
Traces: a unifying semantic
framework for parallel

programming languages

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

1

PARADIGMS

•Deterministic sequential

– while-loops, assignment

•Non-deterministic sequential

– guarded commands

• Shared-memory parallel

– parallel composition

– conditional atomic actions

•Communicating parallel

– parallel composition

– message-passing

∗ synchronous

∗ asynchronous

2

SEMANTIC MODELS

•Deterministic sequential
partial functions

S → S⊥
•Non-deterministic sequential

relations
P(S× S⊥)

• Shared memory parallel
transition traces
P((S× S)∞)

•Asynchronous parallel
transition traces
P((S× S)∞)

• Synchronous parallel
failures
P(Σ∗ × P(Σ))

3

PROGRAM BEHAVIOR

• Partial correctness

{pre} P {post}

• Total correctness

[pre] P [post]

• Safety properties

pre ⇒ �¬bad

• Liveness properties

pre ⇒ ♦ good

Fairness is crucial
for liveness analysis

4

FAIRNESS

For shared-memory
or asynchrony

• Enabling is local

P‖Q λ−−→ if P λ−−→ or Q λ−−→

•Reasonable assumption:

no process is ignored forever

Weak (process) fairness

Satisfied by round-robin scheduler

Can model with transition traces

5

FAIRNESS

For synchronous processes. . .

• Enabling is not local

P‖Q δ−→ if P h!v−−−→ & Q h?v−−−→

•Reasonable assumptions:

no process is ignored forever

no potential synchronization
is ignored forever

Satisfied by variant of round-robin

Not modelled by failures

6

THIS TALK

•A fair semantics for CSP

– avoids complex book-keeping

– state handled implicitly

•Generalization of failures

– handles deadlock, divergence

• Full abstraction

– safety and liveness

•A unifying framework

– shared-memory

– asynchronous

– synchronous

∗ blocking or non-blocking guards

7

SYNTAX

• Processes

P ::= skip | x:=e | P1; P2 |
h?x | h!e |
P1‖P2 |
if G fi | do G od |
local x, h in P

•Guarded commands

G ::= (g → P) | G1�G2

•Guards

g ::= b | b ∧ h?x | b ∧ h!e

8

ACTIONS

λ ::= x=v read
| x:=v write
| h?v input
| h!v output
| δX wait

where X ⊆ {h?, h! | h ∈ Chan}

TRACES

Finite or infinite sequences of actions

α ∈ Λ∞ = Λ+ ∪ Λω

δλ = λδ = λ

STATES

Characterized implicitly by enabling relation

s λ−−→ s′

9

OPERATIONAL SEMANTICS

• Transitions

P λ−−→ P ′

G λ−−→ G′

• Termination

P term

• Fair execution

P α−−→

10

TRANSITIONS FOR
GUARDED COMMANDS

(h?x → P) h?v−−−→ x:=v; P

(h?x → P) δh?−−−→ (h?x → P)

G1
λ−−→ P1

G1�G2
λ−−→ P1

λ 6∈ ∆

G2
λ−−→ P2

G1�G2
λ−−→ P2

λ 6∈ ∆

G1
δX−−−→ G1 G2

δY−−−→ G2

G1�G2
δX∪Y−−−−−→ G1�G2

11

TRANSITIONS FOR
PROCESSES

P1
λ−−→ P ′

1

P1‖P2
λ−−→ P ′

1‖P2

P2
λ−−→ P ′

2

P1‖P2
λ−−→ P1‖P ′

2

P1
λ1−−→ P ′

1 P2
λ2−−→ P ′

2

P1‖P2
δ−→ P ′

1‖P
′
2

if match(λ1, λ2)

TERMINATION

P1 term P2 term

P1‖P2 term

12

FAIR EXECUTIONS

Parallel composition

P‖Q γ−−→ iff

P α−−→, Q β−−→,
γ ∈ merges(α, β),
¬match(blocks(α), blocks(β))

•merges(α, β) allows synchronization

• blocks(α) is set of directions occurring
infinitely often in δX steps

Local channels

local h in P α−−→ iff P α−−→, h 6∈ chans(α)

• forces synchronization on h

13

DENOTATIONAL
SEMANTICS

• Define trace sets

T (P) ⊆ Λ∞

with

T (e) ⊆ Λ∗ × V
T (g) ⊆ Λ∗ × {true, false}
T (G) ⊆ Λ∞

by structural induction

• Designed to match operational semantics

• T (P) only includes fair traces

14

SEMANTIC DEFINITIONS

T (skip) = {δ}

T (h?x) = δh?
∗{h?v x:=v | v ∈ V } ∪ δh?

ω

T (h!e) = {α δh!
∗ h!v, αδh!

ω | (α, v) ∈ T (e)}

T (P1‖P2) = {α ∈ merges(α1, α2) |
α1 ∈ T (P1), α2 ∈ T (P2),
¬match(blocks(α1), blocks(α2))}

T (local h in P) =
{α\h | α ∈ T (P) & h 6∈ chans(α)}

T (G1�G2) =
{α ∈ T (G1) ∪ T (G2) | α 6∈ ∆ω} ∪
{δX∪Y

ω | δX
ω ∈ T (G1), δY

ω ∈ T (G2)}

15

RESULTS

•Denotational matches operational

T (P) = {α | P α−−→}

• Traces are sensitive to deadlock

if (a?x → P)�(b?y → Q) fi

has δ{a?,b?}
ω

if (true → a?x; P)�(true → b?y; Q) fi

has δa?
ω and δb?

ω

• Full abstraction

T (P) = T (Q) ⇔ ∀C.B(C[P]) = B(C[Q])

where B observes sequence of states

16

SEMANTIC LAWS

Fairness properties

local h in (h?x; P)‖(h!v; Q)‖R
= local h in (x:=v; (P‖Q))‖R

if h 6∈ chans(R)

local h in (h?x; P)‖(Q1; Q2)
= Q1; local h in (h?x; P)‖Q2

if h 6∈ chans(Q1)

local h in (h!v; P)‖(Q1; Q2)
= Q1; local h in (h!v; P)‖Q2

if h 6∈ chans(Q1)

Not valid in unfair semantics

17

RELATED WORK

• Traditional CSP models

– used finite, prefix-closed traces

– cannot model fairness

– treat divergence as catastrophic

• Traces subsume (stable) failures

(α, R) ∈ F(P) ⇔ α(δX)ω ∈ T (P)

for some X such that ¬match(X, R)

•Older’s models

– different fairness notions

– introduced fairness mod X

– α is fair mod X if blocks(α) ⊆ X

18

ADAPTABILITY

Can handle other parallel paradigms
by making minor changes

• Choose appropriate set of actions Λ

• Adjust relevant semantic definitions

– parallel composition

– input/output

– local channels

In each case:

• Processes denote trace sets

• Full abstraction for safety and liveness

19

ASYNCHRONOUS
COMMUNICATION

λ ::= x=v | x:=v | h?v | h!v | δX

where X ⊆ {h? | h ∈ Chan}

T (h!e) = {α h!v | (α, v) ∈ T (e)}

T (P1‖P2) = {α ∈ merges(α1, α2) |
α1 ∈ T (P1), α2 ∈ T (P2)}

T (local h in P) =
{α\h | α ∈ T (P) & αdh is FIFO}

•merges(α, β) without synchronization

• αdh is FIFO if every input is justified
by earlier output

20

SEMANTIC LAWS

asynchronous

Fairness properties

local h in (h?x; P)‖(h!v; Q)‖R
= local h in (x:=v; P)‖Q‖R

if h 6∈ chans(R)

local h in (h?x; P)‖(Q1; Q2)
= Q1; local h in (h?x; P)‖Q2

if h 6∈ chans(Q1)

Not valid in unfair semantics

21

SHARED MEMORY

λ ::= x=v | x:=v | 〈α〉 (α finite)

T (P1‖P2) = {α ∈ merges(α1, α2) |
α1 ∈ T (P1), α2 ∈ T (P2)}

T (local x in P) =
{α\x | α ∈ T (P) & αdx sequential}

T (await b then a) = wait∗go ∪ waitω

wait = {〈α〉 | (α, false) ∈ A(b)}
go = {〈αβ〉 | (α, true) ∈ A(b), β ∈ A(a)}

• αdx sequential if each read of x is
justified by previous write

22

COMMON THEME

• Programs denote sets of traces

– built from action set Λ

• Fully abstract for safety and liveness

• Can extract traditional semantics

• Trace sets form complete lattice

• Program constructs denote monotone
functions on trace sets

T1 ⊆ T2 ⇒ F (T1) ⊆ F (T2)

• Recursive constructs denote fixed points

– least = finite traces

– greatest = finite + infinite traces

23

FUTURE RESEARCH

•Other fairness notions

– strong, weak / process, channel

• Partial order semantics

– “truly fair” concurrency

• Low-level traces

– pointers, stores, heaps

• Procedures

– possible worlds, parametricity

• Intensional traces

– abstract runtime

• Probabilistic traces

– “fairly true” correctness

24

REFERENCES

• Full abstraction for a shared-variable
parallel language, S. Brookes, LICS’93

• On the Kahn Principle and Fair
Networks, S. Brookes, MFPS 14 (1998)

• Communicating Sequential Processes,
C. A. R. Hoare, CACM (1978)

• A Framework for Fair Communicating
Processes, S. Older, MFPS 13 (1997)

• On the semantics of fair parallelism,
D. Park, Springer LNCS 86 (1979)

• The Theory and Practice of Concurrency,
A. W. Roscoe, Prentice-Hall (1998)

25

