Traces: a unifying semantic
framework for parallel
programming languages

Stephen Brookes

Department of Computer Science
Carnegie Mellon University

PARADIGMS

e Deterministic sequential
— while-loops, assignment

e Non-deterministic sequential
—guarded commands

e Shared-memory parallel

— parallel composition

— conditional atomic actions
e Communicating parallel
— parallel composition
— message-passing
x synchronous
x asynchronous

SEMANTIC MODELS

¢ Deterministic sequential
partial functions

S—>SJ_

e Non-deterministic sequential
relations

P(S X SJ_)

e Shared memory parallel
transition traces

P((S x S)*)

e Asynchronous parallel
transition traces

P((S x S)*>)
e Synchronous parallel
failures
P x P(X))

3

PROGRAM BEHAVIOR

e Partial correctness
{pre} P {post}
e Total correctness
pre] P [post]
e Safety properties
pre = [—bad

e Liveness properties

pre = { good

Fairness i1s crucial
for liveness analysis

4

FAIRNESS

For shared-memory
or asynchrony

e Enabling is local
PllQ 2 if P2 or@Q 2
e Reasonable assumption:
no process is ignored forever
Weak (process) fairness

Satisfied by round-robin scheduler

Can model with transition traces

FAIRNESS

For synchronous processes. ..

e Enabling is not local

P|Q % if Pl & Q Ll
e Reasonable assumptions:

no process is ignored forever

no potential synchronization
is ignored forever

Satisfied by variant of round-robin

Not modelled by failures

THIS TALK

e A fair semantics for CSP

— avoids complex book-keeping

— state handled implicitly
e Generalization of failures
— handles deadlock, divergence
e Full abstraction
— safety and liveness
e A unifying framework

— shared-memory
— asynchronous
— synchronous

x blocking or non-blocking guards

SYNTAX

e Processes
P = skip | xz:=¢e | P; P» |
h?xz | hle |
Pi|| Py |
if Gfi|do G od |
local x,h in P

e Guarded commands
G = (¢ — P)| G1OGs
e Guards

g =b|bART |bAhle

A= = read
T:=0 write
h'lv input
hlv output
0x wailt

where X C {h?,h! | h € Chan}

TRACES
Finite or infinite sequences of actions
ae A =ATUA
OAN = A0 = A

STATES
Characterized implicitly by enabling relation
Ao

S — S

9

OPERATIONAL SEMANTICS

e Transitions
/

PAP
G A G

e Termination

P term

e F'air execution

P

10

TRANSITIONS FOR
GUARDED COMMANDS

(hlx — P) 2 gi=y; P

(h?x — P) % (hle — P)

Gy A P

A A
G0Gy A P

G A, P
G{0Gy 4 Py

A A

G 2% Gy Gy % Gy
G1OG, 22X, G OGs

11

TRANSITIONS FOR
PROCESSES

P2 P Py 2
Pi||Py 2 Pl||Py, P[Py

Py
Py || P

P AL Pl py 22, P
Py[|Py > P[|| P
if match(Ai, \9)

TERMINATION

P term P term
Pi|| P, term

12

FAIR EXECUTIONS

Parallel composition
P|lQ L iff
P Q5

v € merges(a, (3),
—match(blocks(a), blocks((3))

e merges(a, 3) allows synchronization

e blocks(a) is set of directions occurring
infinitely often in 0 x steps

Local channels
local hin P % iff P % hdchans(a)

e forces synchronization on h

13

DENOTATIONAL
SEMANTICS

e Define trace sets

T(P) C A%
with
T(e) CA* XV
T (g) € A* x {true, false}
T(G) C A

by structural induction

e Designed to match operational semantics

e 7 (P) only includes fair traces

14

SEMANTIC DEFINITIONS

T(skip) = {0}
T(h'x) =6p " {hlvx:=v |veV}U¥
T (hle) = {ady ™ hlv, adp” | (a,v) € T(e)}

T(P1||P) = {a € merges(ay, as) |
a1 € T(P)), ag € T(P),
—match(blocks(ay), blocks(as))}

7 (local hin P) =
{a\h | a e T(P)& h ¢ chans(a)}

T(G0Gy) =
{aET(G)UT(GQ)‘O&Q/A(’U}U
{oxuy™ | 0x¥ € T(G1), 0y € T(Go)}

15

RESULTS

e Denotational matches operational
T(P)={a| P}
e Traces are sensitive to deadlock
if (a?z — P)O(b7y — Q) fi
has 5{@?,b?}w

if (true — a?z; P)0(true — b7y; Q) fi

has d,7% and g%

e Full abstraction
T(P)=T(Q) < VC.B(C|P]) = B(C|Q)])

where BB observes sequence of states

16

SEMANTIC LAWS

Fairness properties

local h in (h7x; P)||(hlv; Q)| R
= local h in (z:=v; (P||Q))||R
if h & chans(R)

local h in (h7z; P)||(Q1; Q9)
= (1;local hin (h?z; P)||Q2
if h & chans(Q1)

local h in (hlv; P)||(Q1; Q2)
= (1;local h in (hlv; P)||Q>
if h ¢ chans(Q1)

Not valid in unfair semantics

17

RELATED WORK

e Traditional CSP models

— used finite, prefix-closed traces
— cannot model fairness

— treat divergence as catastrophic

e Traces subsume (stable) failures
(a, R) € F(P) & a(éx)* € T(P)
for some X such that =match(X, R)

e Older’s models

— different fairness notions

— introduced fairness mod X
— a is fair mod X if blocks(a) C X

18

ADAPTABILITY

Can handle other parallel paradigms
by making changes

e Choose appropriate set of actions A

e Adjust relevant semantic definitions

— parallel composition
— input/output

— local channels

In each case:
e Processes denote trace sets

e Full abstraction for safety and liveness

19

ASYNCHRONOUS
COMMUNICATION

Ai=ax=v|x:=v|htv|hlv|dx
where X C {h? | h € Chan}

T (hle) ={ahlv | (a,v) € T(e)}

T(P1||P2) = {a € merges(aq, a9) |
a1 € T(P)), ap e T(P)}

7 (local h in P) =
{a\h | a e T(P) & a|h is FIFO}

e merges(a,) without synchronization

e o[his FIFO if every input is justified
by earlier output

20

SEMANTIC LAWS

asynchronous

Fairness properties

local h in (h?z; P)||(hlv; Q)|| R
= local h in (z:=v; P)||Q|| R
if h & chans(R)

local h in (h?z; P)||(Q1; Q2)
= (@;local hin (h?z; P)||Q2
if h & chans(Q1)

Not valid in unfair semantics

21

SHARED MEMORY

Ai=zx=v |xz:=v | {(a) (« finite)

T(P1||P2) = {a € merges(ay, a9) |
a1 € T(Py), ag e T(P)}

7 (local z in P) =
{a\z | @ € T(P) & az sequential }

7T (await b then a) = wait*go U wait®

wait = {{a) | (o, false) € A(b)}
go = {{af) | (a,true) € A(b), 5 € Ala)}

e o[z sequential if each read of x is
Jqustified by previous write

22

COMMON THEME

e Programs denote sets of traces
— built from action set A
e Fully abstract for safety and liveness
e Can extract traditional semantics
e Trace sets form complete lattice

e Program constructs denote monotone
functions on trace sets

hCT, = F(I) C F(Ty)

e Recursive constructs denote fixed points

— least = finite traces

— greatest = finite + infinite traces

23

FUTURE RESEARCH

e Other fairness notions

— strong, weak / process, channel
e Partial order semantics

— “truly fair” concurrency
e Low-level traces

— pointers, stores, heaps
e Procedures

— possible worlds, parametricity
e Intensional traces

— abstract runtime
e Probabilistic traces

— “fairly true” correctness

24

REFERENCES

e Full abstraction for a shared-variable
parallel language, S. Brookes, LICS'93

e On the Kahn Principle and Fair
Networks, S. Brookes, MFPS 14 (1998)

e Communicating Sequential Processes,

C. A. R. Hoare, CACM (1978)

o A Framework for Fair Communicating

Processes, S. Older, MFPS 13 (1997)

e On the semantics of fair parallelism,
D. Park, Springer LNCS 86 (1979)

e The Theory and Practice of Concurrency,
A. W. Roscoe, Prentice-Hall (1998)

25

