Transfer Principles for Reasoning
about Concurrent Programs

Stephen Brookes
Carnegie Mellon University

Submitted to MFPS 17

Abstract

In previous work we developed a transition trace semantic model,
suitable for shared-memory parallel programs as well as networks of
asynchronous communicating processes, abstract enough to support
compositional reasoning about safety and liveness properties. We now
use this framework to formalize and generalize some techniques used
more or less informally in the literature to facilitate reasoning about
the behavior of concurrent systems, typically without explicit atten-
tion to semantic foundations. Specifically, we identify a key sequential-
to-parallel transfer theorem which, when applicable, allows us to re-
place a piece of a parallel program with another piece which is se-
quentially equivalent, with the guarantee that the safety and liveness
properties of the overall program are unaffected. Two code fragments
are said to be sequentially equivalent if they satisfy the same partial
and total correctness properties. We also specify both coarse-grained
and fine-grained version of trace semantics, assuming different degrees
of atomicity, and we provide a coarse-to-fine-grained transfer theorem
which, when applicable, allows replacement of a code fragment by an-
other fragment which is coarsely equivalent, with the guarantee that
the safety and liveness properties of the overall program are unaffected
even if we assume fine-grained atomicity. Both of these results permit
the use of a simpler, more abstract semantics, together with a no-
tion of semantic equivalence which is easier to establish, to facilitate
reasoning about the behavior of a parallel system.

1 Introduction

It is well known that reasoning about the behavior of parallel programs tends
to be complicated by the combinatorial explosion caused by keeping track of
the ways in which concurrent code fragments may interact dynamically. It is
also well known that simple proof techniques based on state-transformation
semantics do not adapt easily to the parallel setting. A more sophisticated
semantic model is required, in which an accurate account can be given of
interaction or interference between programs. Trace semantics provides a
mathematical framework in which such reasoning may be carried out, and
to some extent the combinatorial problems may be eased by the use of a
number of laws of program equivalence, validated by trace semantics, which
allow us (when applicable) to deduce properties of one program by analyzing
instead a semantically equivalent program with simpler structure. The use
of a succinct and compact notation for trace sets (based on extended regular
expressions) can also help streamline program analysis.

Nevertheless, especially when reasoning about a parallel system which
uses local variables in a disciplined manner, we would like to be able to
adopt even simpler semantic models, and ideally we would like to be able
to take advantage of forms of reasoning familiar from simpler settings. It
is not generally safe to do so; for instance, it is well known that many laws
of program equivalence that hold in the sequential setting cease to be valid
in parallel languages. Yet local variables can only be accessed by processes
occurring within a syntactically prescribed scope, and cannot be changed by
any other processes running concurrently, and we ought to be able to take
advantage of this property to simplify reasoning. Furthermore, when local
variables are only ever used sequentially, in contexts which guarantee that
no more than one process ever gains concurrent access, we should be able to
employ styles of reasoning familiar from the sequential setting.

A number of more or less ad hoc techniques or methodologies have been
proposed along these lines in the literature, usually without detailed con-
sideration of semantic foundations, to facilitate concurrent program analysis
by allowing replacement of a code fragment by another piece of code with
“simpler” behavioral properties that permit an easier correctness proof.

In this paper we use our trace-theoretic framework to formalize and gener-
alize some of these techniques. By paying careful attention to the underlying
semantic framework we are able to recast these techniques in a more precise
manner and we can be more explicit about the (syntactic and semantic) as-

sumptions upon which their validity rests. Since these techniques allow us
to deduce program equivalence properties based on one semantic model by
means of reasoning carried out on top of a different semantic model, we refer
to our results as transfer principles. Our work can also be seen as further
progress towards a theory of context-sensitive development of parallel pro-
grams, building on earlier work of Cliff Jones and spurred on by the recent
Ph. D. thesis of Jiiergen Dingel. We focus our attention in this extended
abstract on some methodological ideas presented in Greg Andrews’s book on
concurrent programming. In the full version we intend to explore more fully
the potential of our framework as a basis for further generalization and to ex-
tend our results to cover some of the contextual refinement ideas introduced
by Dingel.

2 Syntax

Our parallel programming language is described by the following abstract
grammar for commands ¢, in which b ranges over boolean-valued expressions,
e over integer-valued expressions, x over identifiers, a over atomic commands
(finite sequences of assignments), and d over declarations. The syntax for
expressions is conventional and is assumed to include the usual primitives for
arithmetic and boolean operations.

¢ == skip|z:=e| ;|
if b then c; else ¢, |
while b do ¢ |
await b then a |
cifles |
local d in ¢

d = $:6|d1;d2

a == skip | z:=¢e|ay;as

A command of form await b then a is a conditional atomic action, and
causes the execution of a without interruption when executed in a state
satisfying the test expression b; when executed in a state in which b is false
the command idles. We will use the abbreviation (a) for await true then a.
Assume given the standard definitions of free(c), the set of identifiers
occurring free in ¢, and dec(d), the set of identifiers declared by d.

A parallel context is a command which may contain a syntactic “hole”
suitable for insertion of another command. Formally, the set of parallel
contexts, ranged over by C, is described by the following abstract grammar,
in which ¢y, ¢co again range over parallel commands:

C == [-]|skip|xz:=e|C;ca|c1;C
if b then C else ¢, | if b then ¢, else C'|
while b do C'|
await b then a |
Cllez [e|C
local d in C

Note that our abstract grammar for contexts only allows at most one hole
to appear in any particular context. It would be straightforward to adopt a
more general notion of multi-holed context, but the technical details would
become more involved and in any case there is no significant loss of generality.

We write C[c] for the command obtained by inserting ¢ into the hole of
C'. Note that the hole in a context may occur inside the scope of one or more
(nested) declarations, and free occurrences of identifiers in ¢ may become
bound after insertion. To be precise about this possibility we let bound(C')
be the set of identifiers for which there is a binding declaration enclosing the
hole in ', defined as follows:

bound([-]) = {}

bound(z:=e) = {}

bound(C’; cy) = bound(cy; C') = bound(C')

bound(if b then C else c3) = bound(if b then ¢, else C) = bound(C)
bound(while b do C') = bound(C)

bound(await b then a) = {}

bound(C'||c2) = bound(cy1||C) = bound(C')

bound(local d in C') = bound(C') U dec(d)

It is also possible in the same manner to introduce the notion of an atomic
contert, i.e. a command containing a hole into which an atomic command
may be inserted; we will use A to range over atomic contexts, and write Ala]
for the command obtained by inserting a into the hole in A. Atomic contexts

conform to the following abstract grammar:

A = [—-]|skip|z=e|Ajco| ;A
if b then A else ¢, | if b then ¢, else A |
while b do A |
await b then [—] |
Alleg [er]| A
local d in A

A sequential program is just a command containing no await and no
parallel composition. A sequential context is a limited form of context in
which the hole never appears in parallel. We can characterize the set of
sequential contexts, ranged over by S, as follows:

S u= [—]|skip|zi=e| S;ca| 13|
if b then S else ¢, | if b then ¢; else S
while b do S |
await b then a |
ciflez |

local din S

The important point in this definition is that ¢;||S is not regarded as a
sequential context even when S is sequential, but we do allow “harmless” uses
of parallelism inside sequential contexts. The key feature is that sequentiality
of S ensures that when we fill the hole with a command we have the guarantee
that the command will not be executed concurrently with any of the rest of
the code in S.

3 Semantics

The operational behavior of parallel programs is described by the following
transition system. Command configurations have the form (c, s), where cis a
command and s is a state. A state s determines a (finite, partial) function [s]
from identifiers to variables, and a variable corresponds to a state-dependent
updateable integer value. We write (s, z : v) for a state which is like s except
that it associates the identifier x with a “fresh” variable with current value
v; we write [s | z : ¢] for the state which is like s except that the variable
denoted by z in s has current value v. Thus, for instance, the notation

(s, : 0)]z : 1] denotes the same state as (s,z : 1), and [(s,z : 0)|y : 1]
denotes the same state as ([s|y : 1],z : 0) when x and y are distinct identifiers.

(n,s) —n
(x,8) = s(x)

<€178> - <€/1,S>
<€1 + €9, 8) — <6/1 + €9, S>

(e1,8) — ny
<61 + €2, $> - <n1 + €2, S)
(e2,5) = (€3, 9)
(n1 + €9, S> — <7’Ll + 6/2, S>

(true, s) — true (false, s) — false
(b1, s) — (b, s)
(b1 A ba, s) — (b A b, 5)
(b1, s) — true
<bl AN bg, S> — <b2, $>
(b1, s) — false
(by A\ by, s) — false

(e1,8) — (ey, 8) (e2,8) — (e, s)
(e1 = eg,5) — () = e, 8) (e1 = eg,8) — (e1 = €h,5)
(1f ny = ng)

(ng = ng, s) — true

(lf s §£ ’n,g)

(ng = ng, s) — false

(skip, s)term

(e,s) — (¢, s) (e,s) — v
(r:=e,s) — (v:=¢€,s) (r:=e, s) — (v:=v,s)

(x:=v,s) — (skip, [s | x : v])

6

(c1,8) — (], 8" (¢1,s)term

(c1502,8) = (ch; ca, ') (c1;c2,8) — (c2,8)
<clv 8) — <C,17 Sl) <c27 S> — <C/2, 8,>
(cil[e2, s) = {ct|ea, &) (cille2, s) = {eilley, &)

(c1,s)term (co, S)term

(c1]|e2, s)term
(b,s) — (b, s)
(if b then ¢ else ¢y, s) — (if I/ then ¢, else ¢y, s)
(b,sy —t
(if b then ¢ else cq, s) — (if ¢t then ¢; else ¢y, s)

(if true then c; else cs, s) — (cq, s)

(if false then ¢; else ¢, s) — (co, S)

(while b do ¢, s) — (if b then c; while b do c else skip, s)
(b, sy —* true {(a,s) —* (skip, ¢)

(await b then a, s) — (skip, s)
(b, sy —* false
(await b then a, s) — (await b then a, s)

(¢ 5)

(local z = ¢’ in ¢, s)

(e, s

) —
(local z = e in ¢, s) —

(e,8) = v

(local z = e in ¢, s) — (local z = v in ¢,)

(c,(s,x:v)) = (c,(s,x:))

(local z =v in ¢,s) — (local x = ¢’ in ¢, §')

(c,(s,x:v))term

(local z = v in ¢, s)term

A computation of a command c is a finite sequence of transitions, ending in
a terminal configuration, or an infinite sequence of transitions that is fair to
all parallel component commands of ¢. We write (¢, s) —* (¢,) to indicate
a finite, possibly empty, sequence of transitions; and (c,s) —* to indicate
the existence of a (weakly) fair infinite computation starting from a given

configuration. An interactive computation is a finite or infinite sequence of
transitions in which the state may be changed between steps, representing
the effect of other commands executing in parallel. There is an analogous
notion of fairness for interactive computations. A computation is just an
interference-free interactive computation, that is, an interactive computation
in which no external changes occur.

Let M be a standard state-transformer semantics for programs, charac-
terized operationally by:

M) = {(s,5) | {e,5) =" (, ") verm} U {(s, L) | (¢, s) =}

We say that two programs c; and ¢y are sequentially equivalent, written
c1 =pm Co, if and only if M(¢;) = M(ca).

Note that, as is well known, sequential equivalence is a congruence with
respect to the sequential subset of our programming language. In fact, for all
parallel programs ¢; and ¢, if ¢; =p 2 then S[e] =a Sea] also holds for
all sequential contexts S. However, the analogous property fails to hold for
parallel contexts, because in general M (c;||c2) cannot be determined solely
on the basis of M(¢;) and M(cy).

In previous work we developed a transition trace semantic model, suitable
for shared-memory parallel programs as well as networks of asynchronous
communicating processes, assuming weakly fair parallel execution. A tran-
sition trace of a program or process P is a finite or infinite sequence of
steps, each step being a pair of states that represents the effect of a finite
sequence of atomic actions performed by the process. A particular trace
(s0,50)(51,81) -+ (Sn,sh,) ... of P represents a possible fair interactive com-
putation of P in which the inter-step state changes (from s{ to s;, and so on)
are assumed to be caused by processes executing concurrently to P. A par-
allel program denotes a trace set closed under two natural conditions termed
stuttering and mumbling, which correspond to our use of a step to represent
finite sequences of actions: idle or stuttering steps of form (s, s) may be in-
serted into traces, and whenever two adjacent steps (s,s’)(s,s”) share the
same intermediate state they can be combined to produce a mumbled trace
which instead contains the step (s,s”). Traces are “complete”, representing
an entire interactive computation, rather than “partial” or “incomplete”.

Trace semantics can be defined denotationally, and we note in particular
that the traces of P;||P; are obtained by forming fair merges of a trace of Py
with as trace of P,, and the traces of P;; P, are obtained by concatenating

a trace of P, with a trace of P,, closing up under stuttering and mumbling
as required. The traces of local z = v in P do not change the value of (the
“global” version of) z, and are obtained by projection from traces of P in
which the value of (the “local” version of) z is never altered between steps.

It is also possible to specify trace semantics based on different assumptions
about the level of granularity of concurrent execution. It is generally regarded
as realistic to assume fine-grained atomicity, i.e. that reads and writes to
(simple) variables are executed atomically. It is often convenient to make
the less realistic but simplifying assumption of coarse-grained atomicity, in
which assignment commands and boolean expression evaluation are assumed
to be executed indivisibly.

7 (skip) = {(s,s) | s « S}
T(x:=e) ={a(s,[s |z :v]) | (o, v) e T(e) & s e S}
T(Cl, 02) { 109 | a1 € T(Cl) & Qg € (CQ)}T
T (cillea) = {a | T € T(c1), a9 € T(ca). (a1, a2,) € fairmerge}t
T (await b then a) = {(s,5') € T(a) | ((s,5), true) € T (b)}!
U {(s.5) | ((s.9), Jalse) € T(b)}*
7 (while b do ¢) = (T (b)T (¢))* T(ﬂb) U (T(b)T ()
7 (if b then ¢ else ¢2) =T (0)7 (¢1) U T(—0)7T (c2)
T(local z =ein ¢) = {af) | (a,v) e T(e) & (B,x :vp) € T(c)}

We use the notation (3, z:vgv1vs . ..) when [is a trace of form

(50, 50) (81, 87) (82, 55)

and for each i > 0 we have s;(z) = s(z), to stand for the trace

(50,2 : v0), (Sp, @ v1))((s1,2 : v1), (s], 2 v2)) ...

In this “expanded” trace x is treated as a fresh variable and is never altered
between steps. Thus the semantic clause for local z = e in ¢ captures the
intention that e is evaluated to yield an initial value v for the fresh variable,
then c¢ is executed in the expanded state, but only the “global” part of the
state is visible to other processes, since the local x is only in scope for c.
The closure properties ensure that trace semantics is fully abstract with
respect to a notion of behavior which assumes that we can observe the state
during execution. As a result trace semantics supports compositional reason-
ing about safety and liveness properties. Safety properties typically assert

that no “bad” state ever occurs when a process is executed, without interfer-
ence, from an initial state satisfying some pre-condition. A liveness property
typically asserts that some “good” state eventually occurs. When two pro-
cesses have the same trace sets it follows that they satisfy identical sets of
safety and liveness properties, in all parallel contexts.

Both coarse- and fine-grained trace semantics interpret conditional atomic
actions await b then a as atomic, for obvious reasons. The coarse-grained
trace semantics, which we will denote 7,,qs¢, assumes that assignment, and
boolean expression evaluation, are atomic actions executed indivisibly. When
using coarse-grained semantics one can safely assume (for instance) that al-
gebraic laws of arithmetic can be employed to simplify reasoning about pro-
gram behavior. For instance, in coarse-grained trace semantics the assign-
ments r:=x + x and x:=2 X x are equivalent. The fine-grained semantics,
denoted 7., assumes only that reads and writes to simple variables are
atomic. This is closer in practice to conventional implementations of con-
current programs, but we are no longer permitted to assume with impunity
that algebraic laws of expression equivalence remain valid. For instance, the
assignments r:=x 4+ x and x:=2 X x are not equivalent in fine-grained trace
semantics, and this reflects the fact that the former reads the value of x
twice, so that if is changed during execution (say from 0 to 1), the value
assigned may be 0,1 or 2, whereas the latter assignment (under the same
circumstances) would assign either 0 or 2.

Both coarse and fine versions of trace semantics can be defined denota-
tionally, and each induces a notion of program equivalence, as illustrated
above. Despite their characterizations as fine vs. coarse, these two trace
semantic variants induce incomparable notions of semantic equivalence. For
instance, we have already seen a pair of programs which are equivalent in
coarse-grained semantics but not in fine-grained; and the programs z:=xz + 1
and local t = 0 in (t:=x;t:=t + 1; x:=t) are equivalent in fine-grained but
not in coarse-grained semantics.

Each trace equivalence is a congruence for the entire parallel language,
so that whenever ¢; =7 ¢ it follows that C[c;] =7 C|cy] holds for all par-
allel contexts C'. Moreover, ¢; =7 co implies ¢; = ¢o, but the converse
implication is not generally valid.

10

4 Concurrent reads and writes

To prepare the ground, we first need to define for each parallel program c the
multiset reads(c) of identifier occurrences which appear free in non-atomic
sub-expressions of ¢; and the setwrites(c) of identifier occurrences in ¢ which
occur free in ¢ as targets of assignments. It is vital here, as suggested by
the terminology, to keep track of how many references the program makes,
and of what kinds of reference they are, to each identifier. The definition
of reads(c) and writes(c) is a straightforward structural induction, using
standard multiset operations.

For our purposes, we may think of a multiset as a set of identifiers
equipped with a non-negative multiplicity count. In the empty multiset every
identifier has multiplicity 0. When M; and M, are multisets, we let My U M,
be the multiset union in which multiplicities are added, and M; U,,.. M5 be
the multiset union in which multiplicities are combined using max. Given a
multiset M and a set X of identifiers, we define M — X to be the multiset
obtained from M by removing all occurrences of identifiers in X. We write
{z]} for the singleton multiset containing a single occurrence of x.

reads(n) = { [
reads(x) = {xf}

reads(ey + ez) = reads(ey) U; reads(ez)

reads(z = e) = reads(e)
reads(dy; ds) = reads(dy) Upmqs (reads(ds) — dec(d))

reads(skip) = { |

reads(x:=e) = reads(e)

reads(cy; o) = reads(cy||ca) = reads(cr) Upaz reads(cs)

reads(if b then ¢, else ¢3) = reads(b) Upas (reads(cy) Upas Teads(ca))
reads(while b do ¢) = reads(b) U, reads(c)

reads(await b then a) = { [

reads(local d in ¢) = reads(d) Uqq (reads(c) — dec(d))

11

writes(skip) = {}

writes(x:=e) = {x}

writes(c1; ca) = writes(cy||c2) = writes(cy) U writes(ca)
writes(if b then ¢, else o) = writes(cy) U writes(ca)
writes(while b do ¢) = writes(c)

writes(await b then a) = writes(a)

writes(local d in ¢) = writes(c) — dec(d)

We now state some fundamental properties of trace semantics, which
formalize the sense in which the behavior of a parallel program depends only
on the values of its free identifiers. We say that two states s and s’ agree on

a set X of identifiers if for all x € X, s(z) = §'(z).
Agreement Theorem

1. Let a be a trace of ¢ and (s, ') be a step of a. Then s agrees with s’
on all identifiers not in writes(c).

2. Let (so,55)(51,57) - - - (Sn, S,,) - .. be atrace of c. Then for every sequence
of states tg,t1,...,t,,... such that for all i > 0, t; agrees with s; on
X D reads(c), there is a trace

(to, to)(t1, 1)) .. (tns) - ..
of ¢ such that for all i > 0, t; agrees with ¢, on X U writes(c).

Next we define, for each parallel context C, the pair crw(C) = (R, W)
where R is the set of identifiers which occur free in evaluation contexts concur-
rent to a hole of C', and W is the set of identifiers occurring free in assigning
contexts concurrent to a hole. As usual the definition is inductive. (It suf-
fices to work with sets here rather than multisets, since what matters for our
present purposes is whether or not the context may change an identifier’s
value concurrently while whatever command occupies the hole is running,
not how many times the context may do this; even once is bad enough.)

12

(=) = erw(skip) = eru(z=e) = ({},{})
(C;co) = crw(ey; C) = crw(C)
crw(if b then ¢; else C) = crw(if b then C else ¢;3) = crw(C)
rw(while b do C) = crw(C)
crw(await b then a) = ({},{})
crw(c||C) = crw(C||lc) = (R U reads(c), W U writes(c)),
where (R, W) = crw(C)
crw(local d in C) = crw(C)

o

5 Transfer principles

Having set up the relevant background definitions we can now present the
transfer principle to which we have been leading. The first one is almost too
obvious to include:

Theorem 0

If Ais an atomic context and a; = ag, then Ala;] =7 Alas].

Proof The traces of await b then a depend only on the “atomic” traces
of a, i.e. on the traces of a which represent uninterrupted complete execu-
tions; and (s, ') is an atomic trace of a iff (s,s") ¢ M(a).

The next transfer principle identifies conditions under which sequential
equivalence of code fragments can safely be relied upon to establish trace
equivalence of parallel programs.

Theorem 1
If free(c;) U free(cy) C bound(C)), and

|reads(c;) N W| + |writes(¢;)) NR| =0, i=1,2
where (R, W) = cru(C), then
ClL =M C = C[Cl] =7 C[CQ].

Proof

It is worth noting here that the provisos built into this theorem are essen-
tial. If we omit the local declaration around the context the result becomes
invalid, since the assumption that ¢; and ¢, are sequentially equivalent is not
strong enough to imply that ¢; and ¢y are trace equivalent. And if we try
to use the code fragments in a context with which it interacts non-trivially

13

again the result fails: when c¢; and ¢, are sequentially equivalent it does not
follow that local d in (c||c;) and local d in (c||cy) are trace equivalent for
all ¢, even if d declares all of the free identifiers of ¢; and cy. A specific
counterexample is obtained by considering the commands

c: xr=xr+1;,r=xr+1
cy: T=x

We have reads(c;) = {x[}, writes(c¢;) = {x}. Let C be the context
local x =0 in (([—]||lz:=2); y:=x).

Then bound(C) = {z} and crw(C) = ({},{z}). Using the notation of the
theorem, we have

|reads(c;) "W | =1, |writes(c;) "Rl =0
so that the assumption is violated. And it is easy to see that ¢; = ¢, but

Clai] =7 y:=0ory:=1ory:=2
Cles) =1 y:=0o0r y:=2

so that Cley| Z7 Cleal.
Another counterexample shows that the other half of the assumption
cannot be relaxed. Consider

c1 . x:=1; while true do skip
co : x:=2; while true do skip

Let C be the context
local x =0 in ([—]||y:=x).

Then bound(C) = {z}, free(c;) = writes(c;) = {z}, and reads(c;) = {[.
Moreover ¢; =pq ¢2, since M(¢;) = {(s, L) | seS} (i =1,2). We have

|reads(c;) "NW| =0, |writes(c;) N R| =1
so that the assumption is violated again. And we also have

Clc1] =7 (y:=00r y:=1); while true do skip
Cles] =1 (y:=0o0r y:=2); while true do skip

14

so that C[c1] Z1 Clea).
The above theorem is always applicable in the special case where the
context is sequential. We therefore state the following:
Corollary If S is a sequential context, and free(c;) U free(cy) C
bound(S), then
1 =m 2 = Sler] =1 Seq).

Proof When S is sequential we can show that crw(S) = ({},{}).

Many simple laws of sequential equivalence are well known, including de
Bakker’s family of laws for sequential equivalence of sequences of assignment
commands, but most of these laws fail to hold in the parallel setting. Our
result shows the extent to which such laws may safely be used when reasoning
about the safety and liveness properties of parallel programs, pointing out
sufficient conditions under which sequential analysis of key code fragments is
enough to ensure correctness of a parallel program. We illustrate the utility of
this transfer theorem by considering some examples. Notably, this result can
be used to simplify reasoning about a protocol in which concurrent processes
interact periodically to ensure some desired global invariant.

Finally, we now consider what requirements must be satisfied in order
to safely employ coarse-grained trace-based reasoning in establishing fine-
grained equivalences. This may be beneficial, since for a given program
(or program fragment) the coarse-grained trace set forms a (usually proper)
subset of the fine-grained trace set and may therefore permit a streamlined
analysis. This is especially important for code which may be executed con-
currently, since it may help minimize the combinatorial analysis. Indeed,
Andrews supplies a series of examples of protocols in which a “fine-grained”
solution to a parallel programming problem (such as mutual exclusion) is
derived by syntactic transformation from a “coarse-grained” solution whose
correctness is viewed as easier to establish. Common to all of these examples
is the desire to appeal to coarse-grained reasoning when trying to establish
correctness in the fine-grained setting. Our requirements are based on a so-
called “at-most-once” property that Andrews uses to facilitate analysis of a
collection of mutual exclusion protocol designs.

The relevant definitions from Andrews, adapted to our setting, are as
follows:

e An expression b (or e) has the at-most-once property if it refers to at
most one identifier that might be changed by another process while the

15

expression is being evaluated, and it refers to this identifier at most
once.

e An assignment x:=e has the at-most-once property if either e has the
at-most-once property and x is not read by another process, or if e does
not refer to any identifier that may be changed by another process.

e A command c has the at-most-once property if every assignment and
boolean test occurring non-atomically in ¢ has the at-most-once prop-
erty.

An occurrence is atomic if it is inside a subcommand of form await b then a,
and all other occurrences are non-atomic.

Andrews’s methodology is based on the idea that if a command has the at-
most-once property then it suffices to assume coarse-grained execution when
reasoning about its behavior, since there will be no discernible difference with
fine-grained execution. We will couch our transfer principle in slightly more
general terms.

Theorem 2
If free(c;) U free(ce) C bound(C'), and either

|reads(c;) " W| =0

or

|reads(c;) " W| =1 & |writes(¢;)N(RUW)| =0, i =1,2
where (R, W) = crw(C), then

Cl1 =coarse C2 = C[Cl] Eﬁne 0[02]-

Proof It is easy to see that if ¢; =4 o then reads(ci) = reads(cy) and
writes(cy) = writes(cy). Thus, whichever of the two cases holds for ¢, the
same case must hold for ¢y, and vice versa. Suppose, first, that ¢; = oarse C2,
and free(c;) C bound(C), and reads(c;) N W = {}, for ¢ = 1,2, where
(R,W) = crw(C). That is, neither ¢; nor ¢y refers to any identifier which
may be changed concurrently. (insert details)

Now suppose that ¢; =cpuse €2 and that reads(c;) N W = {z} and
writes(¢;) N (RU W) = {}. That is, both ¢; and ¢y refer to x exactly
once, this is the only identifier used by ¢; and ¢y that is also subject to con-
current change by the rest of the context, and no assignments made by ¢; or
¢y affect any identifier used by the rest of the context. (insert details)

16

Again we remark that the built-in provisos imposing locality and the
at-most-once property cannot be dropped. Firstly, every program has the
at-most-once property, trivially, for the context [—]. But the assumption
that ¢; =coarse €2 is insufficient to ensure that ¢; =gn. co. Thus the result
becomes invalid if we omit the localization around the context. To illustrate
the need for the at-most-once assumption, let the programs c¢; and ¢y be
y:=x + x and y:=2 x x. These programs are clearly coarsely equivalent. Let
C be the context

local x = 0;y =0 in (([—]||lz:=1); z:=y).

Of course ¢y refers twice to x, which is assigned to by the context concur-
rently; ¢; does not satisfy the at-most-once property for C. Moreover we can
see that

local x =0;y =0 in ((y:=2 + z||x:=1); z:=y) =fn. 2z:=00rz:=1orz:=2
local x =0;y =0 in ((y:=2 X z||z:=1); 2:=y) =fpe 2:=00r 2:=2

so that Cfc1] #fine Clca). Although our programming language did not in-
clude a non-deterministic choice operator ¢; or ¢y it is convenient to use it
as here, to specify a command that behaves like ¢; or like ¢y; in terms of
trace sets we have 7 (¢c;orcy) = 7(c1) U7 (c2), a similar equation holiding
in coarse- and in fine-grained versions.

Also note that the other way for the assumption to fail is when ¢; (say)
both reads and writes to a concurrently accessed identifier. For instance, let
c1 be z:=x and ¢ be (x:=x). Let C be the context

local x =0 in (([—]||z:=1); y:=x)

Then we have |reads(c;) N W| = 1 and |writes(¢;) N (RUW)| > 0. And
€1 =coarse C2. But Cler] =fine y:=00ry:=1, and Clcs] =fine y:=1.

It is also worth remarking that the above principle cannot be strengthened
by weakening the assumption that c¢; and ¢, are coarsely equivalent to the
assumption that c¢; and ¢y are sequentially equivalent. For example, let ¢;
and c9 be

y:=1; while true do skip

and
y:=2; while true do skip.

17

Let C be the context local y = 0 in ([—]||z:=y). Then we have reads(c;) =
{}, writes(c;) = {y}, crw(C) = ({y},{z}), bound(C) = {y}. Moreover,
¢1 =pm ¢ holds, since M(¢;) ={(s, L) | s e S}, i = 1,2. However,

Cler] =fine (2:=0 or z:=1)

and
Clea) =fine (2:=0 or z:=2).

The coarse- to fine-grained transfer theorem given above generalizes some
more ad hoc arguments based on occurrence-counting in Andrews’s book,
resulting in a single general principle in which the crucial underlying provisos
are made explicit. To make the connection with Andrews’s examples more
precise, note the following special cases of our theorem, which appear in
paraphrase in Andrews:

e If b refers at most once to identifiers written concurrently (by the con-
text), then await b then skip can be replaced by while —b do skip
(throughout the program). This rule is used to justify replacement of
a conditional atomic action with a (non-atomic) busy-wait loop.

e If x:=e has the at-most-once property (for the context) then the assign-
ment z:=e can be replaced by its atomic version await true then x:=e
(throughout the program). This rule is used to simplify reasoning about
the potential for interaction between processes.

6 Conclusions

Our transfer principles can be seen as supplying a semantic foundation for
some of the ideas behind Andrews’s protocol analysis, and a potential basis
for further generalization and the systematic development of techniques to
permit easier design and analysis of parallel programs.

These results permit the use of a simpler, more abstract semantics, to-
gether with a notion of semantic equivalence which is easier to establish, to
facilitate reasoning about the behavior of a parallel system.

18

References

1]
2]

3]

Andrews, G., Concurrent Programming: Principles and Practice.
Benjamin/Cummings (1991).

Brookes, S., Full abstraction for a shared-variable parallel language.
Information and Computation, 127(2), 145-163 (June 1996).

Brookes, S., The essence of Parallel Algol. Proc. 11th IEEE Symposium
on Logic in Computer Science, IEEE Computer Society Press, 164-173
(1996). To appear in Information and Computation.

Brookes, S., Idealized CSP: Combining Procedures with Communicating
Processes. Mathematical Foundations of Programming Semantics, 13
Conference, March 1997. Electronic Notes in Theoretical Computer Sci-
ence 6, Elsevier Science (1997).

URL: http://www.elsevier.nl/locate/entcs/volume6.html.

Brookes, S., Communicating Parallel Processes. In: Millenium Perspec-
tives in Computer Science, Proceedings of the Oxford-Microsoft Sym-
posium in honour of Professor Sir Antony Hoare, edited by Jim Davies,
Bill Roscoe, and Jim Woodcock, Palgrave Publishers (2000).

de Bakker, J., Axiom systems for simple assignment statements. In Sym-
posium on Semantics of Algorithmic Languages, edited by E. Engeler.
Springer-Verlag LNCS vol. 181, 1-22 (1971).

Dingel, J., Systematic parallel programming. Ph. D. thesis, Carnegie
Mellon University, Department of Computer Science (May 2000).

Francez, N., Fairness. Springer-Verlag (1986).

Jones, C. B., Tentative steps towards a development method for inter-
fering programs, ACM Transactions on Programming Languages and
Systems, 5(4):576-619 (1983).

Park, D.; On the semantics of fair parallelism. In Abstract Software
Specifications, edited by D. Bjgrner, Springer-Verlag LNCS vol. 86, 504—
526 (1979).

Park, D., Concurrency and automata on infinite sequences. Springer
LNCS vol. 104 (1981).

19

7 Appendix

skip) = skip
x:=e) = await true then r:=e

c15 C2) = (c1); (c2)
if b then c; else cp) = if (b) then (c¢;) else (cy)

{

{

2

(while b do ¢) = while (b) do (c)
(await b then a) = await b then a
{
{

cillca) = (er)|[(ca)

local z = e in ¢) = local = = (e) in (c)
(c,5) = coarse <C/= 3/> < def ((c),s) — <<C/>= 3/>
((e),s) = v gy (e,5) = v

<€, $> —coarse U <:>def <6, $> —* v

20

