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Abstract

We give a new denotational semantics for a shared
variable parallel programming language and prove full
abstraction: the semantics gives identical meanings to
commands if and only if they induce the same par-
tial correctness behavior in all program contexts. The
meaning of a command is a set of “transition traces”,
which record the ways in which a command may inter-
act with and be affected by its environment. We show
how to modify the semantics to incorporate new pro-
gram constructs, to allow for different levels of gran-
ularity or atomicity, and to model fair infinite com-
putation, in each case achieving full abstraction with
respect to an appropriate notion of program behavior.

1 Introduction

One of the fundamental purposes of semantics is
to provide rigorous means of proving the correctness
of programs with respect to behavioral specifications.
For any particular language different semantic models
may be suitable for reasoning about different behav-
ioral notions, such as partial correctness, total correct-
ness, and deadlock-freedom. Ideally one would like a
semantics in which the meaning of one term coincides
with the meaning of another term if and only if the
terms induce the same behavior in each program con-
text; this guarantees that one term may be replaced by
the other in any context without affecting the behavior
of the overall program, thus supporting compositional
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or modular reasoning about program behavior. Such a
semantics is equationally fully abstract with respect to
the given notion of behavior [10, 13, 15]. When the set
of program behaviors is equipped with an approxima-
tion ordering and the semantic model has a partial or-
der such that the meaning of one term is less than the
meaning of another if and only if the behavior of the
first term in each program context approximates the
behavior of the second term in the same context, the
semantics is inequationally fully abstract with respect
to the given notion of program behavior and approxi-
mation. An inequationally fully abstract semantics is
also equationally fully abstract.

The difficulty of finding fully abstract semantics is
well known [2, 10, 13, 15]. Many standard semantic
models are correct, in that whenever two terms induce
different behavior in some context they denote differ-
ent meanings, but too concrete since the converse may
fail. Sometimes one can show that by adding extra
syntactic constructs to the programming language the
model becomes fully abstract. However, unless the
extra constructs are computationally natural and the
original language was clearly deficient because of their
omission, the full abstraction problem for the original
language is still important.

The standard state-transformation semantics for
sequential while-programs is fully abstract with re-
spect to partial correctness behavior. However, for a
parallel version of this language [5, 11], in which par-
allel commands can interact by updating and read-
ing shared variables, the full abstraction problem is
more difficult. Parallel programs may exhibit non-
deterministic behavior, depending on the scheduling
of atomic actions, so the partial correctness behav-
ior of a parallel command is naturally modelled as
a non-deterministic state transformation, usually rep-
resented as a function from states to sets of states.
However, the state transformation denoted by a par-
allel combination of commands cannot be determined
solely from the state transformations denoted by the
component commands; thus the state-transformation



semantics for a parallel language is not even composi-
tional, and is certainly not fully abstract. One needs a
semantic model with more detailed structure, so that
the possible interactions between commands executing
in parallel may be modelled appropriately.

Hennessy and Plotkin [5] described a denotational
semantics for this language, based on a recursively de-
fined domain of resumptions, built with a powerdo-
main operator. However, the resumptions semantics
is too concrete: skip and skip; skip denote different
resumptions even though they induce the same par-
tial correctness behavior in all contexts. They showed
that with the addition of extra features to the pro-
gramming language, the resumptions model becomes
fully abstract. However, one of the extra constructs
is a rather peculiar form of coroutine execution which
allows counting of the number of atomic steps taken
by a command executing in parallel. The problem re-
mained of finding a fully abstract model for the origi-
nal parallel language.

In this paper we solve this problem: we describe
a new denotational semantics for this language, and
we show that it is fully abstract with respect to par-
tial correctness behavior. We model the meaning of
a command as a set of transition traces. A transition
trace is a finite sequence of pairs of states recording
a possible interaction sequence of the command with
its environment; each pair of states represents the ef-
fect of a finite, possibly empty, sequence of atomic
actions. The set of traces of a command is closed
under two natural operations: “stuttering” (cf. Lam-
port [9]) and “mumbling”. This model is conceptu-
ally simpler than the resumptions model, since it does
not require the use of powerdomains or recursively de-
fined domains. The model also validates a number of
intuitively natural equations and inequations between
programs which fail in the resumptions model.

We show that our semantic model is adaptable to a
variety of settings: one may easily accommodate the
addition of certain extra features to the programming
language, and the results do not depend crucially on
assumptions about the level of atomicity or granular-
ity of execution. We show that the semantic model can
be extended to model fair infinite computations, pro-
ducing a fully abstract semantics with respect to the
appropriate notion of behavior, in which both termina-
tion and non-termination are regarded as observable.
This semantics may be used to reason about total cor-
rectness, and about safety and liveness properties, of
parallel programs executing fairly.

Previous Work

We have already mentioned the relationship be-
tween our semantics and the resumptions model of
Hennessy and Plotkin [5].

The idea of using sequences or traces of some
kind to model the behavior of concurrent programs
is widespread. For instance, several authors have used
traces to build models of determinate or indeterminate
dataflow networks, notably [7, 8, 14]. Indeed, others
have also used sequences of pairs of states [3, 6, 12]
in imperative settings. However, in these papers a
pair of states represents a single atomic action while
in our model it represents a finite sequence of atomic
actions. The semantics presented in [3, 6] are for dif-
ferent languages and different notions of program be-
havior. Park’s semantics [12] for the same language
that we discuss is too concrete, distinguishing between
skip and skip; skip again, because his traces record
step-by-step behavior exactly. Our work shows how to
adapt his semantics to obtain full abstraction. Abadi
and Plotkin [1] use a trace model (prefix-closed sets
of finite sequences of pairs of states, also closed under
stuttering and mumbling) for reasoning about safety
properties of reactive systems and the study of com-
position rules.

2 Syntax

We discuss a standard shared variable parallel lan-
guage, as in [5, 11]. There are four syntactic sets: Ide,
the set of identifiers, ranged over by I; Exp, the set
of expressions, ranged over by E; BExp, the set of
boolean expressions, ranged over by B; and Com, the
set of commands, ranged over by C. Identifiers and
expressions denote integer values, boolean expressions
denote truth values, and the language contains the
usual arithmetic and boolean operators and constants.
For commands we specify the following grammar:

C ::= skip | I:=E | C1;C2 | C1‖C2 |
if B then C1 else C2 | while B do C |
await B then C

A command of the form await B then C is a con-
ditional critical region, converting C into an atomic
action that is enabled only in states satisfying B; we
impose the (reasonable) syntactic restriction that C
must be a finite sequence of assignments (or skip).



3 An operational semantics

We present a structural operational semantics sim-
ilar to the semantics given in [5].

We use N for the set of integers, ranged over by n;
and V = {tt, ff} for the set of truth values, ranged
over by v. A state is a finite partial function from
identifiers to integer values. Let S = [Ide →p N ]
denote the set of states, ranged over by s. We write
dom(s) for the domain of s, and [s | I = n] for the state
which agrees with s except that it gives identifier I the
value n. We use notation like [I1 = n1, . . . , Ik = nk]
for states.

When s is a state defined on (at least) the free iden-
tifiers of E, we write 〈E, s〉 →∗ n to indicate that E
evaluates to n in state s. Similarly for boolean ex-
pressions. We assume that the semantics of expres-
sions and boolean expressions are given by semantic
functions E and B, characterized operationally by:

E [[E]] = {(s, n) | 〈E, s〉 →∗ n}
B[[B]] = {(s, v) | 〈B, s〉 →∗ v}.

For command execution we specify a set of config-
urations

Conf = {〈C, s〉 ∈ Com× S | free[[C]] ⊆ dom(s)},

a subset of successfully terminated configurations, and
a transition relation → ⊆ Conf × Conf. The suc-
cessfully terminated configurations are those for which
〈C, s〉term is provable. A configuration that is not suc-
cessfully terminated but has no enabled transition is
deadlocked. The transition rules, given in Figure 1,
specify that boolean expression evaluations, assign-
ments, and conditional critical regions are atomic ac-
tions. Later we will show how to adapt our semantics
to model finer levels of atomicity or granularity of ex-
ecution.

4 Partial correctness behavior

We define the partial correctness behavior function
M : Com→ P(S × S) by:

M[[C]] = {(s, s′) | 〈C, s〉 →∗ 〈C ′, s′〉term},

and we put M[[C]]s = {s′ | (s, s′) ∈M[[C]]}.
This induces a preorder vM and an equivalence

relation ≡M on commands:

C vM C ′ ⇐⇒ ∀s.(free[[C]] ∪ free[[C ′]] ⊆ dom(s) ⇒
M[[C]]s ⊆M[[C ′]]s)

C ≡M C ′ ⇐⇒ C vM C ′ & C ′ vM C.

〈skip, s〉term

〈E, s〉 →∗ n

〈I:=E, s〉 → 〈skip, [s | I = n]〉

〈C1, s〉 → 〈C ′1, s′〉

〈C1;C2, s〉 → 〈C ′1;C2, s
′〉

〈C1, s〉term

〈C1;C2, s〉 → 〈C2, s〉

〈C1, s〉 → 〈C ′1, s′〉

〈C1‖C2, s〉 → 〈C ′1‖C2, s
′〉

〈C2, s〉 → 〈C ′2, s′〉

〈C1‖C2, s〉 → 〈C1‖C ′2, s′〉

〈C1, s〉term 〈C2, s〉term

〈C1‖C2, s〉term

〈B, s〉 →∗ tt

〈if B then C1 else C2, s〉 → 〈C1, s〉

〈B, s〉 →∗ ff

〈if B then C1 else C2, s〉 → 〈C2, s〉

〈while B do C, s〉 →
〈if B then C; while B do C else skip, s〉

〈B, s〉 →∗ tt 〈C, s〉 →∗ 〈C ′, s′〉term

〈await B then C, s〉 → 〈skip, s′〉

Figure 1: Operational semantics for commands



Partial correctness equivalence is not a substitutive re-
lation, since we have:

x:=1;x:=x+ 1 ≡M x:=2
(x:=1;x:=x+ 1)‖x:=2 6≡M x:=2‖x:=2.

We therefore define the substitutive preorder ≤M and
substitutive equivalence relation =M:

C ≤M C ′ ⇐⇒ ∀P [·].(P [C] vM P [C ′])
C =M C ′ ⇐⇒ C ≤M C ′ & C ′ ≤M C,

where P [·] ranges over program contexts, that is, pro-
grams with a hole (denoted [·]) into which a command
may be substituted; and P [C] denotes the program ob-
tained by substituting C into the hole. Thus C =M C ′

if and only if C and C ′ are interchangeable in all pro-
gram contexts without affecting partial correctness.

5 Denotational semantics

Resumptions

Hennessy and Plotkin [5] gave a denotational se-
mantics based on a domain R of “resumptions”, de-
fined recursively by the domain equation

R = S → P(S + (R× S)),

where P is a suitable powerdomain constructor, + de-
notes the separated sum and × denotes the cartesian
product of domains. However, the resumptions se-
mantics makes many unnecessary distinctions between
programs: for instance skip and skip; skip denote dif-
ferent resumptions even though they induce the same
partial correctness properties in all contexts.

Hennessy and Plotkin added a form of “corou-
tine” composition C1 co C2 to the syntax of the pro-
gramming language, together with a non-deterministic
choice operation C1 or C2. The operational behavior
of C1 co C2 is to perform single atomic steps alter-
nately from C1 and C2 until one of them terminates,
and C1 or C2 can behave either like C1 or like C2.
These two extra constructs permit program contexts
to be built which can count the number of atomic ac-
tions taken by a command, thus distinguishing be-
tween skip and skip; skip. The resumptions model
then becomes fully abstract for this extended lan-
guage. Nevertheless, this coroutine construct seems
rather ad hoc and the full abstraction problem for the
original language remained open.

Transition traces

The main problem with the resumptions model is
that it represents explicitly the one-step transition re-
lation→ and is therefore forced to distinguish between
too many commands. Instead we design a semantic
model based on the reflexive, transitive closure of the
transition relation (denoted →∗).

Informally, a transition trace of a command C is de-
fined to be a finite sequence (s0, s′0)(s1, s′1) . . . (sk, s′k)
such that it is possible for C to perform a computa-
tion from s0 to s′k if execution is interrupted k times,
the ith interruption changing the state from s′i to si+1

(0 ≤ i < k). A transition trace of this form is
interference-free iff s′i = si+1 for each i. The degener-
ate case (k = 0) yields simply a pair (s, s′) such that
C has a computation from s terminating in s′. For-
mally, we write T [[C]] for the set of transition traces
of C, characterized operationally by:

T [[C]] = {(s0, s′0)(s1, s′1) . . . (sk, s′k) |
〈C, s0〉 →∗ 〈C1, s

′
0〉 &

〈C1, s1〉 →∗ 〈C2, s
′
1〉 &

. . . . . . . . . . . . . . . . . . &
〈Ck, sk〉 →∗ 〈C ′, s′k〉term}.

Proposition 5.1 For all commands C, M[[C]] =
{(s, s′) | (s, s′) ∈ T [[C]]}.

This operational characterization of T has some ob-
vious but important consequences following from the
fact that →∗ is reflexive and transitive:

Proposition 5.2 The set of transition traces of a
command C is closed under “stuttering” and “mum-
bling”: for all α, β ∈ (S × S)∗ and all s, s′, s′′ ∈ S,

αβ ∈ T [[C]] ⇒ α(s, s)β ∈ T [[C]]
α(s, s′)(s′, s′′)β ∈ T [[C]] ⇒ α(s, s′′)β ∈ T [[C]].

Given a set T of transition traces, we let T †, the clo-
sure of T , be the smallest set containing T and closed
under stuttering and mumbling. We say that T is
closed if T = T †. By the above result, T [[C]] is closed.

Let Σ = S × S, and let P†(Σ+) denote the set of
closed sets of (non-empty) traces, ordered by inclusion.
It is easy to see that this forms a complete lattice,
with least element the empty set and with least upper
bounds given by unions.

The standard notion of concatenation for finite se-
quences can be adapted easily to this setting. When
T1 and T2 are closed sets of traces we define

T1;T2 = {αβ | α ∈ T1 & β ∈ T2}†.



We also extend the Kleene-star operation to closed sets
of traces in the obvious way: T ∗ denotes the smallest
set containing T and the empty trace, closed under
stuttering, mumbling and concatenation.

Similarly, the standard notion of interleaving on fi-
nite traces is given inductively by:

α‖ε = ε‖α = {α}
σα‖ρβ = {σγ | γ ∈ α‖ρβ} ∪ {ργ′ | γ′ ∈ σα‖β},

where σ and ρ range over Σ, α and β range over Σ∗,
and ε is the empty trace1. When T1 and T2 are closed
sets of traces we define

T1‖T2 =
⋃
{α‖β | α ∈ T1 & β ∈ T2}†.

We can now give a denotational characterization
for T . To simplify the presentation, and to facilitate
comparison with later developments, it is convenient
to define T [[B]] = {(s, s) | (s, tt) ∈ B[[B]]}†.

Proposition 5.3 The (finite) transition traces se-
mantic function T : Com→ P†(Σ+) is characterized
uniquely by the following clauses:

T [[skip]] = {(s, s) | s ∈ S}†
T [[I:=E]] = {(s, [s | I = n]) | (s, n) ∈ E [[E]]}†
T [[C1;C2]] = T [[C1]]; T [[C2]]
T [[C1‖C2]] = T [[C1]]‖T [[C2]]
T [[if B then C1 else C2]] =

T [[B]]; T [[C1]] ∪ T [[¬B]]; T [[C2]]
T [[while B do C]] =

(T [[B]]; T [[C]])∗; T [[¬B]]
T [[await B then C]] =

{(s, s′) ∈ T [[C]] | (s, s) ∈ T [[B]]}†.

Note that all operations on closed sets of traces used
in this semantic definition are monotone (even con-
tinuous) with respect to set inclusion. An alternative
(and equivalent) definition of the trace semantics of
loops can be given using least fixed points:

T [[while B do C]] =
µT.(T [[B]]; T [[C]];T ∪ T [[¬B]]).

6 Full abstraction

Given the assumption that expression evaluation is
atomic, the only important aspect of an expression’s
operational behavior in the transition rules for com-
mands is its final value. It follows trivially that two

1Although transition traces are always non-empty, some of
our definitions are simpler if we include the empty trace.

expressions induce the same partial correctness behav-
ior in all program contexts if and only if they evaluate
to the same results in all states. Thus, E is fully ab-
stract for the expression sub-language, and B is fully
abstract for the boolean expression sub-language.

We now show that the transition traces semantics
for commands is (inequationally) fully abstract with
respect to partial correctness behavior.

We define T [[C]]s = {s′α | (s, s′)α ∈ T [[C]]} and:

C vT C ′ ⇐⇒ ∀s.(free[[C]] ∪ free[[C ′]] ⊆ dom(s) ⇒
T [[C]]s ⊆ T [[C ′]]s)

C ≡T C ′ ⇐⇒ C vT C ′ & C ′ vT C.

Proposition 6.1 The transition traces semantics T
is inequationally fully abstract: for all commands C
and C ′, C vT C ′ ⇐⇒ C ≤M C ′.

Proof: Suppose C vT C ′. Since T is a denotational
semantics, for each program context P [·] the only rel-
evant aspect of C in determining T [[P [C]]] is T [[C]].
Moreover, all operations used in the semantic defini-
tions are monotone with respect to set inclusion. Thus
we get T [[P [C]]] ⊆ T [[P [C ′]]]. But then for all relevant
states s,

M[[P [C]]]s = {s′ | (s, s′) ∈ T [[P [C]]]}
⊆ {s′ | (s, s′) ∈ T [[P [C ′]]]}
=M[[P [C ′]]]s.

This shows that C vT C ′ ⇒ C ≤M C ′.
Since states are finite, for each state s there is a

boolean expression ISs that evaluates to tt from s′

if s′ agrees with s on dom(s), and evaluates to ff
otherwise. Similarly there is a command MAKEs such
that

〈MAKEs, s′〉 →∗ 〈skip, s〉

for all states such that dom(s′) = dom(s). Such a
command can easily be defined as a finite sequence of
assignments to the identifiers in dom(s).

Now suppose C 6vT C ′, so that there is some transi-
tion trace α = (s0, s′0)(s1, s′1) . . . (sk, s′k) belonging to
T [[C]] and not T [[C ′]]. Let DOα be the command

await ISs′0 then MAKEs1 ;
await ISs′1 then MAKEs2 ;
. . .
await ISs′

k−1
then MAKEsk

.

Let Pα[·] be the program context [·]‖DOα. By assump-
tion that α ∈ T [[C]]− T [[C ′]] it follows that

(s0, s′k) ∈M[[Pα[C]]]−M[[Pα[C ′]]],



skip;C ≡ C ≡ C; skip
(C1;C2);C3 ≡ C1; (C2;C3)
C‖skip ≡ C
C1‖C2 ≡ C2‖C1

(C1‖C2)‖C3 ≡ C1‖(C2‖C3)
C1; (C2‖C) v (C1;C2)‖C
(if B then C1 else C2);C ≡

if B then C1;C else C2;C
if (B1&B2) then C1 else C2 v

if B1 then (if B2 then C1 else C2) else C2

while B do C ≡
if B then C; while B do C else skip

await (B1&B2) then C ≡
await B1 then (await B2 then C)

await false then C v C ′

Figure 2: Some laws of parallel programming

so C 6≤M C ′. Thus, C 6vT C ′ implies C 6≤M C ′. That
completes the proof.

For example, consider the commands C =
x:=1;x:=x + 1 and C ′ = x:=1;x:=2. They have the
same partial correctness semantics but different tran-
sition traces: α = ([x = 0], [x = 1])([x = 0], [x = 1])
is a transition trace of C but not of C ′. The context
Pα[·] built in the proof above is

[·] ‖ await x = 1 then x:=0

and it is clear that Pα[C] may terminate with x = 1
but that Pα[C ′] cannot.

Similarly, consider the commands x:=0 and
x:=0;x:=0. It is easy to see that T [[x:=0]] ⊆
T [[x:=0;x:=0]], and this inclusion is proper. The tran-
sition trace ([x = 1], [x = 0])([x = 1], [x = 0]) is
possible for x:=0;x:=0 but not for x:=0. These two
commands can be distinguished by running them in
parallel with the command await x = 0 then x:=1.

7 Laws of parallel programming

We can use this semantics to prove equations and
inequations between programs, with the guarantee
that these laws may be safely used for reasoning about
partial correctness, in any program context. Some ex-
amples are given in Figure 2, in which ≡ stands for ≡T
and v stands for vT . The majority of these laws fail
in the resumptions model and in Park’s model. The
laws may be easily validated in our semantics, tak-
ing advantage of natural algebraic identities involving
T1;T2, T1‖T2, and T ∗.

A consequence of these laws is the inequality
C1;C2 v C1‖C2. If the expression language is deter-
ministic, so that for all E and s the set E [[E]]s contains
at most one value, we also obtain the inequation:

I:=[E1/I]E2 v I:=E1; I:=E2,

where [E1/I]E2 denotes the expression obtained by
substituting E1 for each free occurrence of I in E2,
with appropriate changes of bound variable to avoid
capturing any free identifiers of E1.

This semantics identifies deadlock (e.g. await false
then C) with divergence (e.g. while true do skip).
This is reasonable, since a deadlocked program and a
diverging program vacuously satisfy the same partial
correctness properties in every program context. In
addition, since assignment is atomic, this semantics
satisfies the law I:=I ≡ skip.

8 Finer granularity

Our semantics can be adapted to deal with finer
levels of granularity. For instance, we might allow in-
terruption of an assignment I:=E during the evalua-
tion of E, and interruption of a conditional during the
evaluation of its test. To make the discussion precise,
suppose that we have the following abstract syntax for
boolean expressions and integer expressions:

B ::= true | false | ¬B | B1&B2 | E1 ≤ E2

E ::= 0 | 1 | I | E1 + E2 |
if B then E1 else E2

To adapt the operational semantics we introduce the
set BExp′ of extended boolean expressions, defined
by adding the clauses B::=v (v ∈ V ) to the gram-
mar for BExp, and the set Exp′ of extended inte-
ger expressions, defined by adding E::=n (n ∈ N) to
the grammar for Exp. We use configurations of form
〈E, s〉 and 〈B, s〉, where E and B are extended expres-
sions. A configuration of form 〈n+E2, s〉 (with n ∈ N)
represents a stage in evaluation of a sum expression
where the left-hand expression has been evaluated to
the integer n and the right-hand expression remaining
to be computed is E2; a configuration of form n ∈ N
represents the final result of evaluation.

A fine-grained operational semantics for expres-
sions is described in Figures 3 and 4. Note that the
transition rules specify that a conjunction B1&B2 is
evaluated from left-to-right with a short-circuit strat-
egy, avoiding evaluation of B2 if B1 evaluates to ff.
On the other hand we specify that in a sum expres-
sion E1 +E2 the two sub-expressions are evaluated in



parallel. These choices were made solely for illustra-
tion, and the transition rules may easily be modified to
model different evaluation strategies without affecting
the general properties of our semantics.

Now that expression evaluation is no longer atomic,
the semantic functions E and B are not fully abstract.
Instead we need to extend the transition traces se-
mantics to cover expressions, to allow for the possibil-
ity that the state may change during evaluation. Since
we assume that expression evaluation never causes any
side-effects, we can use a slightly simpler trace struc-
ture than for commands2:

T [[B]] = {((s0, s0)(s1, s1) . . . (sk, sk), v) |
〈B, s0〉 →∗ 〈B1, s0〉 &
〈B1, s1〉 →∗ 〈B2, s1〉 &
. . . . . . . . . . . . . . . . . . &
〈Bk, sk〉 →∗ v}

T [[E]] = {((s0, s0)(s1, s1) . . . (sk, sk), n) |
〈E, s0〉 →∗ 〈E1, s0〉 &
〈E1, s1〉 →∗ 〈E2, s1〉 &
. . . . . . . . . . . . . . . . . . &
〈Ek, sk〉 →∗ n}.

Thus a trace ((s0, s0)(s1, s1) . . . (sk, sk), v) ∈ T [[B]]
means that there is an evaluation of B from initial
state s0 resulting in value v, during which the envi-
ronment makes k interruptions, the ith interruption
changing the state to si. In particular allowing no
interruptions corresponds to the definition of B, and
B[[B]] = {(s, n) | ((s, s), n) ∈ T [[B]]}. Note that the
traces of an expression are again closed under (the
obvious analogues of) stuttering and mumbling. For
boolean expressions this amounts to the following:

Proposition 8.1 For all boolean expressions B, all
states s, all α, β ∈ Σ∗, and all truth values v,

(αβ, v) ∈ T [[B]] ⇒ (α(s, s)β, v) ∈ T [[B]]
(α(s, s)(s, s)β, v) ∈ T [[B]] ⇒ (α(s, s)β, v) ∈ T [[B]].

We write P†(Σ+×V ) for the set of closed sets, ordered
again by inclusion. Similar properties hold for integer
expressions, so that T [[E]] is a closed subset of Σ+×N .

So far we have characterized T [[B]] and T [[E]] opera-
tionally. As with commands, we can also give denota-
tional definitions. We give the details only for boolean
expressions.

Proposition 8.2 The fine-grained trace semantics
T : BExp → P†(Σ+ × V ) is uniquely characterized

2Actually, we could have used traces of form (s0s1 . . . sk, v),
with minor modifications in what follows. Our notation is delib-
erately chosen so as to simplify some of the details that follow.

〈true, s〉 → tt

〈false, s〉 → ff

〈B, s〉 → 〈B′, s〉

〈¬B, s〉 → 〈¬B′, s〉

〈B, s〉 → tt

〈¬B, s〉 → ff

〈B, s〉 → ff

〈¬B, s〉 → tt

〈B1, s〉 → 〈B′1, s〉

〈B1&B2, s〉 → 〈B′1&B2, s
′〉

〈B1, s〉 → tt

〈B1&B2, s〉 → 〈B2, s〉

〈B1, s〉 → ff

〈B1&B2, s〉 → ff

〈E1, s〉 → 〈E′1, s〉

〈E1 ≤ E2, s〉 → 〈E′1 ≤ E2, s〉

〈E2, s〉 → 〈E′2, s〉

〈E1 ≤ E2, s〉 → 〈E1 ≤ E′2, s〉

〈m ≤ n, s〉 → tt if m ≤ n

〈m ≤ n, s〉 → ff if m > n

Figure 3: A fine-grained operational semantics for
boolean expressions



〈0, s〉 → 0

〈1, s〉 → 1

〈I, s〉 → s[[I]]

〈B, s〉 → 〈B′, s〉

〈if B then E1 else E2, s〉 → 〈if B′ then E1 else E2, s〉

〈B, s〉 → tt

〈if B then E1 else E2, s〉 → 〈E1, s〉

〈B, s〉 → ff

〈if B then E1 else E2, s〉 → 〈E2, s〉

〈E1, s〉 → 〈E′1, s〉

〈E1 + E2, s〉 → 〈E′1 + E2, s〉

〈E2, s〉 → 〈E′2, s〉

〈E1 + E2, s〉 → 〈E1 + E′2, s〉

〈m+ n, s〉 → k if m+ n = k

Figure 4: A fine-grained operational semantics for in-
teger expressions

〈skip, s〉term

〈E, s〉 → 〈E′, s〉

〈I:=E, s〉 → 〈I:=E′, s〉

〈I:=n, s〉 → 〈skip, [s | I = n]〉

〈C1, s〉 → 〈C ′1, s′〉

〈C1;C2, s〉 → 〈C ′1;C2, s
′〉

〈C1, s〉term

〈C1;C2, s〉 → 〈C2, s〉

〈C1, s〉 → 〈C ′1, s′〉

〈C1‖C2, s〉 → 〈C ′1‖C2, s
′〉

〈C2, s〉 → 〈C ′2, s′〉

〈C1‖C2, s〉 → 〈C1‖C ′2, s′〉

〈C1, s〉term 〈C2, s〉term

〈C1‖C2, s〉term

〈B, s〉 → 〈B′, s〉

〈if B then C1 else C2, s〉 → 〈if B′ then C1 else C2, s〉

〈B, s〉 → tt

〈if B then C1 else C2, s〉 → 〈C1, s〉

〈B, s〉 → ff

〈if B then C1 else C2, s〉 → 〈C2, s〉

〈while B do C, s〉 →
〈if B then C; while B do C else skip, s〉

〈B, s〉 →∗ tt 〈C, s〉 →∗ s′

〈await B then C, s〉 → s′

Figure 5: A fine-grained operational semantics for
commands



by the following clauses:

T [[true]] = {((s, s), tt) | s ∈ S}†
T [[false]] = {((s, s), ff) | s ∈ S}†
T [[¬B]] = {(α,¬v) | (α, v) ∈ T [[B]]},

where ¬tt = ff,¬ff = tt
T [[B1&B2]] = {(α, ff) | (α, ff) ∈ T [[B1]]} ∪

{(αβ, v) | (α, tt) ∈ T [[B1]] & (β, v) ∈ T [[B2]]}†
T [[E1 ≤ E2]] = {(γ,m ≤ n) | (α,m) ∈ T [[E1]] &

(β, n) ∈ T [[E2]] & γ ∈ α‖β}†.

An operational characterization of the fine-grained
trace semantics of commands is given exactly as be-
fore, but using the fine-grained transition relation →
from Figure 5:

T [[C]] = {(s0, s′0)(s1, s′1) . . . (sk, s′k) |
〈C, s0〉 →∗ 〈C1, s

′
0〉 &

〈C1, s1〉 →∗ 〈C2, s
′
1〉 &

. . . . . . . . . . . . . . . . . . &
〈Ck, sk〉 →∗ 〈C ′, s′k〉term}.

In the following denotational definition for T [[C]] we
identify T [[B]] with the set {α | (α, tt) ∈ T [[B]]}.

Proposition 8.3 The fine-grained trace semantics of
commands is uniquely characterized by the following
clauses:

T [[skip]] = {(s, s) | s ∈ S}†
T [[I:=E]] = {α(s, [s | I = n]) | (α, n) ∈ T [[E]]}†
T [[C1;C2]] = T [[C1]]; T [[C2]]
T [[C1‖C2]] = T [[C1]]‖T [[C2]]
T [[if B then C1 else C2]] =

T [[B]]; T [[C1]] ∪ T [[¬B]]; T [[C2]]
T [[while B do C]] =

(T [[B]]; T [[C]])∗; T [[¬B]]
T [[await B then C]] =

{(s, s′) ∈ T [[C]] | (s, s) ∈ T [[B]]}†.

Again all operations on trace sets used in this seman-
tics are monotone (even continuous) with respect to
set inclusion.

Of course, since the operational semantics of com-
mands is now fine-grained, we are now interested in
a fine-grained version of partial correctness behavior,
which we still call M, defined as before but using the
fine-grained transition relation of Figure 5.

Proposition 8.4 The fine-grained semantics is fully
abstract with respect to fine-grained partial correct-
ness: for all terms t and t′ of the same syntactic type,
t vT t′ ⇐⇒ t ≤M t′.

Proof: For commands the proof is similar to the proof
of Proposition 6.1.

For boolean expressions t and t′ with different tran-
sition traces it is easy to construct a context of form
C‖if [·] then z:=0 else z:=1 (for a suitably chosen C)
that distinguishes between them.

For integer expressions with different transition
traces we can find a discriminating context of form
C‖z:=[·].

For example, the boolean expressions x ≤ x and
true are not semantically equivalent, and they may
induce different behavior in contexts such as

x:=1; (x:=0‖if [·] then y:=1 else y:=2).

The relationships given in Figure 2 continue to hold
for the fine-grained semantics. However, the identity
I:=I ≡ skip fails because assignment is not atomic.
For example,

x:=0; [x:=x‖x:=1] 6≡M x:=0; [skip‖x:=1].

This is because ([x = 0], [x = 0])([x = 1], [x = 0]) is a
transition trace of x:=x but not of skip. Instead we
get the inequality skip v I:=I.

9 Fairness and strong correctness

So far we have ignored the possibility of infinite
computation and non-termination. This was appro-
priate for reasoning about partial correctness. How-
ever, many parallel programs are designed specifically
not to terminate, and we would like a semantics suit-
able for reasoning about total correctness, and about
safety and liveness properties, in addition to partial
correctness. Moreover, when reasoning about paral-
lel programs it is often natural to make a fairness
assumption [12]: when running commands in paral-
lel, no individual command is forever denied its turn
for execution. It is well known that the assumption
of fairness implies unbounded nondeterminism, and
that in many models (typically using powerdomains)
this causes lack of continuity of various semantic func-
tions [2, 12].

Despite this, we can model fair infinite execution of
parallel programs simply by extending our transition
trace model to include fair infinite traces. A (fair)
infinite trace of a command C is a sequence

(s0, s′0)(s1, s′1) . . . (sn, s′n)(sn+1, s
′
n+1) . . .

describing a (fair) infinite computation of C from ini-
tial state s0 during which execution is interrupted in-
finitely often, the ith interruption changing the state



from s′i to si+1 (for each i ≥ 0). Each (si, s′i) repre-
sents a finite (possibly empty) sequence of atomic ac-
tions performed by the command, and infinitely many
of these action sequences must be non-empty3.

Every finite transition trace of C is fair. In order
to characterize the fair infinite computations of a com-
mand operationally, the fairness condition must be ap-
plied to each parallel sub-command of C: care must
be taken to keep track of which syntactic component
of C performs each atomic action in a computation.
See for example [4].

Let T [[C]] now denote the set of fair transition traces
of C. For obvious reasons only finitely many interrup-
tions can occur between successive atomic actions by
C; consequently, T [[C]] is again closed under stuttering
and mumbling, where we allow finitely many stutters
or mumbles between successive stages in a trace. We
continue to use the notation T † for the closure of T ,
where T now ranges over Σ∞ = Σ+ ∪ Σω, the set of
finite or infinite transition traces. Let P†(Σ∞) denote
the set of closed sets of finite or infinite traces. This
again forms a complete lattice under set inclusion.

We extend concatenation to fair traces in the ob-
vious way: αβ is defined to be α if α is an infinite
sequence. Then we define T1;T2 and T ∗ on closed sets
of finite or infinite traces as before. We also define4

Tω = {α0α1 . . . αn . . . | ∀n ≥ 0.αn ∈ T}†.

For α and β in Σ∞ let α‖β be the set of all traces built
by fairly interleaving α with β. Perhaps the simplest
way to define α‖β formally, following Park [12], is:

α‖β = {γ | (α, β, γ) ∈ fairmerge}
fairmerge = (L∗RR∗L)ω ∪ (L ∪R)∗A
L = {(σ, ε, σ) | σ ∈ Σ}
R = {(ε, σ, σ) | σ ∈ Σ}
A = {(α, ε, α) | α ∈ Σ∞} ∪ {(ε, β, β) | β ∈ Σ∞},

where we extend concatenation to work on sets and
on triples of traces in the obvious way: AB =
{αβ | α ∈ A, β ∈ B} and (α1, α2, α3)(β1, β2β3) =
(α1β1, α2β2, α3β3). When α and β are finite this def-
inition of α‖β coincides with the inductive definition
given earlier. Then we define a fair interleaving oper-
ator on closed sets of traces by:

T1‖T2 =
⋃
{α1‖α2 | α1 ∈ T1 & α2 ∈ T2}†.

3For example, this requirement guarantees that C has an
infinite interference-free trace beginning in state s iff 〈C, s〉 has
a fair infinite computation.

4Note that since ε is not a member of T there is no need to
define what εω means.

With these definitions in hand, we can define T de-
notationally. Apart from the above modifications to
T1;T2 (and therefore also T ∗) and T1‖T2, the only
change in the semantic clauses concerns the meaning
of a loop. We give details only for the coarse-grained
case; the corresponding fine-grained version is obtain-
able similarly.

Definition 9.1 The fair transition traces semantic
function T : Com → P†(Σ∞) is defined by the fol-
lowing clauses:

T [[skip]] = {(s, s) | s ∈ S}†
T [[I:=E]] = {(s, [s | I = n]) | (s, n) ∈ E [[E]]}†
T [[C1;C2]] = T [[C1]]; T [[C2]]
T [[C1‖C2]] = T [[C1]]‖T [[C2]]
T [[if B then C1 else C2]] =
T [[B]]; T [[C1]] ∪ T [[¬B]]; T [[C2]]

T [[while B do C]] =
(T [[B]]; T [[C]])∗; T [[¬B]] ∪ (T [[B]]; T [[C]])ω

T [[await B then C]] =
{(s, s′) ∈ T [[C]] | (s, s) ∈ T [[B]]}†

•

Yet again all operations on trace sets used in this se-
mantics are monotone (even continuous) with respect
to set inclusion. However, the least fixed point char-
acterization for loop semantics no longer applies. In-
stead, the loop semantics corresponds to what might
be called an “operational fixed point” of the function
λT.(T [[B]]; T [[C]];T ∪ T [[¬B]]).

We now need a notion of behavior that takes into
account the possibility of non-termination. We there-
fore introduce a pseudo-state ⊥ to represent non-
termination, and let S⊥ = S ∪ {⊥}.

Definition 9.2 The strong correctness behavior
function M : Com→ P(S × S⊥) is given by:

M[[C]] = {(s, s′) | 〈C, s〉 →∗ 〈C ′, s′〉term} ∪
{(s,⊥) | 〈C, s〉 →ω},

where 〈C, s〉 →ω means that there is an infinite fair
computation of C starting from s. •

This behavior function can also be obtained from the
trace semantics, since 〈C, s〉 →ω holds if and only if C
has an infinite interference-free trace starting from s.

Proposition 9.3 For all commands C,

M[[C]] = {(s, s′) | (s, s′) ∈ T [[C]]} ∪
{(s,⊥) | (s, s1)(s1, s2) . . . (sn, sn+1) . . . ∈ T [[C]]}.



Proposition 9.4 The fair trace semantics is fully ab-
stract with respect to strong correctness: for all com-
mands C and C ′, C vT C ′ ⇐⇒ C ≤M C ′.

Proof: Similar to that of Proposition 6.1, extended
to deal with infinite traces. The most difficult part is
to show that when α is an infinite trace of C that is
not also a trace of C ′, there is some finite prefix β of α
such that the behavior of C “after β” is distinguishable
from the behavior of C ′ “after β”. The proof of this
finite distinguishability property uses König’s Lemma
and the fact that for any command C and any pair of
states s and s′ the set of C ′′ such 〈C, s〉 →∗ 〈C ′′, s′〉 is
finite.

The laws given in Figure 2 continue to hold for the
fair trace semantics, except that the inequation

C1; (C2‖C) v (C1;C2)‖C

may fail if C1 has infinite traces. Nevertheless,
the inequation still holds if C1 is loop-free. Note
that the fair trace semantics no longer identifies
await false then skip with while true do skip,
since the former denotes the empty set and the lat-
ter denotes the set of all infinite stuttering sequences.

10 Total correctness

We remarked earlier that the finite trace semantics
for a loop while B do C has an equivalent formulation
as the least fixed point of the function

λT.(T [[B]]; T [[C]];T ∪ T [[¬B]]).

In the fair trace semantics, the loop’s meaning is still
a fixed point of this functional, but not the least. For
instance, the loop while true do skip has for its fair
traces all infinite stuttering sequences, whereas in the
least fixed point semantics this loop denotes the empty
set. This example also shows that the fair trace se-
mantics does not correspond to the use of the greatest
fixed point either. There is, therefore, a third form of
semantics, obtained by using greatest fixed points in
the semantic clause for loops. Under this semantics
the above loop has all possible traces.

The trace sets constructed in this semantics enjoy a
further closure property in addition to stuttering and
mumbling:

• if αβ ∈ T [[C]] and β ∈ Σω is interference-free, then
for all γ ∈ Σ∞ we also have αγ ∈ T [[C]].

We call this “closure under chattering”. This closure
property has the effect of identifying all commands

that may fail to terminate. This form of trace seman-
tics is fully abstract with respect to total correctness
behavior, defined by

M[[C]] = {(s, s′) | 〈C, s〉 →∗ 〈C ′, s′〉term} ∪
{(s, s′) | 〈C, s〉 →ω & s′ ∈ S⊥}.

11 Robustness

The full abstraction results given above relied only
on certain general properties: monotonicity of the
semantic definitions, compositionality, finite distin-
guishability, and the fact that the behavior of a pro-
gram is embedded in its trace set. We can therefore
extend these results to deal with any additional pro-
gram constructs that do not violate these properties5.
For instance, we may add a non-deterministic choice
construct C1 or C2, with operational semantics given
by:

〈C1 or C2, s〉 → 〈C1, s〉
〈C1 or C2, s〉 → 〈C2, s〉.

Then T [[C1 or C2]] = T [[C1]] ∪ T [[C2]], and all of the
previous development goes through with minor modi-
fications. The semantics is still fully abstract, and the
laws of programming given earlier continue to hold. In
addition, C v C ′ if and only if (C or C ′) = C ′, or is
idempotent, commutative and associative, and or dis-
tributes through sequential and parallel composition.

The coarse-grained semantics satisfies the law

I1:=E1‖I2:=E2 ≡
(I1:=E1; I2:=E2) or (I2:=E2; I1:=E1),

but this fails in the fine-grained case: for example,
when assignment is not atomic x:=x+ 1‖x:=x+ 1 has
the trace ([x = 0], [x = 1]), and this is not a trace of
x:=x+ 1;x:=x+ 1.

12 Summary and Conclusions

We have introduced transition traces and used them
as the basis for a variety of fully abstract semantics
for a shared variable parallel programming language.
Our results apply in coarse- and fine-grained versions
to yield full abstraction with respect to three forms of
program behavior: partial, strong, and total correct-
ness. In each case, extra language features may be
added without invalidating full abstraction, provided

5Of course, the coroutine construct C1 co C2 from Hennessy-
Plotkin cannot be handled by our semantics, since T [[C1 co C2]]
cannot be determined from T [[C1]] and T [[C2]].



certain general semantic properties are preserved; in
particular, the trace semantics of the new features
must be definable compositionally and monotonically.
This shows the flexibility and generality of our ideas
and results.

Program constructs or operational assumptions
(such as fairness) that give rise to unbounded non-
determinism do not appear to cause severe semantic
problems in this framework. For instance, it is almost
trivial to add a random assignment command I:=? to
the syntax, with the following semantics:

T [[I:=?]] = {(s, [s | I = n]) | s ∈ S & n ∈ N}†.

This would not affect the validity of any of our results.
It is interesting to compare our results with the

work of Apt and Plotkin [2], who proved that for a se-
quential while-loop language with random assignment
there is no denotational continuous least fixed point
semantics that is fully abstract with respect to strong
correctness. Our fair trace model provides a denota-
tional continuous semantics for a parallel version of
this language, and is fully abstract for strong correct-
ness; but this is not a least fixed point semantics. The
corresponding least fixed point semantics is fully ab-
stract for partial correctness, and the corresponding
greatest fixed point semantics is fully abstract for to-
tal correctness. For the sequential language there is
no need to use traces to achieve full abstraction, as
the behavior functions can be defined compositionally.
When our definitions are adapted to the sequential set-
ting they yield three fully abstract semantics for the
Apt-Plotkin language, with respect to partial, strong,
and total correctness respectively, again corresponding
to the three interpretations of while-loops.

We plan further research into the use of transi-
tion trace semantics. In particular, with appropri-
ate adjustments to represent deadlock, we can give a
deadlock-sensitive transition trace semantics that can
be used to reason about deadlock-freedom.
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