for example in [2]. .

2.2 Product of DCDSs

If cis a cell and 4 is a tag or label, we write c.i for the the labelled cell (¢, 7). This
notation extends to sets of cells and sets of events: for C' C Cy; and y C E,y,
C.i={ci|ceC}and yi={(ci,v)]|(c,v) € y}. In defining products we use
the labels 1 and 2.

The product of M; and My, My x Ms, is the DCDS obtained by taking
a “disjoint union” of M; and Ms, in that cells are labelled by 1 or 2 to in-
dicate where a cell, event or enabling originated; Cus,xnm, = Car, .1 U Cyy, .2,
Vs, =V, UVan, Exnxar, = En 1 UEN, .2, and for i = 1,2, y.4 Fag, <o,
ciiff y b, c

Pairs of sets of events are obtained similarly: (21, 22) = 21.1 U 29.2. Projec-
tions are easily defined to satisfy fst((z1,22)) = 21 and snd((z1, 22)) = 2z2. We
use T, g, etc. to denote pairs.

2Berry and Curien use the term consistent instead of functional.
3When suitable countability requirements are imposed. See [12] and [16, section 2.2] for
details.

The product trivially preserves well foundedness and stability, and pairing
and the projections preserve functionality, safety and finiteness. F(M; x Ms) =
{(21,22) | z1 € F(My), 2o € F(M>)}, and set inclusion on F(M; x Ms) coincides
with componentwise set inclusion.

Example 2.2 Bool x Bool has two initial cells, b.1 and b.2, each of which
may be filled with a value of tt or £f. It has 9 states, one of which is
{b.1 = tt,b.2 = £f}, alternatively denoted by ({b = tt},{b = ££f}). o

2.3 Stable and Sequential Functions

We now define stability and sequentiality of functions from D(M) to D(M’).
The definition of sequentiality uses the cells of a concrete data structure in
a manner similar to the use of occurrences of a syntactic term in a syntactic
definition of sequentiality [4].

A continuous function f : D(M) — D(M') is stable if for any x € D(M) and
x’ € D(M') below f(x) there exists a least state M (f,x,z’') € D(M) below = on
which f attains or surpasses 2/, i.e., for any z C z, 2’ C f(2) if M(f,z,2') C 2.

A continuous function f: D(M) — D(M’) is sequential at x € D(M) if, for
any ¢ € A(f(x)), one of the following holds:

(1) Either A(z) = (), and thus = has no super-state*;

(2) Or there exists some ¢ € A(x) that must be filled in any y that increases
x such that ¢ is filled in f(y), that is—

JeeAlz) . Vye D(M) . (zCy & €F(f(y)))=ceF(y).

In case (2), a cell ¢ € A(z) as described there is called a sequentiality index of
f at x for .

f:D(M) — D(M') is sequential if it is continuous and it is sequential at
every € D(M).

A sequential function is stable. The converse, however, does not hold.

Example 2.3 The doubly-strict-or function sor : D(Bool x Bool) — D(Bool)
is the least monotone function satisfying:

sor(({b=tt},{b=1tt})) = {b=1tt}
sor(({b=tt} {b==££f})) = {b=1tt}
sor(({p==ff}{b=1tt})) ={b=1tt}
sor(({b=1=ff},{b=1=f})) = {b=££f}.

sor is stable and sequential. Both b.1 and b.2 are sequentiality indices at () for
b.

4The definition in [16] uses (1) instead:
(1) ¢ is not filled in f(y) for any y above x, that is—=Vy € D(M) . z Cy = ¢ F(f(y)).

The overall definitions (1,2) and (1/,2) are equivalent, but we prefer to use (1), since it is
disjoint from (2).

The left-strict-or function lor : D(Bool x Bool) — D(Bool) is the least
monotone function satisfying:

lor({b=1tt}, 0) ={b=tt}
lor({b=ff},{b=1tt})) = {b=tt}
lor(({p =£f}{b==££f})) = {b=1=ff}.

lor is stable and sequential, with b.1 as sequentiality index at @ for b.

The right-strict-or function ror : D(Bool x Bool) — D(Bool) is defined
analogously, and has b.2 as sequentiality index at @) for b.

The parallel-or function por : D(Bool x Bool) — D(Bool) is the least
monotone function satisfying:

por((0 {b=tt}) = {b=1tt}
por(({b=tt}, 0)) ={b=tt}
por({{b= ££},{b = ££})) = {b = ££}.

por is neither stable nor sequential — it has no sequentiality index at @) for b;
and there is no unique minimal state of Boolx Bool below ({b = tt}, {b = tt})
for which por attains {b = tt}.

Let gf : D((Bool x Bool) x Bool) — D(Bool) be the least monotone
function satisfying:

gf((({b=sth{b=1££}), 0)) ={b=rtt}
gf(<< 0 {o=rtt}){b=1f})) = {b=rtt}
gf(({o=££}, 0){b=1tt})) ={b=tt}
gf((({b = ££},{b=££}){b = ££})) = {b=£f}

This is a variant of “Gustave’s function” (attributed to Berry [11] by Huet [9]);
gf is stable, but not sequential — it has no sequentiality index at (} for b.

Let min : D(LNat x LNat) — D(LNat) be the least continuous function
such that, for all z,y € D(LNat),

min((. 0)) =0,
min({ 0 , =)) =0,
min((S(x),5(y))) = S(min(z,y)).

For all m,n > 0, min((S™(L),S"(L))) = S¥(L), and min({S™(0), S™(0))) =
Sk(0), where k is the minimum of m and n. In a fairly obvious sense min
generalizes the parallel-or function by iteration, and it computes the minimum
of two numbers presented in unary form. The function has no sequentiality

index at (L, 1) for by. In fact, for each n > 0 it has no sequentiality index at
(S™(L),S™(L)) for b,. .

The DCDSs and sequential functions form a category, but it is not cartesian
closed, because the collection of all sequential functions from a DCDS to another
need not define a DCDS. The same is true for DCDSs and stable functions, and
for DCDSs and continuous functions.

2.4 Sequential Exponentiation of DCDSs

The sequential exponentiation M —g.q M’ is the DCDS (C,V,E,F) defined as
follows:

C = Dgn(M) x Cppr. We denote a cell (z,¢') € C as zc.

V = {valof c¢|c € Cp} U{output v'|v' € Vpp}.

E = {(zd,valof ¢) € C x V |c € A(z)} U{(zc,output v') € C x V| (¢,
(xc’,valof ¢) F yc' iff y=xU{(c,v)} for some v € V).

! . l 1
{(z;c}, output v;')}j:1 Faxd iff {(c;-,v;-)}jzl Far ¢ and = U{a;},_,.
We call a state of M —g.q M’ a sequential algorithm.
For a € D(M —g¢q M') and x € D(M), the sequential application of a to x,
denoted a -s¢q 7, is given by

aseqx ={(,v")|Jy C . (y',output v') € a}.

A sequential algorithm between DCDSs may be viewed as a sequential func-
tion plus a computation strategy for that function. The function is embodied
in the algorithm’s input-output behavior; we say that a € D(M —sq M')
computes the input-output function Az € D(M) . @ -s¢q . The computation
strategy is embodied in the choice of the sequentiality index to be computed.

Intuitively, when a sequential algorithm is executed, computation is demand
driven. For instance, an external observer’s information about the result of
applying an algorithm to an input state may be gradually increased by filling
the cells of the result state, with each demand for the value of a result cell
spawning a new computation. A cell of the exponentiation consists of a finite
state x, describing the information currently known about the input, and a
request for computation of a value for a cell ¢’ in the output. The events of
an algorithm associate with such a cell ¢’ a command: either an output v’
command that terminates the computation and determines that (¢/,v’) is in the
output, or a valof ¢ command that attempts to increase the current input state
x at ¢. This ¢, naturally enough, is a sequentiality index (of the algorithm’s
input-output function) at z, so that the choice of ¢ among all sequentiality
indices at x (if not unique) determines the computation strategy. If the sub-
computation for ¢ terminates with the value v, the main computation resumes
with the enabled cell (zU{(c,v)})c’, and so on until a value is output for ¢’. The
sub-computation for ¢ proceeds in the same manner: hence the overall coroutine-
like flavor. Note that if one of the sub-computations fails to terminate, so does
the main computation.

Sequential exponentiation preserves well foundedness and stability, and se-
quential application is well defined and continuous with respect to set inclusion.
The category of DCDS and sequential algorithms is cartesian closed.

U’) € E]VI’}-

1sor € D(Bool x Bool —,., Bool)

(fb=valof b.1
{ b.1=tt }b=valof b.2 lor € D(Bool x Bool — 4., Bool)
b.1=tt (fo=valof b.1
bo=ty [O Output Tt { b.1=tt }b=output tt
bi=tt | { b1=ff }b=valof b.2
lsor = po=ff [D Output tt lor = ba=tf |,
[b.i=ff }b=valof b.2 b2=tt [~ P
b.1=ff b.1=ff
b.o—tt b=output tt b.o—ff b=output ff
b.1=ff
b.o—ff b=output ff

Figure 1: The sequential algorithms lsor and lor

Example 2.4 To display sequential algorithms we use vertical stacking to list
elements of sets, e.g., the events of a state.

There are two sequential algorithms that compute the doubly-strict-or func-
tion sor: 1sor, shown in figure 1, which evaluates the two sequentiality indices
in left-right order; and rsor (not shown) which evaluates in right-left order. lor
in figure 1 is the unique sequential algorithm that computes the left-strict-or
function lor. There is a similar unique sequential algorithm ror for the right-
strict-or function ror. No sequential algorithm computes por. °

We have now summarized enough of Berry and Curien’s work on sequen-
tiality to establish a coherent background from which to develop our ideas on
parallelism.

3 Parallel Algorithms between DCDSs

We want to be able to express algorithms for non-sequential functions, such
as por, while retaining as far as possible suitable analogues to the semantic
properties of sequential algorithms.

Sequential algorithms operate sequentially because a valof command may
only start one sub-computation, and only after that sub-computation returns
may the main computation proceed. A natural first step towards a general-
ization, then, would be to allow a valof command to start a number of sub-
computations in parallel, and to specify a number of conditions, each based on
the results of a finite subset of these sub-computations, under which the main
computation may be resumed (without waiting for the completion of the remain-
ing parallel sub-computations). For example, a parallel-or algorithm should,
when nothing is yet known about its input, start sub-computations for the in-
put cells b.1 and b.2, and the main computation may resume once the informa-
tion about the input has been increased to either of {b.1 = tt}, {b.2 =tt} or
{b.1 = £f£,b.2 = £f}. We call this generalization of the valof a query command.

We can represent a query value g as a set of finite functional sets of events:
each element y of ¢ represents a sufficient condition for resumption. A state x
is said to satisfy a query q iff there exists y € ¢ such that y C x. Given this
interpretation it is natural to identify ¢ with its upwards-closure: if y € ¢ and
y C v then every state satisfying ¢ because of 3 also satisfies ¢ because of v.
Moreover, if g; and ¢o are queries such that q; D ¢s, every state satisfying ¢
will also satisfy ¢q; intuitively, it may require less input information to satisfy
q1 than to satisfy go. This leads us to model queries as members of the Smyth
powerdomain [5] over a poset of finite functional sets of events (ordered by
inclusion). Before we continue, we summarize some relevant details concerning
the powerdomain.

Definition 3.1 The Smyth powerdomain (P4(D), C) of a poset (D, <) is the set
of all non-empty, upwards-closed subsets of D, ordered by reverse set inclusion.
That is, for all p C D, p € Ps(D) iff Va,2’ € D.(x € p & © < 2/ = 2/ € p); and,
for all py,pa € Ps(D), p1 C po iff p1 D pa. o

A subset P of a Smyth powerdomain is consistent (denoted {} P) iff it has
a non-empty intersection, in which case the least upper bound UP is NP. We
write p; f} p2 when p; and po are consistent. The union of a non-empty subset
P of a Smyth powerdomain is its glb in the powerdomain, MP = UP. The least
element of the powerdomain is the underlying set D.

Definition 3.2 A query q over a DCDS M is a non-trivial element of the Smyth
powerdomain (Ps(Fgun(M)),) over the poset (Fun(M), Q). .

The non-triviality condition is imposed since a query is meant to represent a
non-trivial increment in information. It amounts to requiring that @ ¢ ¢ for any
query ¢. Note that for all M, (Fgun(M),C) is a well founded poset. It follows
that each query can be identified with its set of minimal elements, which we
may call its branches. We write trim(q) for the set of minimal elements of ¢, and
up(q) for the upwards closure of ¢g. For all queries ¢ we have ¢ = up(trim(q)).

In order to ensure that our parallel algorithms compute deterministically, we
need to guarantee that an algorithm issue the same output command for a given
output cell whenever it is applied to consistent input states. For instance, the
parallel-or algorithm associates the same command output tt with both of the
input states {b.1 = tt}, and {b.2 = tt}, and the result is therefore unambigu-
ous when the algorithm is applied to input {b.1 = tt,b.2 =tt}. We enforce
determinism by using sets of states rather than single states to approximate
the input, and by ensuring that consistent states are grouped together. For
instance, the set of states {{b.1 = tt},{b.2 = tt}, {b.1 = ££f,b.2 = ££f}} should
be partitioned into {{b.1 = tt},{b.2 =tt}} and {{b.1 = £ff,b.2 = ££}}.

More generally, the considerations that led us to use the Smyth powerdomain
for queries lead us to use the Smyth powerdomain again, this time over the poset
of finite states ordered by inclusion; and we give the following definition.

10

Definition 3.3 Given a DCDS M and subset p of Dg, (M), define a relation of
equivalence over p as follows: for all y,7y" € p, y ~ v’ iff there is a finite sequence
of states in p that includes both y and gy’ such that each pair of consecutive
states is consistent in (Dg, (M), C). Write p/~ for the set of equivalence classes
of p.

A class over M is an element p of Ps(Dg,(M)) such that p/~ = {p}. o

Clearly = partitions any p € Ps(Dgn(M)) into classes with the property
that states in distinct classes are inconsistent, as needed in order to guarantee
determinism. Moreover, it produces the finest partitioning with this property,
so that expressivity is not lost.

Whereas a sequential algorithm associated a command with cells of the form
xc', a parallel algorithm will associate commands with cells of form pc, where
p is a class. Intuitively, the elements of a class are states that an algorithm is
forced, by determinism, to treat the same.

Up to this point it might seem that we are going to build the DCDS M — M’
by using classes of M instead of single states and by replacing valof commands
by queries over M. Indeed, such a simple generalization would be adequate
for defining a parallel-or algorithm of type Bool x Bool — Bool. However,
this example is not general enough. Consider, for instance, the curried type
Bool — (Bool — Bool). Our determinism requirement would prevent any
non-strict algorithm of this type from having both strict and non-strict results®.
But a curried parallel-or algorithm should produce a strict result when applied
to the empty input state, and a non-strict result when applied to {b = tt}, and
therefore cannot be expressed using the framework described so far.

To permit a more general treatment we let algorithms issue queries that
involve not only their immediate input state, but also the successive (or residual)
arguments to which the algorithm may be applied. For the curried parallel-or
example, an input of () with a residual {b = tt} or an input of {b = tt} with
a residual @) both lead to a ground result {b = tt}, once fully applied, while
an input {b = ££} with a residual {b = ££} is inconsistent with both previous
alternatives, and leads to a ground result of {b = £f}.

While this structuring idea does permit us to express curried algorithms, it
could be argued that our solution is somewhat ad hoc. Indeed, as a result of this
structure currying and uncurrying operations are “built in” and become simple
operations on the internal structure of algorithms. We will return briefly at the
end of the paper to the advantages and disadvantages of this approach.

We formalize these ideas by associating to each DCDS name M a represen-
tation DCDS rep(M) and a base DCDS base(M). We assume that DCDS names
are built from a given collection of atomic DCDSs that contains at least Null,
using the binary operators x (product) and — (arrow). We blur the distinction
between a DCDS name and the DCDS it is intended to denote. We assume that
atomic DCDSs mentioned earlier and the product of DCDSs are interpreted as
given above.

5The same output command that is associated with the empty input state would need to
be associated with the other possible input states.

11

Definition 3.4 A DCDS name is basic iff its outermost constructor is not —.
If M is basic let rep(M) = Null and base(M) = M.
For M — M’, let

rep(M — M') = M x rep(M’)
base(M — M') = base(M’).

We let both x and — associate to the right so as to correspond to the
argument structure of an algorithm; for instance, if M, is basic, the DCDS
My — -+ — My — My has My x --- x M7 x Null for its representation and
My for its base. Note that base(M) is always basic.

The classes used in constructing M — M’ will be sets of finite states of
M x rep(M’); the M component embodies an approximation of the input, and
the rep(M’) component, or residual, will “make sense” in building a result of
type M’. The cells of M — M’ will be formed by pairing such classes with cells
of base(M'), which represent the demands for computation of a result at base
type. Similarly, the queries used in building algorithms of type M — M’ will
be sets of finite functional sets of events of M x rep(M’).

Now that we use a representation, our query command generalizes both the
valof and the output commands of the sequential exponentiation; operationally,
a query only starts sub-computations for cells of the input type M; and the
residuals may contribute to query events in the output algorithm. Again this is
illustrated by the curried parallel-or algorithm. Its query may, obviously, only
start one sub-computation, corresponding to the single cell of its argument;
when the algorithm is applied to the input state (), the corresponding residual
{b = tt} will become (part of) a query of the result algorithm.

We extend the notions of a cell being filled, enabled and accessible in a
natural way.

Definition 3.5 For ¢ € P,(F(M)), a cell is filled in ¢ iff it is filled in any of ¢’s
branches; F(q) = Uyctrim(q)F(¥). A cell is enabled in q iff it is enabled in all of
q’s branches; E(q) = Nyetrim(q)E(y). A cell is accessible in ¢ iff it is enabled in
g and not filled in ¢; A(q) = E(q) \ F(q). Equivalently, a cell is accessible in ¢
iff it is accessible in all of ¢’s branches; A(q) = Nyerim(g) A(Y)- °

Definition 3.6 Let M and M’ be DCDSs. Then M — M’ is the DCDS
(C,V,E,I) defined as follows. Let M abbreviate rep(M — M') and let My
abbreviate base(M — M').

C = Py(Dan(My)) x Cpg,- We denote a cell (p,c) of C as pc.

V = {query q|q € Ps(Fsn(Mx)) & 0 ¢ ¢} U{output v|v e Vay}

E = {(pc,query ¢) € C x V[F(q) € A(p)} U{(pc, output v) € C x V [(c,v) € Epy, }
(pic,query q) b pe iff p € (p1Ug)/~.

{(pjcj, output v;)},_ b pe iff {(c;,v,)};) Fasy e 1 {p;}_; and p € (U{p;},_,)/~

We call a state of M — M’ a parallel algorithm, or just an algorithm. °

12

Note that an initial cell of M — M’ is of the form up({0})c, with ¢ an initial
cell of My. Note also that the construction guarantees that for each cell pc
enabled in an algorithm p is indeed a class.

There are several obvious points that show how we have generalized the se-
quential definition. It is straightforward to define an embedding of sequential
algorithms into the parallel algorithms that preserves operational behavior, pro-
ducing a parallel algorithm that issues queries about a single cell at a time. A
sequential valof ¢ command corresponds to a query whose branches are of the
form {(c,v)} (with an empty residual). The condition that a query ¢ command
can only be issued from cell pcy if F(q) C A(p) corresponds to the requirement
that a valof ¢ command can only be issued from cell z¢’ if ¢ € A(z).

por € D(Bool x Bool — Bool)

por =
[({ b=tt }, 0]
[(0,0)] p=query (0 { b=tt })]
[({ b=£f },{ b=ff })]

[({ b=tz }, 0)]
[0 { b=tz })]

[({ b=ff },{ b=£ff })] p=output ff

b=output tt

Figure 2: The algorithm por for por

Example 3.7 In addition to the notation used for sequential algorithms, for
parallel algorithms we use the following conventions. Classes and queries are
framed in boxes, and we list only their minimal elements — branches. The
branches themselves are enclosed in square brackets, using a shorthand notation
for pairs:) € D(Null) is denoted as [|, and (yq, [y1,-..,va4]) is denoted as
[Yo,Y1,---,yq] for d > 0.

The unique algorithm for the parallel-or function is presented as por in
Figure 2.

The (parallel) algorithms corresponding to the sequential algorithms lor
and lsor from Figure 1 are shown in Figures 3 and 5. A second algorithm
plor, for the function lor, presented in Figure 4, initiates computations for both
input cells together. These three algorithms have corresponding right-handed
versions: ror, rsor and pror, respectively (not shown).

For the doubly-strict-or function sor, there are several algorithms which em-
ploy a parallel computation strategy, initiating computations for both input cells
together. Figure 6 presents the algorithm psor, in an obvious sense the “most
eager” algorithm for sor; additional algorithms for sor that compute in paral-
lel are plsor and plsor’, presented in figures 7 and 8, and the corresponding
right-handed versions prsor and prsor’ (not shown). .

13

lor =

lor € D(Bool x Bool — Bool)

[(0,0)]

b=tt },0
b=query Kj% beff ?0

[({ b=tt }.0)]

[({ b=£f },0)]

b=query [<@,§ :

[({ b=£f },{ b=tt })]

b=output tt

[({ b=£f }.,{ b=£ff })]

b=output ff

Figure 3: The algorithm lor for lor

plor € D(Bool x Bool — Bool)

plor =

[(0,0)]

{ b=tt },
b=query Kg Eji Eg =

[({ b=tt },0)]

b=output tt

[({ b=ff },{ b=tt })]

b=output tt

[({ b=£f },{ b=ff })]

b=output ff

Figure 4: The algorithm plor for lor

14

lsor € D(Bool x Bool — Bool)

[(0,0)]

b=query

[({ b=tt },0)]

b=query

[
I
(0,
[(®

Y

b=tt
b=ff

[({ b=tt },{ b=tt })]

b=output tt

lsor =

[({ b=tt },{ b=ff })]

b=output tt

[({ p=££ }.0)]

[0,

b=query [<®

{ b=ff

b=tt %i}

[({ b=£f },{ b=tt })]

b=output tt

[({ b=££f },{ b=ff })]

b=output ff

Figure 5: The algorithm 1sor for sor

psor € D(Bool x Bool — Bool)

psor =

[(0.0)]

I
b=query [é

(4

I

o o o o

o o o o

{ b=tt },{ b=tt }

b=output tt

b=output tt

{ b=ff }{ b=tt }

b=output tt

[()]
[({ b=tt },{ b=ff })]
[()]
[()]

{ b=ff },{ b=ff }

b=output ff

Figure 6: The algorithm psor for sor

15

plsor € D(Bool x Bool — Bool)

plsor=
[({ b=tt }, 0)]
[(0,0)] [p=query | [({ b=ff }{ b=tt })]
[({ b=£f },{ b=£ff })]
[({ b=tt }.0)] [p=query Kg:§ Ez;; %i}
{ b=tt },{ b=tt } b=output tt

{ b=tt },{ b=ff }

b=output tt

{ b=ff },{ b=tt }

b=output tt

[
[
[
[

)]
)]
)]
)]

{ b=ff }{ b=£ff }

b=output ff

Figure 7: The algorithm plsor for sor

plsor’ € D(Bool x Bool — Bool)

plsor’ =
[({ b=££f }, 0)]
[(0,0)] [p=query | [({ b=tt }{ b=tt })]
[({ b=tt },{ b=£ff })]
[({ b=£f }.0)] [p=query Kg:§ Ez;; %i}
{ b=tt },{ b=tt } b=output tt

{ b=tt },{ b=ff }

b=output tt

{ b=ff },{ b=tt }

b=output tt

[
[
[
[

)]
)]
)]
)]

{ b=ff }{ b=£ff }

b=output ff

Figure 8: The algorithm plsor’ for sor

16

Example 3.8 Figure 9 presents an algorithm gf for the function gf. Note that
every class of gf has a least element. A variant for which this is not true is the
algorithm gf’ (Figure 10) for the function gf’ : D((Bool x Bool) x Bool) —
D(Bool), defined to be the least monotone function satisfying:

gf'(({b=tt}{b=££}), 0)) ={b=rtt}

gf’/((C 0 fb=rtt}){b=1=f})) = {b=rtt}
gf’(<<{ =ff}, 0)fb=rtt})) = {b=rtt}
gf'(({b==ffh{b=1tt}), 0)) ={b=rtt}
gf'(((0 {o==f}){b=1t})) = {b=rtt}
gf'(({b=tt}, 0) {b=1£f})) ={b=rtt}
gf'(({b = ££},{b=££}),{b = £f})) = {b=£f}.

Like gf, gf' has no sequentiality index at (. In contrast to gf, gf’ is also not sta-
ble — there is no unique minimal state below ({{b = tt},{b = £f}), {b = £f})
for which gf’ attains {b = tt}; correspondingly, not all classes of gf’ have a
least element. °

gf € D((Bool x Bool) x Bool — Bool)

gf =

{
[((0,0),0)] b=query [<<{ [<<:® }: b=tt } E
{

({ b=tt },{ b=£f })0
[((0.{ b=tt }),{ b=tz }
(({ b=££ }.0),{ b=tt }
(({ b=££ }.{ b=£f }),{ b=£f }

b=output tt

b=output tt

]
] b=output tt
]
]

b=output ff

Figure 9: The algorithm gf for gf

Example 3.9 Figure 11 presents the identity algorithm on the DCDS Nat.
Note that this involves a query containing an infinite number of (mutually in-
consistent) branches, and an infinite number of output events. .

Example 3.10 The parallel algorithm min € D(LNat x LNat — LNat) for
computing the function min on pairs of lazy natural numbers is given in Fig-
ure 12.

[]

17

gf’ € D((Bool x Bool) x Bool — Bool)

gf' =
[(({ b=tt },{ b=t
(@ { b=t b=
[<<§ b=ff % 0) b=
[((0,0),0)] b=query | [(({ b=ff ,g b=t
(@ { o=t b=
[(({ b=tt }, 0) b=
[(({ b=£f },{ b=t b=
[(({ b=tt } g b=ff %>, 0)]
« [((0 b:@;t >,J{(b=ff {H
b=£f { b=tt
[<<{ be—ff g bett]}r>’ ®>] b=output tt
[((D b=ff >,§ b=tt %}]
[(({ b=tt } 0 A b=£ff })]
[({ b=£f },{ b=ff }),{ b=ff })] [p=output £f
Figure 10: The algorithm gf’ for g’
idyat € D(INat — Nat)
idgar = { [0] m=query U, .\ [{ n=Fk }] }
U(Uke]N{ [{ n=k }] m=output k })
Figure 11: The identity algorithm on Nat
min € D(LNat x LNat — LNat)
min = U2 min;, where, for each i > 0,
: : [({ Bi=0}, 0)]
[(S*(L),5*(L))] pi=query (@ { b=0 })]
. [({ =1 }.{ D=1 })]
e [(S(0),S"(L)] | _
[(5i(1),5i(0))] PrrONPHEO
[(S™H(L),5F(L))] pi=output 1

Figure 12: The min algorithm

18

3.1 Elementary Properties of M — M’

We now prove some simple properties of M — M’ leading to the proof that
M — M’ is well defined: whenever M and M’ are DCDSs so is M — M.

Proposition 3.11 If y by pic, y Fayr—ar pac and py) p2, then p1 = po.
Proof: Intersecting equivalence classes are equal. .

Proposition 3.12 If (pc,query q) Far—n p'c then p C p’ and for every T’ €
p' there exists T € p such that T C T’.

Proof: If ' € p’ then Z' € pU ¢q. For some Z € trim(p) and § € trim(q),
zUy C . Since y # 0 and F(y) C A(z), it follows that = C &' .

Proposition 3.13 M — M’ is a well founded CDS.

Proof: Define the relation < ,,_,,,» over Dg,(Myx) x Cypy, as follows:
Te <y T'e it either (ZC T & ey)or (ZCT &e={).

It is easy to establish the following implications:
(1) If <y, has an infinite descending chain, then so does <, ;. This
is because if ¢ <, ¢ then up({0})c <y, up({0})¢’.

(2) If <, has an infinite descending chain, then so does <, /-
This is because, when pc <, P'¢, for each T’ € p’ there exists
T € p such that Te <« ;5 T'¢’ (using proposition 3.12).

3) If <« ,;_, 5 has an infinite descending chain, then so does <, . This
M—M Mo
follows from the finiteness of the states involved.

By these implications, well foundedness of any CDS coincides with well
foundedness of its base, and hence M — M’ is well founded iff M’ is. =

We now prove the Tree Lemma, a technical result corresponding to an anal-
ogous lemma proven by Berry and Curien for sequential algorithms. Our proof
is similar to theirs. This lemma is the basis for a tree-like notation for algo-
rithms and is useful in reasoning about the structure of algorithms. As an added
benefit, the tree lemma establishes stability of M — M.

Lemma 3.14 (Tree Lemma) Let a be a state of M — M’.
(1) If pc,p'c € E(a) and p {} p’ then:

(1a) Either pc <% p'c, or p'e <& pe.
(1b) And if (pc,output v), (p'c, output v’) € a then p =p' (andv =7").

(2) FEvery cell pc € E(a) has a unique enabling in a.

19

Proof: By induction on ¢ in <, , where we take Mo = base(M — M").
Let pc,p’c € E(a), such that p { p’. Let p = pUp’. Examine the last few
enablings in a leading to pc (respectively p’c), starting with the last output
enabling. There must be such an output enabling, by well foundedness of
M — M’. Let us name the constituents of these enablings as follows:

{(rjd;,output v;)}._, Fa (poc, query q1) b -+ o (pr-1c, query i) bo pre = pe

ll
{(r}d’;, output U;')}j:1 Fo (P, query q1) Fo -+ Fo (P10, query qi) Fq ploc=p'e.

Assume that & < k’. We show by induction on m that, for all m < k,
Pm = Dy
— For the base case, we show that py = pj,.
Let z = {(d,v) | d <<X/I0 ¢ & Ir . (rd,output v) € a & r C p}. Clearly,
x is a set of events of My. We show that = € D(Mj):
Safety: If (d,v) € x then rd € F(a) for some r C p. Let {(s;c;, output wj)}gnz
r’d, with ' C r. Such an enabling exists, because rd has a proof
in a, and that proof must have a last output enabling. Therefore
{(cj,w)) YTy o d.
Functionality: If (d,v), (d,v") € x then (rd, output v), (r'd, output v') €
a for some r, v’ C p, so that, by induction hypothesis (1b), r = 1/,
and v =
The state x contains both {(dw%')};:l and {(d},v;)}gz17 two en-
ablings of ¢, which must be equal by stability of My; so [= I, and,
without loss of generality, Vj <1 . d; = d}.

1Fa

Now, for any j <[, d; = d} <<]\L40 ¢, and r; 7"37 and by induction
hypothesis (1b) we have r; = 7“;-. Consequently, by proposition 3.11,
Po = Pp-

— For the inductive step, assuming m + 1 < k and p,,, = pl,,, we get
Gm+1 = (41 by functionality. It follows by proposition 3.11 that
Pm+1 = p;n+1~

From the above, it follows that (assuming k < k') px, = p}., so pc < p'c,

and there exists a query chain in a from pc to p’c (of length &' — k > 0).

If k' < k, we can similarly show that p’c < pe. Therefore (1a) holds.

Assume that (pc, output v), (p'c,output v') € a. If k < k" then (pc, query ¢,) € a,
contradicting functionality. So k' < k. By symmetry, k < k’; thus k = &/

and p = p/, and (1b) holds.

Finally, to show uniqueness of the enabling for pc, take p = p’ in the above

argument for (1a) and suppose there are two enablings for pc in a. Since

< is well founded, we must get k = k’, and the argument shows that the

enablings are equal. .

Corollary 3.15 M — M' is a DCDS.

20

3.2 Currying

Currying and uncurrying operators on algorithms are easy to define, given our
use of rep in structuring the components from which an algorithm is built.
Recall that

rep(My x My — M') = (M x My) x rep(M’),
rep(M; — My — M') = M, x (M3 x rep(M")).

Definition 3.16 Define the map curry : F(rep(Myx My — M')) — F(rep(M; —
My — M) by

curry (((y1,92),9)) = (Y1, (y2, 7)) -
This function extends to queries, cells, commands, and algorithms as follows:
curry(q) = {curry(y) |y € ¢}, curry(pc) = curry(p)c,
curry(query ¢) = query curry(q), curry (output v) = output v,
curry(a) = {(curry(p)c, curry(w)) | (pc, u) € a}.
The uncurrying function may be defined similarly. .

Proposition 3.17 The map curry : D(My x My — M') — D(M; — My —
M) is an isomorphism and preserves enablings.

Proof: Straightforward. .

cpor € D(Bool — Bool — Bool)

[{ b=t }, 0]
[0,0] b=query (@ ,g b=tt %]
[{ b=ff },{ b=£ff }]
cpor =
[{ b=tt }, 0]
{ [@ }’{ bett }] b=output tt
[{ b=ff },{ b=ff }] b=output £f

Figure 13: The curried parallel-or algorithm, cpor = curry(por)

Example 3.18 Figure 13 presents cpor = curry(por), the curried version of
por. Figure 14 presents the fully curried version of gf’. °

Note that currying the parallel-or function por to cpor reduces parallelism,
in an informal sense, shown by a comparison of the por and cpor algorithms.
por’s query initiates two parallel sub-computations, while cpor’s query initiates
a single sub-computation. Even though cpor does not compute in parallel, the
cpor function is not sequential (as defined in section 2.3) since it is not even
monotone with respect to set inclusion — contrast cpor (@) and cpor({b = tt}).
This observation is a premonition of problems we will encounter with applica-
tion.

21

cgt’ € D(Bool — Bool — Bool — Bool)

cgf' =
[{ b=tt },{ b=ff },
{ [0 }é b=tt %,{ b
{o=tf}, 0 {b
[0,0.0] p=query | [{ b=ff },g b=tt %
[0 A o=ff ! { b
[{ b=tt }, 0 ,g b
[{ b=ff },{ b=£ff },{ b

[) [-2

[{ b=tt },{ b=ff }, 0]
[bose }:E 0 % |
i]O[:Q)ff }} ::ff },% b=tt %]

}

b=output tt

I
t
ct

"
=

[{ b=tt }, 0 ,
[{ b=ff },{ b=£ff },{ b=£ff }] pb=output £f

Figure 14: The curried algorithm for gf’, cgf’ = curry(curry(gt’))

4 Application

Recall that for a sequential algorithm a of M —,, M’ and a state = of M,
Berry and Curien defined the application of a to = by

aseqx={(,v")|Jy C . (y,output v') € a}.

One might read this as saying that the events (¢/,v") of @ -s¢q = are obtained by
“projection” from output events (yc’, output v') of a whose state component y
is below z, and thus may be an accurate partial description of the input x.

Consider the application of a parallel algorithm a € D(M — M') to « €
D(M), producing a result which we will write as a - z. Intuitively, there ought
to be an operational correspondence between the events of a and the events of
a - z, in the rough sense that for each event (pc,u) € a there are some events
of a -« which are responsible for a - x exhibiting the same behavior that (pc,u)
entails when the argument to a is known to be x. Given our use of residuals in
constructing the events of M — M’, p is a set of finite states of M x rep(M’)
and each query ¢ in a is a set of finite functional sets of events of M x rep(M’).
By analogy with the sequential case, given a class p and an input state x we
will be interested in the set of residuals derived from elements of p whose input
component approximates x; and similarly for a query q. We therefore define a
projection operator 7, on queries (and classes) as follows.

22

Definition 4.1 For x € D(M), and ¢ € Py(Fan(rep(M — M'))), define

mo(q) ={71 3w Sz . (y.9) €q}

7z (q) is either empty, or in Py(Fgn(rep(M'))). ®

An event (pc,u) of a for which 7,(p) = 0 is irrelevant when a is applied
to input state x, because x is not approximated by any element of p. Even
when 7, (p) is not empty it need not be a single equivalence class of states: the
residuals obtained from equivalent but inconsistent states of p need not remain
equivalent in 7, (p). When this happens we must split 7, (p) into its equivalence
classes; in this way, a single cell of a may project onto more than one cell of
a-T.

Now consider a query event (pc, query q) of a, and suppose that 7, (p) is not
empty. There are three possibilities: either 7, (q) is itself a query over rep(M’);
or m;(q) contains the empty set; or else 7, (q) is the empty set. If 7w.(q) is a
proper query, then we should obtain an event (p’c,query m.(¢q)) in a -z for
each equivalence class p’ of 7, (p). If § € 7,(q), then when applying a to x the
query ¢ is satisfied by the input state alone, and no further query needs to be
issued concerning the residual arguments. However, some events following pc
in ¢ may contribute events to a - x. Such a query is said to be fully satisfied
by application of a to x. Finally, if 7,(q) = § then when a is applied to = the
computation can progress up to a point where the query ¢ is issued, but cannot
go further because ¢ cannot be satisfied; there should therefore be no events in
a - = corresponding to (pc, query q) or any event following it in a.

Similarly, an output event (pc, output v) of a projects iff 7, (p) is not empty,
in which case we obtain an event (p’c,output v) of a - z for each equivalence
class p’ of 7, (p).

We therefore extend m, to a (partial) map from Vi to Vi as follows,
and give a formal definition of application that makes these ideas precise:

m(query ¢q) = query m,(¢) and 7,(output v) = output v.

Definition 4.2 Let a € D(M — M’) and = € D(M). The application of a to
x is defined by®

a-z={(p'c,mz(u)) € Bar | Ipc,u) €a. p' € ma(p)/~}

The requirement that events of a-x belong to Ej; filters out empty projections
and trivial queries.

SWhen M’ is basic, this definition of a - 2 produces not a state of M’ but a degen-
erate “nullary algorithm” built from rep Null and base M’. Its events are of the form
({0}c, output v), with (¢, v) an event of M’, since there are no legal queries over Null. Such
nullary algorithms are isomorphic to states of M’ by replacing each ({0}c, output v) by (c, v);
we will omit explicit mention of this isomorphism in the definition of application and related
development for simplicity of presentation.

23

We remark that when the Berry-Curien algorithms are embedded in the
parallel framework, a valof command is either not projected by an application,
or else it is fully satisfied, since all residuals are vacuous. Correspondingly, the
sequential application need only project the output events.

Example 4.3 Consider the application of the curried parallel-or algorithm
cpor to {b =ff}. The result is the identity algorithm on Bool. There is a
clear one-to-one correspondence between the events of cpor and cpor-{b = £f}:
each event of cpor projects onto a unique event of cpor - {b = £f}.

0] b—aquery| |

{ b=tt }]
{ b=ff }]

cpor - { b=ff } = [{ b=tt }] p=output tt

[{ b=ff }] p=output ff

Example 4.4 Consider the application of cpor to (). The resulting algorithm
does not have (or need) an event with an output £f command, because pro-
jection of the output £f event of cpor does not produce a valid class or event.

0] p=query

cpor -) =

[{ b=tt }]

[{ b=tt }] p=output tt

Example 4.5 The query of cpor is fully satisfied when cpor is applied to
{b =tt}, and the result is a non-strict constant algorithm.

cpor - { b=tt } = { [0] jp=output tt }

Example 4.6 Splitting occurs when we apply the algorithm cgf’ (figure 14) to

0.

[0,0]

b=query

!/

BT V=9 [[v=tt }.{ b=ff }]

[{ b=tt },{ b=£ff }]
[{ b=ff },{ b=tt }]

b=output tt

[{ b=ff },{ b=tt }]

b=output tt

24

4.1 Elementary Properties of Application

We now show that application is well defined. We begin by introducing two
maps root, , and source, , to make precise the correspondence between events
of a-x and a. These maps are not generally surjective, since some events fail to
project. They are also not injective, because of possible splitting.

Definition 4.7 For a € D(M — M’) and x € D(M), define root, . : F(a-x) —
F(a) and source, ; : F(a - z) — F(a) by:

100t (p'c) = poc where pg = M{p | pc € E(a) & p" € m,(p)/~ },
source, »(p'c) = pic iff Ju. (prc,u) €a & (pe,me(u)) €Ea-z & p' € mp(p1)/~-
[]

Proposition 4.8 root, , and source,, are well defined. Moreover, for any
p'ceF(a-x),

(1) root, . (p'c) <& source, . (p'c), and

(2) For anypc € E(a), p' € my(p)/~ iff root, »(p'c) <& pe < source, 5 (p'c).
Proof: Let (p'c,v') € a-z, C = {pc € E(a) |p' € m(p)/~}, P ={p|pce C}

and pg = MP; C is non-empty, by definition of application.

All classes in P are consistent, so that, by the tree lemma, the cells in C
form a <-chain. By well foundedness of <, C' has <-minimal element,
and that must be pgc. root, ,(p'c) is uniquely determined to be pgc.
Moreover, poc is clearly filled, so that root, , is well defined.

By definition of application, there exists some (pjc,u) € a such that
p € my(p1)/~ and v = m,(u); obviously, p1c € C. Assume that there
exists pc € C such that pjc < pe, i.e., such that u = query ¢ and
(p1c,query q) b, pc. But since p' € m,(p)/~, this necessarily implies
0 € 7:(q), a contradiction. It follows that p;c must be <-maximal in C'.

sourceg ;(p'c) is uniquely determined to be pic, so that source, , is well
defined.

Moreover, we have shown that root, . (p'c) and source, . (p'c) are <-
minimal and <-maximal, respectively, in C, and

C C {pc € E(a) | root, . (p'c) <& pc < source, . (p'c)}.
The converse inclusion follows from monotonicity of projection. .
Proposition 4.9 Fora € D(M — M') and x € D(M), a -z is a state of M.

Proof: Clearly, a-x C Epr.

To show functionality of a - z, note that, for (p'c,u’) € a -z, v’ is uniquely
determined to be 7, (u) where (source, ,(p'c),u) € a.

25

We now show that a - = is safe. Let p'c € F(a -), pc = root, (p'c) and
{(pjcj ui)}o_y Fape.

For every j <1, p; C p, and by monotonicity of projection, m,(p;) C 75 (p),
so there must exist a unique p}; € m,(p;)/~ such that p}; Cp'.

If pc has an output enabling, i.e., each u; has form output v;, then
p € (Ll{pj}é.zl) ~, and it must be that p’ € (I_I{p;}é,zl) ~, S0 that

{(p);cj, output vj)}é_zl Faz pe.
If pc has a query enabling then [= 1, u; = query ¢ for some ¢, and
(p1c,query q) b, pe, i.e., p € (py Uq)/~. Clearly, 7.(q) # 0, and fur-
ther, by <-minimality of root, .(p'c), pi # p’ so that 0 ¢ m.(q), and
(pic,query 7,(q)) € a-x. It is easy to show that (p}c,query 7,(q)) Fau
p'c, i.e., that p' € (p) Umy(q))/~- .
Now that a - = has been shown to be a state, we extend root, , : F(a-z) —
F(a) to root, , : E(a -) — E(a), using the same definition given above, and
complement proposition 4.8 as follows:

Corollary 4.10 root, , : E(a-z) — E(a) is well defined. Moreover, for any
p'c € E(a-x),
Y Fax P'e iff source, . (y') o rooty . (p'c),

where source, , (y') = {(source, ,(p'c),u) € a| (pc,mx(w)) € y'}.

4.2 Input-Output Functions

Our definition of the input-output function computed by a parallel algorithm
is similar to the Berry-Curien definition for sequential algorithms. In fact, the
embedding of the sequential algorithms into the parallel algorithms mentioned
earlier preserves the function computed by an algorithm. Again this shows that
our notion of application is a sensible generalization of the sequential definition.

Definition 4.11 The input-output function of an algorithm a € D(M — M’)
is the function Az € D(M) . a -z, mapping states of M to states of M’. .

Example 4.12 Each of the algorithms discussed in example 3.7 computes the
corresponding function: for instance, por computes por; both lor and plor
compute lor; each of 1sor, plsor, plsor’, and psor computes sor. Similarly,
the min algorithm (example 3.10) computes min. °

We can also show now that currying and application interact correctly.

Proposition 4.13 For any a € D((M; x Ms) — M’), 21 € D(My) and 25 €
D(M2)7

(curry(a) - x1) - 22 = a - (x1,22) .
Proof: Immediate. .

In other words, if a computes f, then curry(a) computes curry(f). Again, a
corresponding property holds for uncurrying.

26

5 Ordering Algorithms

Application as defined above is monotone and continuous in its first argument
with respect to the set inclusion ordering on algorithms, but not even mono-
tone in its second argument. This is caused by two phenomena, which we call
weakening and abstraction of queries.

Contrast a-x and a-2’, for an algorithm a and C 2’. Clearly, increasing the
argument from x to ' may increase the set of elements of a query ¢ of a whose
input conditions are satisfied, so that 7,(q) C 7,/ (q) (and 7 (q) C m.(q)). If
7 (q) is a valid query then 7,/ (q) is non-empty, and we need to ask whether x’
fully satisfies q.

o If m,/(q) is a valid query, i.e., § € 7,/ (q), then we say that the query m,(q)
of a - x is weakened into the query m,/(q) of a - 2’

o If o/ fully satisfies g, i.e.,) € m,/(q), then we say that the query m,(q) is
abstracted.

Example 5.1 Consider, e.g., cpor -) Z cpor - {b = £ff} and cpor -) € cpor -
{b = tt}, owing to weakening and abstraction, respectively.)

The counter-examples above cannot be resolved by modifying the defini-
tion of application, since they are simple and intuitively correct, and serve as
guidelines to which any definition of application must conform. The desire for
monotonicity and continuity of application therefore motivates a coarser order
than inclusion on states; we define a pre-order <! based on the existence of a
morphism between algorithms that preserves enabling structure up to weakening
and abstraction.

5.1 The Intensional Strictness Order

Definition 5.2 The intensional strictness pre-order <%, on D(M) is defined
by induction on M as follows.

For an atomic DCDS M let 33\4 be set inclusion.

For a product My x My let <y, 1, be defined componentwise: (z1,z2) <4 s,
(2, wh) iff w2 <4y 2 and @y < b

For an arrow type M — M’ and z,2’ € D(M — M’), let = <4, ,, o iff
there exists a function f : E(x) — E(z) such that the following hold:

(1) If f(pc) =p'c then ¢ = ¢ and p’ C p.

/

(2) If (pc, output v) € x then (f(pc), output v) € «’.

(3) If {(pjc;, output v;)},_, b pethen {(f(pjc;), output v;)}._, Far f(pe).
Note that, by taking I = 0, f must map initial cells into initial cells.

(4) If (pe,query q) € = then one of the following holds:

27

(WKN) There exists ¢ C ¢ such that (f(pc),query ¢') € 2/, and if
(pc, query q) b, pic then (f(pc),query ¢') o f(pic).
In such a case we say that f weakens (pc, query q).

(ABS) If (pc, query q) b, pic then f(pic) = f(pc).
In such a case we say that f abstracts (pc, query q).

We call such an f a morphism. We say that z <’ &’ by f in cases where we
need to mention the morphism explicitly. We will often drop the subscript M
from S?W °

In other words, a morphism f preserves basic cells, output commands and
output enablings, and may either weaken a query or abstract it. Roughly speak-
ing, if x <' 2’ then 2’ is less strict than z in the sense that it may require less
information about the inputs, and may ask for it at an earlier point of the
computation, in order to produce at least the same outputs as x.

Example 5.3 Note that our previous counter-examples to monotonicity (ex-
ample 5.1) become examples of algorithms related by <, since cpor -) <*
cpor - {b = ff} and cpor -) <' cpor - {b=tt}. We also have gf <’ gf’, by
weakening. °

lor pror ror

lsor plsor’ plsor prsor rsor’ rsor

Figure 15: The or-algorithms related by <’

Example 5.4 We further illustrate <% by relating the algorithms introduced
in example 3.7. These algorithms differ in strictness of the computed function,
and in their computation strategies. We have psor <! plor <! por by weak-
ening, and plsor <! plor by abstraction; plsor’ <’ lor by weakening; and on
the sequential algorithms we have 1sor <’ lor by abstraction. The remaining
relationships may be inferred by left-right symmetry and transitivity. Figure 15
summarizes the relationships between these algorithms. Note that the algo-
rithms for sor are pairwise incomparable, and the two algorithms for lor are
incomparable.

In each of these simple examples a suitable morphism is easy to construct.

28

5.2 First order DCDSs

Strictly speaking, now that we have determined that set inclusion is not appro-
priate as the underlying order for our model, we should go back and examine
what happens to our construction of M — M’ when we employ <! instead of
set inclusion. However, it is easy to see that this would make no difference in
the construction of first order DCDSs, defined to be the Ms generated by the
following grammar, where A is atomic:

M :»=P|P—-M P = A|PxP.

Algorithms of first order type may return algorithms as results but do not take
algorithms as arguments. All examples of algorithms discussed so far have been
first order, and the class of first order DCDSs is closed under currying and un-
currying. When M is first order the set inclusion ordering on rep(M) coincides
with the intensional strictness ordering, so that the first order algorithm space
and the definition of application remain unchanged if we use <? instead of C as
the underlying order. For the rest of this development we focus on first order
DCDSs, and we show that our model provides a satisfactory account of first
order algorithms. At the end of the paper we will discuss briefly why a more
radical solution is needed at higher order types.

5.3 Order-theoretic Properties

Proposition 5.5 Ifa <" a' by f then f(a) = {(f(pc),u’) € d’ | pc € F(a)} is a
state. For any pc € E(a), if f(pc) = pc then no event that precedes pc in a is
abstracted.

Proof: Functionality of f(a) is inherited from a’. Safety of f(a) may be shown
by induction on the number of abstracted query events below a cell pc €
E(a). The same proof may be adapted to show that no abstraction may
occur below pc if f(pc) = pe. .

Proposition 5.6 <! contains the set inclusion relation, and, in particular, is
reflexive. The empty set is a least element in <.

Proof: If a C a then the identity embedding of E(a) into E(a’) is clearly a
morphism showing that a <% a'. .

Note that the intensional order properly contains set inclusion, since (for
instance) 1sor <' lor but lsor ¢ lor.

Proposition 5.7 If a <! o’ by f and o’ <*a” by f' then a <* a” by f' o f.

Proof: Properties (1), (2) and (3) in definition 5.2 are obviously preserved by
composition of morphisms. We check property (4). Let (pc, query q) € a.

o If f abstracts (pc, query q) then so does f’ o f.

29

o If f weakens (pc,query q) into (p'c,query ¢’') € o’ which is then ab-
stracted by f’ then f’ o f abstracts (pc, query q).

o If f weakens (pc, query q) into (p'c, query ¢') € o’ which is then weakened
by f’ into (p”c,query ¢") € a”, then f’ o f weakens (pc, query q) into
(p"c, query q"). .

Thus, <’ is reflexive and transitive. However, <’ is not anti-symmetric in
general. Intuitively, this is because queries that do not have an output event
following them may be abstracted and re-introduced at will, thus generating
distinct but <‘-equivalent algorithms.

Example 5.8 Consider <h_ | poo- We have

by inclusion and abstraction respectively. °

However, <’ is anti-symmetric, and hence a partial order, on algorithms all
of whose queries lead to output events, since in such cases abstraction cannot
be “undone”. We make this precise as follows.

Definition 5.9 A cell pc € E(a) is observable in a iff there is an output event
(poc, output v) € a such that pc < poc. An event is observable iff its cell is
observable, and an algorithm is observable iff all of its events are observable. e

Proposition 5.10 <! is anti-symmetric on observable algorithms.

Proof: Assume a and a’ are observable algorithms, a <* @’ by f, and @’ <% a
by g.
For any output event (pc,output v) of a, (g o f(pc),output v) is also
an output event of a. By the tree lemma, g o f(pc) = f(pc) = pc. By
proposition 5.5, no event preceding (pc, output v) may be abstracted by
g o f. Therefore g o f may not abstract any observable event. Since a
is observable g o f may not abstract at all. It is easy to adapt the case
analysis in the proof of proposition 5.7 to deduce that f itself may not
abstract.

Let (pc,query q) € a be a query event that is weakened by go f. It is
weakened by f to (f(pc), query ¢’) € a’, which is in turn weakened by g
to (g o f(pc),query ¢") € a, with ¢"” C ¢’ C gq. But by the tree lemma
and since ¢ C ¢, (pc, query q) = (go f(pc), query ¢”), and consequently
(pc, query q) = (f(pc), query ¢').

Therefore f may not abstract any of the events of a, and all weakenings
are identities. We thus have a C a’, and, symmetrically, a’ C a. .

Corollary 5.11 <’ is a pre-order, and it is a partial order on observable algo-
rithms.

30

Every algorithm has a unique observable algorithm to which it is <*-equivalent,
by abstraction of the non-observable queries, and by inclusion, respectively. This
means that we lose no generality if we concern ourselves mainly with observable
algorithms.

5.4 Distinguished Morphisms

There may be several morphisms between two algorithms, as in the following
example.

Example 5.12 Let a;, a3 € D(Bool x Bool — Bool) be the following algo-
rithms:

0 Pb=query [{ b.1=tt }]
a, = [{ b.i=tt }] p=query| [{ b.2=tt }]
[{ E;izt }] b=output tt
[{ b.1=tt }]
0 p=query [} b.2=tt %]
" [{ b.1=tt }]
[{ b.o—tt }] b=output tt

There are two morphisms showing that a; <? az: one morphism weakens the
first query and abstracts the second, while the other morphism abstracts the
first query and weakens the second query. °

We may, however, characterize a unique distinguished morphism 8, 4 when-
ever a <’ a’. Intuitively, a distinguished morphism is defined inductively so that
it always weakens whenever possible. Thus, in the previous example, only the
morphism that weakens the initial cell is a distinguished morphism. We make
these ideas more precise as follows.

First, let a,a’ € D(M — M), with a an observable algorithm.

Definition 5.13 Define a partial function 6, 4 : E(a) — E(a’) by induction on
pc € E(a):

. !
pc if {(pjcj,output v;)},_, Fapc& p’Cp

& {(ba.a (pjc;), output v;)}, | o ple

pc if (p1c, query q) o pc & p' Ep
Oa,ar (PC) = & 3¢ T q. (0a,0(prc),query ¢') Fo ple

da,ar(prc) if (p1c,query q) Fo pc & =(3¢' E q . (da,a(p1¢), query ¢') € a)

undefined otherwise

31

We say that d, s preserves the output event (pc, output v) € aiff (0,4 4 (pc), output v) €

a'.

Proposition 5.14 0, is well defined as a partial function, and its domain is
downwards closed with respect to <. If 04,4 preserves all output events of a
that precede pc then d,.q/ s defined on pec; if §q.q0 preserves all output events of
a then 04 o s a total function.

Proof: By induction on pc € E(a). .
Proposition 5.15 4,4 preserves all output events of a iff a <'a by da,a -
Proof: By definition of 6, 4. .
Proposition 5.16 Ifa <'a’ by f then, for every pc € E(a),

(1) There exists pc < pc such that f(pc) = dq.q/(Pc).

(2) g0 preserves all output events that precede pc in a.

(3) For any pc € E(a), f(pc) <% dq.q(pC).

Proof: By induction on pc € E(a).

We assume the following immediate properties of d4 q/:

(a) If 64,4 (pc) is defined and p'c = 04,4/ (pc) then p’ T p.
(b) If 04,4/ (pc) is defined and pe < pe then 84,4 (Pc) <5/ 0,/ (pC).

Let pc € E(a). Note that by induction hypothesis (2) and Proposition 5.14,
a0’ (pc) is defined.

(1) If {(pjc;, output Uj)};‘:1 o pe then, by induction hypothesis (2), the en-

abling is preserved in a’, so that {(d4,a’ (pjc;), output vj)};zl Far a0 (DC).
Similarly, since f is a morphism, {(f(p;c;), output ”j)};=1 Fo f(pc). For
J <, the classes d,.q/(pjc;) and f(pjc;) are both upper-bounded by p;,,
so that, by the tree lemma, 0,4 (p;jc;) = f(pjc;) for each j. Also, the
classes dq o/ (pc) and f(pc) are upper-bounded by p, so by proposition 3.11,
ba,a’ (pC) = f(pe).

If (p1c,query q) F, pc then, by induction hypothesis (1), there exists
p1c < piesuch that f(pic) = 64,0 (P1€) < da,ar(Pr). If f(pc) = f(pic)
then we have shown (1). If, on the other hand, (f(pic),query ¢"”) b
f(pe), with ¢” C g, then it is also the case that (04,4 (P1¢), query ¢"") o
f(pc). We cannot assume that pic is 04 4-weakened, but there is cer-
tainly such a cell on the query chain from pic to pic (since pic itself
qualifies). By well-foundedness, there is a first such cell, say pac: it is
the first cell on the query chain whose query is above ¢’. Since pac is

32

dq,a-weakened, then (Pac, query g¢2) F, pc <& pe, with ¢ C ga, so that
(60,,0/ (ﬁ2c)a query q//) Far 5a,a’ (ﬁc)a and f(pc) = 5a,a’ (ﬁ@z again by propo-

sition 3.11.

(2) Let (pc,output v) € a. Then (f(pc),output v) € @’ and by (1) there
exists pc < pec such that f(pc) = dq,q/(Pc). It follows that 6, 4/ (pc) =
(sa,a’ (]50)

(3) Follows from (1) and (b). .

Corollary 5.17 If a <’ a/ then a <' a’ by 0a,qr. Moreover, dq.q 5 the unique
morphism g that weakens whenever possible, i.e., such that whenever (pc, query q) €
a, (g(pc),query ¢') € a’ and ¢’ C q then g weakens pc.

Proof: Whenever a <' @/, §, 4 preserves all output events and thus is a mor-
phism. Note that d, . weakens whenever possible. It is easy to show by
induction on pc € E(a), that for any morphism g that weakens whenever

possible, g(pc) = 04,4/ (pc). .

The definition of distinguished morphisms d,, can be extended to the
case where a is not an observable algorithm, by making d, . abstract all non-
observable events of a.

The composition of distinguished morphisms is not necessarily distinguished,
as in the following example.

Example 5.18 Consider the algorithms a; and as in example 5.12 above and
the algorithm as given here,

0 b=query| [{ b.2=tt }]

as =

[{ b2=tt }] p=output tt

Clearly, a; <? ay <* a3, and 0a; a5 is the morphism which weakens the first query
and abstracts the second; but da, a; 7 0ay a5 © 0ay,a,, DECAUSE 0a, 2, abstracts the
initial query and therefore the composition is “forced” to abstract too early. e

However, the following can be said concerning composition of distinguished
morphisms.

Proposition 5.19 Ifa <'a’ and o’ <' a”, and 6,4 does not abstract at any
cell preceding pc, and 8y o does not abstract at any cell preceding 04 o/ (pc), then
5a,a”(pc) = 5a/,a“ © 5a,a’ (PC)-

Proof: By induction on pe. .

33

5.5 Limits of Directed Sets

A subset X of a partial order or pre-order (D, <) is directed iff it is non-empty
and every pair of elements of X has an upper bound in X. (D, <) is said to be
directed complete iff every directed subset has a lub.

We start by defining directed complete partial orders on values and events,
which we denote <? again. We then show, using distinguished morphisms, that
the intensional strictness order <* on algorithms is directed complete.

Definition 5.20 For values u and «’ of M — M’ let u <* o' iff u = v’ =
output v, or u = query ¢ and v/ = output v, or u = query ¢q and v’ =
query ¢ with ¢’ C g.

For events (pc,u) and (p'c’,u’) of M — M’ let (pc,u) <* (p'c’,u’) iff p’ C p,
c=c and u <. .

Proposition 5.21 For all M and M’', < is a directed complete partial order
on values and events of M — M.

Proof: Clearly, <! is a partial order on values and on events.

The lub of a directed set of values U is given by

ViU — output v if output v € U,
query M{q|query q € U} otherwise.

The lub is well defined by directedness of U.

The lub of a directed set of events F is (pc,u) where ¢ is the unique
basic cell mentioned in E, p = N{p’ |p'c € F(E)}, and u = ViU for U =
{v'|3(p'c,u') € E}. Directedness of U follows from directedness of E.
(pc,u) is a valid event if u is an output. If u is query ¢ and ¢’ € F(q)
then, by directedness, ¢’ is filled in all queries of FE from some point on, so
that it is accessible in all classes of £ from some point on, and therefore
d € A(p). .

Throughout this section, let A be a directed set of algorithms. For a € A,
let A, be the subset {a' € A|a <'d'}.

The key concept in constructing limits is persistence. A cell is persistent if
it, all cells preceding it, and their images by distinguished morphisms in A, are
never abstracted.

Definition 5.22 A cell pc is persistent from a if it is filled in a and for every
p'd <k pe,a’ € A, and @’ € Ay, 04,4 does not abstract at dq 4 (p'¢).

A cell pe is persistently enabled from a if it has an enabling y -, pc such that
all cells filled in y are persistent from a. °

If a cell is persistent (respectively, persistently enabled) then so is any cell
preceding it, and so is its image by a distinguished morphism in A. Every persis-
tent cell is persistently enabled. Note that, since every cell has a finite proof and

34

abstraction decreases proof height, only a finite number of abstractions may be
performed below a cell pc € E(a), so that there must exist an o’ € A, such that
q,a’ (pc) is persistently enabled. Moreover, it follows from proposition 5.19 that
distinguished morphisms in A compose on persistently enabled cells. Our use
of the term “persistently enabled” is justified by virtue of the following result.

Proposition 5.23 For any pc persistently enabled from a, if y b, pc then
da,a'(Y) Far ba,ar (pC), for each ' € A,.

Proof: Follows from definition of morphisms and persistence of events in y. =

Proposition 5.24 For any pc persistent from a, ¥o(pc) = {(dq,a'(pc),u) € o’ | a’ € Ay}
s a directed set of events.

Proof: For any two events (pj¢, u1) and (pac, us) in ¥, (pe) there exist ay, as €
A, such that (p;c,u;) € a; and pic = q,4,(pc) for ¢ = 1,2. By direct-
edness of A, there is an ag € A,, N A,,. Since distinguished morphisms
compose on persistent cells, dq 4, (pc) = d4;.a,(Pic) for i = 1,2. Hence,
(0a,a0(PC),u) € ag is an upper bound of (p1c,u1) and (pa2c, uz) in ¥, (pc).

As a consequence, whenever pc is persistent from a we may identify an event
Ya(pc) = V'W,4(pc). Tt is from these events that we construct a limit for A.

Proposition 5.25 If A C D(M — M’) is a directed set of algorithms then
(using the above notation),

VIA = {¢a(pc) | a € A & pc is persistent from a}
is a least upper bound for A in D(M — M’).

Proof: VA is certainly a set of events of M — M’. We show that it is a state,
and a least upper bound for A as follows.
For each a € A define ¢, : E(a) — E(V!A) by ¢u(pc) = MNarea,da.a (pc)’.
By proposition 5.21, for any pc persistent from a, 1, (pc) has the form
(¢a(pc),u) for some u. We show

(1) For any pc persistently enabled from a, if y b, pc then ¥, (y) Fyia
ba(pc).

(2) For any p;c and poc persistent from a; and asg, respectively, if ¢4, (p1¢) =
@ay(p2c) then there exists a’ € A,, N Ay, such that 64, o (p10) =
Oas.a’ (P2¢), and Y, (p1¢) = ha, (p2c).

For (1) we give details for the case when pc is has an output enabling.

The reasoning for a query enabling is similar. We make essential use of
proposition 5.23.

"We should really put ¢a(pc) = (MP)c, where P = {p1 |a’ € Aa & p1c =0, q/(pc)}. The
abuse of notation is convenient.

35

! !
If {(pjcj,output vj)},_, ko pe then {(daa(pjc;), output vj)}, | Fao

da,a'(pc) for each o/ € A. Hence 64,4 (pc) € (I_Ié-:ﬁa}a/ (pjcj))/~- Since
M is union and morphisms decrease classes, Myea, 04,0 (PC) € (Marea, U

§:15a7a/ (pjcj))/~. Therefore

Marea, UG—18a,a (pic;) € US_y Nurea, da,a (pic;)-

The converse inclusion can be shown using directedness of A and the
finiteness of the enabling. It follows that {(¢4(p;c;), output ’Uj)}ézl Fyia
¢a(pc), as required for (1).

For (2), suppose ¢g, (p1¢) = ¢a,(p2c). There must exist af € A,, and
ah € A,, such that Oay a (p1e) Saz,al (p2¢). By directedness of A, there
exists a’ € Ayr N Agy. Let pic = 6,0 (pe) for i = 1,2; clearly p 1 p5. By
the tree lemma, pic <, phe or phe <%, plie, so that, by (1), ¢q/(pic) =
b (phe) implies pic = phe.

Note that, by directedness, if pc is persistent from a then for any o’ € A,,
Ya(pe) = Yo (0a,0 (pc)) (and ¢q(pc) = ¢ (a0 (pc))). Therefore we have

wal (plc) = 'I;Z]a’ (5111,(1’ (plc)) = wa’(éag,a’(pQC)) = ¢a1 (P2C)a

as required for (2).

Safety and functionality of VA are corollaries of (1) and (2), respectively,
so that V¢A is indeed a state.

To show that VA is an upper bound of A, observe that ¢, is a morphism
from a to V'A, for each a € A; it preserves all output events and output
enablings, it weakens persistent queries, and it abstracts all other queries.
The range of ¢, is indeed E(VA), as a corollary of (1).

Finally, to show that V’A is a least upper bound of A, let b be an upper
bound of A. Define ¢ : E(V'A) — E(b) by

d(poc) = M{bap(pc) |a € A & pc € E(a) & poc = ¢q(pe)}.
It is easy to show that ¢ is a morphism, and that V'A <' b by ¢. .

Example 5.26 Consider the sequence of algorithms idy,™ € D(Nat — Nat)
for m >0,

{ [0] m=query Uy<,,| [{ n=k }] }

: m
idyat =

U (ngm{ [{ n=k }] m=output k })

This is an increasing sequence, and its lub is idy.s, the identity algorithm on
Nat. In this case, all filled cells are persistent and the distinguished morphisms
never abstract. .

36

Example 5.27 Consider the sequence of algorithms min™ : D(LNatxLNat —
LNat) for m > 0, defined by:

como_ g m
min™ = U;Zgmin,,

using the notation of Figure 12. This again is an increasing sequence, and its
lub is min. Again all filled cells persist and the distinguished morphisms do not
abstract. °

Example 5.28 Recall the algorithms aj, as, az of examples 5.12 and 5.18. Since
a; <! a; <! ag, they form a chain. All filled cells of a, and as are persistent,
but only the output cell of a; is persistent. The lub of this chain, as expected,
is az. °

5.6 Countable DCDSs and Algebraicity

Following Berry and Curien, we now restrict attention to DCDSs having a count-
able set of cells and values. We show that if M and M’ are countable then so
is M — M’. Since all of our atomic DCDSs were countable, the countability
restriction does not affect any of the results or definitions given so far. From
here on we will work exclusively with first order countable DCDSs.

An element of a pre-order is isolated iff whenever it is below a least upper
bound of a directed set it must be below some element of that set. Recall that
a query is uniquely determined by its minimal elements; we refer to these as
the query’s branches. We say that an observable algorithm is finite and finitely
branching (or ffb) iff it has a finite number of events, and each of its queries
has a finite number of branches. We will show that the isolated algorithms are
precisely the ffb algorithms, that there are countably many isolated algorithms
in any countable DCDS, and that every algorithm is a lub of its isolated ap-
proximations, thus establishing that algorithms ordered by intensional strictness
form an w-algebraic pre-order.

Example 5.29 The identity algorithm on Nat is not fib, since it has infinitely
many output events and its query has infinitely many (mutually inconsistent)
branches. The min algorithm is not ffb, because it has infinitely many events.
The following algorithm of Nat x Nat — Bool is not ffb, since it is finite but
its query has infinitely many (equivalent) branches:

T e veaf 50y 2L
[({ n=F }, 0)] B
UreIN { [0 }’{ ok }>] b=output tt

In examples 5.26 and 5.27 each of the idy,;™ and min™ algorithms (m > 0)
is ffb. °

Proposition 5.30 A first order countable DCDS has countably many ffb algo-
rithms.

37

Proof: There are countably many events in an atomic DCDS, hence countably
many finite sets of events in the representation of a first order DCDS. It
follows that there are countably many finitely branching queries and count-
ably many finite classes, and hence that the ffb algorithms are countable.

n
Proposition 5.31 The ffb approximations to an algorithm form a directed set.

Proof: Let a be an algorithm, and let a; and as be two ffb approximations
to a. By proposition 5.5, @’ = 0,4, a(a1) U da,y.a(az) is an algorithm; it is
an approximation to @ by inclusion, and it has a finite number of events.
a’ is not mnecessarily finitely branching, but we may derive from it an
ffb algorithm a such that aj,as <* a <' o’ <' 4. The key idea is to
perform the following operation (inductively): if ¢’ is a query of o’ that
weakens the queries ¢; of a; and ¢y of ag, then replace ¢’ in a by a query
g that contains only those branches of ¢’ that are below branches of ¢; or
q2. q will necessarily be finitely branching, since branches are themselves
finite sets of events. Similarly if ¢’ weakens a query from either a; or
as. Note that replacement of queries of a’ by finitely branching subsets
may lead to splitting of equivalence classes, which needs to be handled by
the construction of a (or, alternatively, some extra elements of ¢’ may be
retained so as to prevent splitting). It is straightforward to show that an
algorithm a so obtained satisfies the required properties. .

Proposition 5.32 Every algorithm is the lub of its ffb approximations.

Proof: First, we fix, for every query ¢, an enumeration of its branches, and we
define a sequence of finite queries {g,},~,, such that g, is the upwards
closure of the first n branches of ¢q. Thus the sequence is decreasing with
respect to C, and we have ¢ = My>0¢n-

For any algorithm a, given an enumeration of queries as above, we define
a sequence of finitely branching approximations to a,

by, (a) = {(p'c,fbn(w)) € Enr—nr | (pe,u) € a & pe € by ,(pe)}
where, for n > 1, the functions fb,, : V. — Vs are defined by
fb,(query ¢q) = query g, b, (output v) = output v
and the functions b, ,, : E(a) — P(Cp—) are inductively defined by
fha,n(pe) = {p'c |y Fa pe & by n(y) Frr—n p'e & p’ E p}

(where by (y) = {(Pjcj, tbnluy)) | I(pjcs,ws) € y - Piej € than(pici)}).
Note that fb, ,(pc) may be empty.

For any algorithm a, we define a sequence of finite depth approximations
to a: (a)g = 0 and for each n > 0, (a)n+1 = {(pc,u) € a|pc € E((a)n)}-

38

Now we combine these two ideas: for each n, (fb,(a)), is finite and finitely
branching. It is straightforward to show that the sequence {(fb,(a))n}, >
is an increasing chain of ffb approximations to a whose lub is a. .

Proposition 5.33 The isolated elements of (D(M — M’),<%) are the ffb al-
gorithms.

Proof:

e We show that every fib algorithm is isolated. Let @ be the lub of a set A
of algorithms, and let a be an ffb algorithm such that a <’ a.

For each pc € E(a), 0q4(pc) € E(a), so that there exist ' € A and
p'c € E(a') such that ¢q (p'c) = dqa(pc). But dq.4(pc) T p, and p is
finitely branching; hence, by directedness, we can choose a’ and p’c such
that additionally p’ C p.

Now, if ' € A has a suitable cell p'c € E(a’) that satisfies the above,
then so does every a” € Ag; therefore, since a has only finitely many
events, and A is directed, there exists an a” € A that satisfies the above
requirements for all pc € E(a) simultaneously. But now it is easy to show
that a <* a”, and therefore a is isolated.

e We show that every isolated algorithm is ffb. Let a be an isolated algo-
rithm. Since @ is the lub of the directed set of its ffb approximations, there
must exist some ay <* @, an ffb approximation to a, such that a <* ayg.
Without loss of generality assume that both ag and @ are observable, and
it follows by anti-symmetry that a = ag is ffb. .

Corollary 5.34 (D(M — M'),<%) is a directed-complete and w-algebraic pre-
order, and its isolated elements are the ffb algorithms.

The fact that the intensional strictness ordering enjoys these order-theoretic
properties enables us to adapt the usual semantic account of recursively defined
objects to the algorithmic setting. It is well known that every continuous func-
tion on a directed-complete partial order has a (unique) least fixed point, which
can be constructed explicitly as the limit of a chain of iterates. A similar result
holds for a directed-complete pre-order, except that the least fixed point is only
unique up to equivalence. While we do not intend to explore recursion deeply
in this paper, we give a simple example to show that parallel algorithms may
be defined recursively.

Example 5.35 Let inc: Crnat — CrLnat be the function which adds 1 to each
cell index; this extends to the queries and classes involved in the construction
of LNat x LINat — LINat in the obvious way, so that for example

inc((S™(L), §7(0))) U (S(L), S(L)) = (S"*1(L), $"*1(0)).

Let ® : D(LNat x LNat — LNat) — D(LNat x LNat — LNat) be the
function defined by

®(a) = ming Uinc(a),

39

referring to Figure 12 for the definition of mingy. Clearly, ® is continuous and
has a least fixed point V; -,®"(()) = min. This example formalizes the intuition
that min is obtained by “iterating” a parallel-or like kernel. .

5.7 Monotonicity and Continuity

Proposition 3.17 states that currying and uncurrying are isomorphisms with
respect to the set inclusion ordering. We now show further that they are order-
isomorphisms with respect to the intensional strictness order.

Proposition 5.36 Currying and uncurrying are monotone and continuous with
respect to the intensional strictness order.

Proof: Observe that, for all a,a’ € D(My x My — M'), if a <" a’ by f then
curry(a) <* curry(a’) by the morphism curry o f o uncurry. .

We next show that application is monotone with respect to <*. Let a,a’ €
D(M — M') with a <* a’ by f:E(a) — E(d’), and x,2’ € D(M) with x <* 2/.
We must find a morphism h : E(a-z) — E(a’-2’). To construct such a morphism,
we need to focus on the events of a-x whose source events in a correspond (under
f) to events in @’ which project by a’; each such event of a-z will thus determine
an event of a’ - 2. We call these the f-preserved events of a - x.

Definition 5.37 All output events of a - z are f-preserved. A query event
(pc, query q) € a-xis f-preserved if f weakens its source event (source, . (pc), query §) €
a, with ¢ = m,(§), into (f(source, .(pc)),query ¢’') € o', with ¢ T ¢, and
0 ¢ 7w (§'). Cells filled in f-preserved events of a - x are also said to be f-
preserved.

Given pc € E(a-x), define P;(pc) to be the set of < -maximal f-preserved
cells below pc,

Py(pc) = {rd| rd <, pc & rdis f-preserved & }.
Vrid . rd <}, md <}, pc = rid is not f-preserved
Define h : E(a-x) — E(d’ - 2') by

pe if {(pjc;, output vj)};zl Fa. pC

1
& {(h(pjc;),output v;)},;_| Faro p'c& p’ Cp

h(pc) = p'c if (p1c, query q) .. pc & picis f-preserved
& (h(pic), query ¢') o ple & p' Ep

h(pic) if (pie, query q) Fq.0 pc & picis not f-preserved

For pc € E(a - z) let Py(pc) = {r'd|r'd <, h(pc)} be the set of cells in a’ - 2’
that enables h(pc). o

Next we show some properties of A, which establish that A is a morphism.

40

Proposition 5.38 For pc € E(a - z),
(1) The function h is well defined on pc.

(2) h maps the mazimal f-preserved cells below pc onto the enabling of
h(pe) in o - o':

{h(rd) | rd € Pi(pc)} = Pa(pc).
(3) Ifpcis f-preserved then h(pc) € F(a'-z") and h(pc) € m,(f(source, (pc)))/~ -

(4) If (pc,output v) € a - x then (h(pc),output v) € o - 2', and if
(pc,query q) € a-x is f-preserved then (h(pc),query ¢') € o’ -2’ for
some q' C q.

Proof: By induction on pec.

(1),(2) Consider the unique enabling of pc in a - z.

If {(pjc;, output Uj>}§‘=1 Fa-z pc, then, by induction hypothesis (1) and ()
for any 1 < j <1, h is defined on p;c; and (h(p;c;), output v;) € a
Y

Therefore h(pc) is the unique p’c such that {(h (pj ¢j),output v;)}._, +

so (2) follows.

If (pic, query ¢q) Fq.. pe then, by induction hypothesis (1), h(pic) is well
defined. If (pic,query q) is not f-preserved, then h(pc) is taken to be
h(pic); thus Py (pc) = Pi(p1c) and Pa(pe) = Pa(pic). Property (2) for pc
follows by induction hypothesis (2) for p;c.

p'c and p’ C p. Moreover, P;(pc) = {p,c; }J S

If, on the other hand, (p;¢, query q) is f-preserved, then, by induction hy-
pothesis (4), (h(p1c),query ¢') € o’ -2’ for some ¢’ C g. Then h(pc) is de-
fined to be the (uniquely determined) p’c such that (h(pic), query 7, (§')) Far.ar
p'c and p’ C p. Moreover, P;(pc) = {p1c} and Pa(pc) = {h(pic)}, so (2)
holds.

(3) Assume that pc is filled in a - . There exists ppc <%, pc such that
Py (pc) Fa.z poc. By 4.8 and 4.10 we have

sourceg 5 (P1(pc)) Fo root, »(poc) <, source, . (pc).
Since the cells in P;(pc) are f-preserved, by applying f we get:
f(sourceq ,(P1(pe))) For f(root, (poc)) <5 f(source, 5 (pc)).

For T € m, (1), we write 7, 5 (7d) for the cell rd such that r € m,()/~ and
Z € r; r is uniquely determined. We also use the obvious extension to a
set of cells or events.

Choose any = € p. Clearly, T € 7,/ (f(source, »(pc))). Now, since the cells
in P;(pc) are f-preserved, we have,

Ty 5 (f(sourceq 5 (P1(pe)))) Faroar Tor z(f(rooty »(poc))) <K p Tar z(f (sourceq 5 (pe))).

41

But if the query chain for 7, 3 (f (r00t, o (poc))) <% b Tar z(f(source, 5 (pc)))
is of non-zero length, then some cell p;c such that poc <% . p1c <, pcis

f-preserved, contradicting the definition of P (pc). Therefore my z(f(roote, »(poc))) =
7y 7 (f(source, »(pc))), and

7o 5 (f(sourceq o (P1(pc)))) Farar Tar z(f (sOUrce, (pc))).

By induction hypothesis (3) and (2), Pa(pc) bor.qr 7o z(f (sOUrce, . (pc))),
while, by definition of Ps(pc), Pa(pc) For.pr h(pe). But h(pe) and 7y z(f (source, . (pc)))
are upper bounded by p, so that, by proposition 3.11, they must be equal.

(4) Follows immediately from (3). Note that if C 2’ and ¢’ T ¢ then
T () € ma(q)- .

Corollary 5.39 Application is monotone in both arguments: if a <* a’ by f
and x <" 2’ then a-x <'a’ -z’ by h, as defined above.

Definition 5.40 The input-output approzimation order <5, on D(M) is defined
by induction on M as follows.

For an atomic DCDS M let <9, be set inclusion.

For a product M; x My let S?wlx M, be defined componentwise.

For an arrow type M — M’ let a <® o' if Ve e D(M) . a-z<°d -x. o

Input-output approximation orders algorithms by the pointwise order on
their input-output functions. It is a pre-order, and two algorithms are input-
output equivalent whenever they compute the same function. For instance, the
or algorithms in figure 15 fall into four equivalence classes, corresponding to
the functions sor, Ior, ror and por, and the diagram collapses to the pointwise
ordering on these functions.

Proposition 5.41 For a first order DCDS M, <%, is contained in <$,.

Proof: An easy corollary of monotonicity of application with respect to <?. =

Thus, whenever a <* a’ we also have a <® a/. The converse fails, because

the input-output approximation order is not properly sensitive to computation
strategy. For instance, 1lsor <® rsor but these two algorithms have incompat-
ible computation strategies and are incomparable under the intensional order.
Putting this result together with the earlier remark that intensional strictness
properly includes set inclusion (proposition 5.6), we may summarize by saying
that the intensional order is strictly coarser than set inclusion and strictly finer
than input-output approximation.

Next we prove that with the intensional ordering application is indeed con-
tinuous.

Proposition 5.42 For anyx € D(M) and non-empty Q C Py(Fgn(rep(M — M"))),

7 (NQ) = {7.(q) # 0 | g € Q},

where the right hand side is to be taken as the empty set in case the glb is
undefined, i.e., m.(q) =0 for every q € Q.

42

Proof: Immediate; recall that the glb is just set union. .

Proposition 5.43 Application is continuous in both arguments: if A is a di-
rected set of algorithms of M — M’ and X is a directed set of states of M, then
(VIA) - (VIX) and Vi{a-z|a € A & x € X} are equivalent.

Proof: Let Z = {a-z|a€ A& x € X}. This is easily seen to be a directed
set of states of M’, by monotonicity of application. Let a, £ and % be
the lubs of A, X and Z, respectively. By monotonicity of application,
2 <'§-%. We show that a -4 C 2. We use notations and definitions as in
the proof of directed-completeness (proposition 5.25), and indicate A, X
or Z to select the appropriate context. We also use the notation 7, z(pc)
as in proposition 5.38 for the cell p’c such that p’ € m,(p)/~ and T € p/
(provided Z € m,(p)).

We prove by induction on p'c € F(a - &) that:

If (f/c,@’) € a4-2 and T € p’ then there exist a € A, pc persistent
from a in A, and = € X, such that
z

(1) ¢ (pc) = sources 4 (p'c).
7z z(pc) is persistently enabled from a-x in Z, and p'c = ¢Z (74 z(pc)).

(2)
(3) 7 .z(pc) is persistent from a-x in Z, and (pc, @') = ¢Z, (7z.z(pc)).
4)

(

Note that if a, pc and z satisfy the above, then so do any a’ € A, 64,0’ (pc)
and 2’ € X,; we rely on this to make successive assumptions about a and
x that can be met by increasing a and z without invalidating any of the
preceding conclusions.

(ple, i) € 2.

Let (p'c,@’) € G- 2, with T € /. Then (source;.z(p'c),4) € a with &' =
m#(1). By definition of & (proposition 5.25), there exist a € A and pc
persistent from a in A such that 2 (pc) = (sources z(p'c), @), and (1)
holds.

Since Z € p’, there must exist some finite g C Z such that (xo,Z) €
2 (pc). By algebraicity, there exists 2 € X such that xo C z. Without
loss of generality, we can choose a so that (xg,Z) € p, and T € 7,(p).

Let ¢ k4.2 p'c. Therefore
sourceg ;(9') Fa roots z (p'c) <3 sources z(p'c).

Now, by the induction hypothesis, for any (pc;,@}) € ¢’ there exist ap-
propriate a; € A, pjc; persistent from a; in A, and xz; € X that verify
the induction hypothesis for ﬁg-cj. Since ¢’ is finite, we can choose a and
x larger than each a; and x;, respectively, so that a and = verify the in-
duction hypothesis for each ﬁgcj. Therefore, there exists a set y C a of
persistent events with ¥ (y) = source z ('), such that y -, poc < pe,
where ¢2(poc) = roots z(p'c). The enabling 12 (y) 4 roots z(p'c) is not

43

fully satisfied by &, while each of the enablings in the (finite) query chain
rootg z (p'c) <3 source, (P c) is fully satisfied by Z. It is therefore possible
to choose z sufficiently large so that it projects the enabling y -, poc and
fully satisfies all the enablings in the chain poc < pc; note that y F, pc
may not be fully satisfied by C &. We thus obtain 7, 3 (y) Fa.e 72z (pC),
and by induction hypothesis (3), 7, z(pc) is persistently enabled from a-x
in Z. Moreover, from (3) we have

¥ = 0Za(maa(y)) bz 074 (maa(pe)),

and since p'c and ¢Z (m, z(pc)) are consistent (both contain Z), then, by
proposition 3.11, they must be equal, and we have established (2).

If &' = output v choose a so that (pc, output v) € a. Then (7, z(pc), output v) €
a-x, 7 z(pe) is clearly persistent from a -z in Z, and (p'c, output v) =
»Z (72 z(pc)), establishing (3) for the output case.

If &' = query ¢ things are somewhat more complicated. First, note that
Zisalsothelubof Z' = {da’ -2’ |a' € A, & 2’ € X, }, so that, without loss
of generality, we may assume that if - ¢ <? o/ - 2’ in Z then a <* o/ and
x Cal.

We choose = so that m,(¢) # 0, where ¢ is the query that fills pc in a.
Since pe is persistent from a in A, for every o/ € A, and a” € Ay, g7 07
does not abstract at d, 4 (pc). But since projection by & does not fully
satisfy at ¢4 (pc), then for every a’ € A, and 2’ € X, 04,4 (pc) is projected
by z’, but is not fully satisfied, so that 4.5 ¢7.2 does not abstract at
Sa-w,ar-a (Tuz(pc)) for a < a’ <* a” and x C 2/ C 2", and 7, z(pc) is
persistent from a - x.

It remains to show that p’c is filled with the same queries in both a-# and
Z, i.e., that

m:(NQ4 (pe)) = M{mar(q) | ¢ € Q4 (pe) & 2’ € X},

where Q7 (pc) = {¢' | @’ € Ay & (4. (pc), query ¢') € a'}. But by propo-
sition 5.42,

T:(NQE (pe)) = N{ms(q) | ¢ € Q2 (pc)}

and the rest follows from the directedness of X and the finiteness of query
elements.

We have established (3), and (4) is an immediate consequence, thereby
completing the proof by induction. Finally, from (4) we conclude that
a-zC2. .

Corollary 5.44 The input-output function of every algorithm in D(M — M')
is a continuous function from (D(M),<%,) to (D(M'),<%,).

44

Example 5.45 The input-output function of the algorithm min is min. For
each n > 0 we have

min - (S™(L),S"(L)) =min™ - (S¥(L),S¥(L)) = S"(L).
Hence,
min - (S¥(L), 5¥(L)) = Visemin- (S™(L),S"(L)) = Visemin™ - (S¥(L), $¥(L)) = S“(L).

6 Future Research Directions

We regard this paper as a first step towards a general theory of determinate
parallelism. We have developed intuitively appealing notions of parallel algo-
rithms, the input-output function of an algorithm, application and currying of
algorithms. We have introduced an intensional strictness ordering on first order
algorithms that appears to be a natural generalization of the usual extensional
order on continuous functions, in the sense that whenever a <* @’ the input-
output function of @ approximates the input-output function of a’ extensionally.
The class of first order parallel algorithms is closed under currying and uncurry-
ing, and contains many interesting algorithms for non-sequential functions; it is
already significantly different from the class of first order sequential algorithms.

We have tried to stay close in spirit to the foundational work of Berry and
Curien, and have to a large extent emulated their development: beginning with
algorithms, defining application, then constructing input-output functions. As
we have pointed out, there is a simple embedding of their (first order) sequential
algorithms into our parallel algorithms that preserves the function computed
by an algorithm. Sequential algorithms correspond to parallel algorithms with
trivial parallelism: each query involves a single cell. However, the generalization
to the concurrent setting has forced us to depart from set inclusion as the
underlying order and to adopt a new order with respect to which application is
well behaved. It is interesting to look back and determine to what extent the
phenomena of abstraction and weakening, upon which our ordering is based,
occur in the Berry-Curien model. Weakening in the sequential setting is reduced
to set inclusion, but abstraction is not. Our intensional strictness pre-order
induces a pre-order on the Berry-Curien model, still (strictly) coarser than set
inclusion and (strictly) finer than input-output approximation. All of this is not
surprising: a conjecture we would like to substantiate is that the relationship
between the set inclusion and intensional strictness orderings on algorithms is
analogous to the relationship between the stable and the pointwise orderings on
functions.

One of the key features in our model is the use of queries instead of valof
commands. We regard queries as generalized sequentiality indices, perhaps bet-
ter called computation indices, since they are applicable to the parallel setting.
We can characterize the class of parallel algorithms which have a stable input-
output function, in Berry’s sense, in terms of their computation indices: an

45

algorithm computes a stable function iff the branches of each of its observ-
able queries are mutually inconsistent, or, equivalently, iff each of its observable
classes has a least element. We intend to develop these ideas and to investigate
the new notions of stability and sequentiality obtained by employing intensional
strictness as the underlying order on states. We conjecture that (in line with
remarks made earlier) the curried parallel-or cpor will turn out to be sequential
in this new sense, since its input type has a single cell, while the uncurried por
remains parallel (as it should). This example also suggests that we should re-
gard as “fully” sequential only those algorithms which remain sequential under
currying and uncurrying.

The intensional strictness order seems to be a natural outcome of our def-
inition of application, which in turn seems quite intuitive. This new ordering,
however, only makes application well behaved for first order DCDSs. Our proofs
of monotonicity and continuity for application do not extend to the higher or-
der case, where intensional strictness on the representation departs from set
inclusion. A reason for the failure at higher order types is that addition of non-
observable query events to an algorithm no longer constitutes an increase in the
information content of the algorithm (as shown in example 5.8) ; therefore, a
higher order algorithm is not able to build incrementally an internal representa-
tion of an argument which itself is an algorithm simply by issuing queries about
the query structure of that argument. A modification is needed to the way in
which the internal representation is built; one possibility is to change the values
of M — M’ to be trees whose internal nodes correspond to queries, and whose
leaves correspond to output events.

In addition to our present limitation to first order types, we do not have yet
a satisfactory notion of algorithm composition. This has not prevented us from
defining application and input-output functions, but of course without compo-
sition we cannot use our algorithms to define a category. Perhaps it is worth
remarking that Berry and Curien [13, 16] present application and input-output
functions before constructing a suitable composition for sequential algorithms,
and even in the sequential case the definition of composition is given indirectly,
by means of “abstract algorithms”. It may not then be surprising that we have
found it difficult to find a suitable parallel generalization.

We have used representation and base DCDSs in our formulation of parallel
algorithms so as to be able to express curried algorithms. While this rather
complicates the internal structure of algorithms, it does facilitate the definition
of currying and uncurrying as operations on algorithms. Nevertheless, the use
of rep and base seems to be at least partially responsible for our difficulty
in formulating a notion of composition for algorithms, and we would like to
explore alternative ways to define algorithms. For instance, we might try to
define M — M’ using events of form (pc,u) with p a class over M, ¢ a cell
of M’, and w either an output over M’ or a query over M, but requiring that
consistent inputs lead to consistent output commands, instead of the current
requirement that consistent inputs lead to the same output command. In order
to allow this we would need to endow CDSs with an order structure so that we
can define what it means for inputs or outputs to be consistent. In a related

46

paper [8] we explore properties of a generalized form of CDS in which cells and
values are equipped with partial orders, with appropriate modifications to the
notion of state.

Much more remains to be done. Ultimately we would like to construct a
model of parallel algorithms that makes sense at all types and yields a cartesian
closed category, so as to provide an intensional semantics for the A-calculus.
In such a semantics the denotation of a term would reflect accurately the ef-
ficiency with which it computes its results, or other intensional aspects. This
should allow us to formalize the sense in which (for example) our min algorithm
computes the min function in complexity 0(min(m,n)).

We can also formulate an intuitively natural ordering that reflects the degree
of parallelism (or eagerness) exhibited by an algorithm, so that, for instance,
psor is indeed the most parallel of the algorithms for sor, while the two se-
quential algorithms 1sor and rsor are local minima for this ordering. There
appears to be a natural hierarchy among parallel algorithms, based on our no-
tion of degree of parallelism. We plan to investigate this parallelism order and
the structure of this hierarchy, in the hope that our ideas may help in assessing
the relative expressive power of various parallel primitives.

7 Acknowledgements

We thank the anonymous referees, who made helpful suggestions that led to
improvements in the presentation of the paper.

References

[1] Milner, R., Fully Abstract Models of Typed Lambda-Calculi, Theoretical
Computer Science, 1977, vol. 4.

[2] Colson, Loic, About Primitive Recursive Algorithms, ICALP’89, Springer-
Verlag LNCS 372, pp. 194-206, 1989.

[3] Sazonov, V. Yu., Sequentially and Parallelly Computable Functionals, Proc.
Symp. on Lambda-Calculus and Computer Science Theory, Springer-Verlag
LNCS 37, 1975.

[4] Plotkin, G. D., LCF Considered as a Programming Language, Theoretical
Computer Science, 5(3): 223-255, 1977.

[5] Smyth, M. B., Power Domains, Journal of Computer and System Sciences,
16(1):23-26, February 1978.

[6] Kahn, G. and MacQueen, D. B., Coroutines and Networks of Parallel Pro-
cesses, Information Processing 1977, pp. 993-998, North Holland, 1977.

47

[7]

[9]

[10]

[11]

[12]

[13]

[14]

Brookes, S. and Geva, S., Towards a Theory of Parallel Algorithms on
Concrete Data Structures, Semantics for Concurrency, Leicester 1990,
pp- 116-136, Springer-Verlag, 1990.

Brookes, S. and Geva, S., Continuous Functions and Parallel Algorithms
on Concrete Data Structures, Mathematical Foundations of Programming
Semantics, 7" International Conference, Carnegie Mellon University, Pitts-
burgh, March 1991, Springer-Verlag, LNCS.

Huet, G., Formal Structures for Computation and Deduction, Class notes
for graduate course at CMU, May, 1986.

Vuillemin, J., Proof techniques for recursive programs, Ph. D. thesis, Stan-
ford University, 1973.

Berry, G., Stable Models of Typed \-Calculi, Proc. 5th Coll. on Automata,
Languages and Programming, Springer LNCS 62, pp. 72-89, 1978.

Kahn, Gilles and Plotkin, Gordon, Domaines Concrets, IRIA-LABORIA,
Rapport 336, 1978.

Berry, G. and Curien, P.-L., Sequential Algorithms on Concrete Data Struc-
tures, Theoretical Computer Science, vol. 20, pp. 265-321, 1982.

Berry, G. and Curien, P.-L., Theory and Practice of Sequential Algo-
rithms: the Kernel of the Applicative Language CDS0, Algebraic Methods
in Semantics, Cambridge University Press, edited by M. Nivat and J. C.
Reynolds, pp 35-87, 1985.

Berry, G., Curien, P.-L. and Lévy, J.-J., Full Abstraction for Sequential Lan-
guages: the State of the Art, Algebraic Methods in Semantics, Cambridge
University Press, edited by M. Nivat and J. C. Reynolds, pp. 89-132, 1985.

Curien, P.-L., Categorical Combinators, Sequential Algorithms and
Functional Programming, Research Notes in Theoretical Computer Sci-
ence, Pitman, 1986.

48

