A semantics for
concurrent permission logic

Stephen Brookes

M - ﬂr'
B 1

Traditional logic

OWICKI/(STIESTW.6

[={p} ciq}

@ Shared-memory parallel programs

@ Resource-sensitive partial correctness

resource names,
protection lists,

| of form I (X|);R| o rn(Xn)IRn invariants

inV(I_) —def RI AN 0 AN Rn
Owned(r) =def XI U e U Xn

(subject to static constraints)

Inference rules

@WwicKI/&TiIEeS

if critical variables
are protected

Fi= {2 ideiy = {enip &ifep);
IRERpIVAN P2 cl| |C2R G IVANG 2y

static

P { (P /\R) /\b} . {Cl /\R} constraints

ensure

5 r(X): RN pwith'rwhen'bdo c {q; race-freedom

PR (OX):RENP/ICHAy
['E{p/AR} resource r in c {gAR}

| = {p} c{q} is valid iff...

Every finite computation of ¢
in an environment that respects |,
from a state satisfying p /\ inv(l),

respects |, is race-free,
and ends in a state satisfying g /A inv(l)

(state = store)

@ Owicki-Gries logic is sound,
for simple shared-memory programs

@ But

@® Static constraints don’t prevent heap races

aliasing
can’t be
detected
statically

rrent separationlogic

W Hiearnsu4
NEYNOIdSRUZ

@ Combine Owicki-Gries with separation logic

@ Use X to enforce mutual exclusion for heap

. Use precise resource invariants

(s;h) = @< P2 inv(I9)=der RTKESK RS

iff ShiLha. h=hiUhs & Each invariant holds separately,
(s;h1) E @ & (s,h2) E 2 in .a unique subneap

@ H€earn

if critical variables

are protected * for /\
Fi= o didefiy T {2 el
Static
P X P2y iCi||C2R X q2} constraints
ensure

race-freedom

[r(OX):R" (o) with rwhenbdoc{q | [forvariables..

.. using X
r’ r(X):R " {P} C {q} Prevents
"= {p X R} resource r in c {q XR} heap races

| = {p} c{q} is valid iff...

Every finite computation of c
in an environment that respects [, = X for /A
from a state satisfying p X< inv(l),
respects |, is race-free,
and ends in a state satisfying ¢ < inv(l)

(state = store + heap)

THEOREM

Every provable formula is valid

PROOF
® Based on action trace semantics

® Resource invariants hold separately, for available resources

® Ownership of heap + protected variables is deemed to
transfer when process acquires or releases resource

precision is crucial

Problems

@ Concurrent separation logic is too rigid

@ Cannot handle concurrent reads of heap cells

ENZE0 S Z] Y-Szl 22 0 A= y=0}
valid

Nz = 0=z | :=zH 2= 0 A X=y=0}

valid, provable

Concurrent permissionilogic

~arkinson, bornat,(alcagho=06

@ Blend Owicki-Gries with permission logic

@ Treat store and heap identically

® augment state with permissions

@ Use a permissive form of *

® allow concurrent reads but not writes
And eliminate “awkward’ side conditions...

SUummary: of: talk

@ Concurrent permission logic is sound
@ Can still use action trace semantics

@ Soundness proof generalizes earlier proof
® permissive analogue of precision plays key role

we focus on store,
but heap can be handled
in the same manner

idle

read variable

write variable
® try(r), acq(r), rel(r) resource operations
@ abort error

A ranges over actions

Semantics

Bbrookes 04

@® A command c denotes a set [[c]] of action traces

@ Defined by structural induction

[ciica]l ={ o2 | o € [[ci]l, &2 € [[c2]] }
concatenation

[cilcol = U{ ooz | ou € [, o € [co] }
rESOUICESENSItIVERrace*detecting,
[airiinterleaving

X ranges over traces

Actions need permission

@ Reading requires any permission

® not necessarily exclusive

@ \Writing requires total permission

® mutually exclusive

...such constraints
will be used to
ensure race-freedom...

Permissions

(P, X,T)

@ partial commutative cancellative semi-group

® TXp undefined

® PXp #p

pEp iff p & p” defined
compatipility,

T allows read/write

p# [allows read only

Fractional permissions

®7=01]nQ

0 1 is total,
. p X p'=p+p" ifin (0] any other fraction

allows read only

®T-

.. satisfies the required properties

s:S=Ide —fmV x P

@ Store maps program variables to (value, permission) pairs

@ Stores are consistent if they give same value SHIS)
and compatible permissions, for common variables

@ Consistent stores can be combined

SPKIS

(. == emp empty

©wnjp(X) singleton

(PIPROD) separating conjunction
EI=E equality

= X3P existential

+ standard boolean connectives

E : value expressions expressions
b : permission expressions are pure,

X :logical variables may contain
X : program variables logiel autinle:

state = store + interpretation
(for logical variables)

4 O = (s,i)
@ i) i) iff sFs &i=V

compatibility

composition

@ i) x (s,0) = (sks,i)

logical variables
denote values or permissions

(s,i) Femp iff s={} of = <

(s,i) E Owny(x) iff dv.s={(x, (v, |p|i))} defined

inductively

OF @ X @ iff
401,02.0=01%02& 01 @ & O2F P2

o = Ei=E iff
|[Ei|0 = |E2|O & free(Ei,E2) S dom(O)

WIS

true in (s,i)

ff
& Fvs(9=(v pXq)

DEFINITION

0 is precise iff for all O there is at most one pair
(01,02) such that 0 =)X} 0z2 and 0y F O

EXAMPLES

emp, Owny(x) are precise

if U, 0, are precise, so are

U025, (BAO) WVASBIAD))

Program formulas

[Fvr 1)]

® [offormri:9,..., ri:9,

no protection lists

no static constraints

® O,.., 0, precise
® .. r, distinct

® © , W arbitrary formulas
inV(I_) =defﬁ| * . * .Gn

Inference rules

LbER06

no static constraints

IR DI W Iy SRR (D5 G Doy
IREVA @Ry cH| [2R W5

extra premiss

[(K O)ABHCH KO >0 =b=b i

permission for b

1,0 5 {(p} with r when b do c {U)}

PO O]
[FE{(>x 0} resource r in c {U X0}

Assignment rule

L5ER06

not the usual
substitution rule!

[FEVROWNE(X) PROVADX= e 5:=e X @Wn I (X) PROIVAIX=XY

where
O ranges over ownership claims

OwnFI,(x|) X ... X Ownﬁz(xk)

permission constraints
are implied for free(e), x

CONCURRENT READS

SR OWNE(X) PROWNE(y) BROWNF(2) |
X:=z || y:=z
L ©OWNE(X) SE@WNE(y) (ROWNH(Z) NSy =2

valid,
} provable

CONCURRENT WRITES

P @WnE(X) BROWRE(X) valid,
X:i=x+ | || x:=x+1 provable
L OWNE(X) BEOWNE(X)) Vele Il

Example

distributed counter

[= r:Own(x)X OwnPI(X|) * Ownpz(xz) A X=X1+X2

Let p1 Xqi= p2Xqr=T

RSV O Wnz(XT) SEOWNZ(X2) | .
with r do (x:=x+1; x;:=x+1I) 4
|| with r do (x:=x+1; x2:=x2t1)
L OWNZI(XT) PROWNF(X3) |

PARALLEL,
REGION

Permission transfer

The logic allows proofs in which permissions
transfer implicitly between processes and resources

® For available resources, invariants hold separately
® Processes and resources maintain compatible permissions
® On acquiring, process assumes invariant, claims permissions

® At release, process guarantees invariant, cedes permissions

(cf. ownership transfer)

| ={w} c{w} is valid iff...

Every finite computation of c
in an environment that respects |,
from a state satisfying (O < inv(l),
respects |, is race-free,
and ends in a state satisfying W < inv(l)

(state = store + heap, with permissions)

Validity,

[Fr {(P} C {\.|)} is valid iff

interactive computation

FOI’ a” = [[C]], VO', O',. in environment that

respects [

(0,4
if OF © and O'?O"

then 0" F W

(formalization of earlier definition)

| ogical enabling

O

(0, A) & (CT A')

. O is piece of global state
@ When a process with resources A, claimed by process

in local state O, can do «

@ Assumes environment that respects |

@ Causes abort if o violates permissions,
breaks an invariant, or produces runtime error

... models permission transfer...

enabling

READ
(G A =10 A) if Ip.a(x) = (v, p) reading
¥ requires
(GIA)F=1350rt if x & dom(0) Miprutl
WARITE
(2) =X Makdanh) 7 =heat) = (0) I
requires
X:—V : tot:al.
(G7A) ?} abort otherwise bermission

enabling

ACQUIRE
acq(r)
(G7A) => (GPRO L ATUNTY) assume invariant;
freA roel, oo, o' -9 e
RELEASE
rel(r
(O' g A) g (O' 1, A - {r}) guarantee invariant;
IfI’EA I’\()Er O=0X0,, 02 =0 a5dls PR
reI ()
(o, &) =2 clelejpe error
if r € A r:9 e, if invariant fails

V 01H# 02 (0=0)X0, implies 02 F —9)

THEOREM
Every provable formula is valid

PROOF

@ Each inference rule preserves validity

® Key lemma: PARALLEL DECOMPOSITION

logical computations
are compositional...

Parallel deco

Let X € X|||X2 and O = 0| X O3
04 X 0,4)
If O T) abort then O ? abort or. 02 =r> abOoTnit
< (X
If O =r> O then O] ? aborit
X2
or 0> ? abOTt
or 101400 04=0| K0 &

X X
G=1010880) =r§ 05

Race-freedom

Validity of | -, {®} c {W} implies

interference-free

For all xe [[C]], Vo ,O. global computation
: : X
if o=@ *inv(l) and O =0

then o' FE W *inv(l)
... NO RACES

@ Concurrent permissions logic is sound

® fractional, counting, ... :

® degenerate case P = {T} s

than Permission.

@ Evolution from earlier logics

® general enough to handle readers/writers
® uniform treatment of store and heap

@ Significance of precision

| Precision and Significance in the Real World I

-

A 1500 kg mass

b

-"1' |

Is approaching

Yo oAt ———
45.3 m/s

N
@

" LOOK |/

Precision

(

ouT! e

Significance

39

@ Parkinson, Bornat and Calcagno 06
Variables as resource in Hoare logics, LICS 2006

@ Brookes ’04
A semantics for concurrent separation logicc CONCUR 2004

@ O’Hearn ’04

Resources, concurrency, and local reasoning, CONCUR 2004

@ Reynolds 02
Separation logic: a logic for shared mutable data structures, LICS 2002

