
S t e p h e n B r o o k e s
C M U

A Brief History
of Shared memory

1

Outline
 Revisionist history

 Rational reconstruction of early models

 Evolution of recent models

 A unifying framework

 Fault-detecting trace semantics

 Some general results

 Soundness of fault-avoiding logics

2

Framework

 An abstract notion of state and action

 A recipe for constructing denotational models

 sequential programs

 shared memory parallel programs

 Designed to support compositional reasoning

 fault-avoiding correctness
 rely/guarantee properties

3

State and Action
Definition

⊗ : S × S ⇀ S compatibility

satisfying natural axioms ...

S = (S, ⊗) states
A actions

→ ⊆ S × A × S† footprint

S† = S ∪ {error}+

with

and

A state model is a tuple (S, A, →, ♯)

♯ ⊆ A × A independence

4

State axioms

 (S, ⊗) is a partial commutative monoid...

 ... with unique decomposition

σ⊗τ ≃ τ⊗σ

σ⊗σ1 = σ⊗σ2 ⇒ σ1 = σ2

ρ⊗(σ⊗τ) ≃ (ρ⊗σ)⊗τ

5

Footprint axioms

 Successful action has unique cause

 Failure is irrevocable

λ

λ

σ →σ’ , σ = σ ⊗ σ
λ

For all σ, λ
at most one σ such that

If σ1 ⊗ σ2 → error,

then σ1 → error

1

1 1 21

6

Independence axioms
 Independence implies non-interfering footprints

 Symmetry

σ1 → σ1’ & σ2→ σ2’
λ2λ1

 ∃τ1’, τ2’.

σ = σ1⊗τ1 = σ2⊗τ2

implies

σ1’⊗τ1 = σ2⊗τ2’

σ2’⊗τ2 = σ1⊗τ1’
σ1’⊗τ1’ = σ2’⊗τ2’

&

&

&

 λ1♯λ2 &

λ1♯λ2 implies λ2♯λ1

7

Enabling
For any state model we can derive an enabling relation

⇒ ⊆ S† × A × S†

σ ⇒ σ’ iff ∃σ1, σ1’, σ2 ∈ S.

 σ = σ1⊗σ2

 & σ’ = σ1’⊗σ2

 & σ1→σ1’

λ

λ

λ λ
Let σ ⇒ error iff σ → error or σ = error

Let

8

consequences
 Frame

 Safety monotonicity

σ1 ⇒ τ1 ≠ error
λ

implies

& σ1⊗σ2 ⇒ τλ

τ = τ1⊗σ2

 σ1 ⊗ σ2 ⇒ error
implies

σ1 ⇒ error

λ

λ

9

consequences

 Independent actions don’t interfere

σ ⇒ τ1 , σ ⇒ τ2
λ2λ1

 ∃τ. τ1 ⇒ τ , τ2 ⇒ τλ1λ2

implies

If λ1♯λ2 then

10

EXAMPLE

 S = (Ide → V) ∪ {1}

 σ⊗1 = σ = 1⊗σ

 A = S×S

σ → τ
(σ, τ)

global transition traces

(σ1, τ1) ♯ (σ2, τ2) iff σ1=τ1=σ2=τ2

cf. Park 1979

11

EXAMPLE

 S = Ide ⇀fin V

 -⊗- disjoint union

 A = {(σ, τ) | dom σ = dom τ}

σ → τ
(σ, τ)

σ1 → error
(σ, τ)

iff σ1↾dom(σ)= σ↾dom(σ1) ⊂ σ

local transition traces

(σ1, τ1) ♯ (σ2, τ2) iff dom(σ1)∩dom(σ2)=∅

cf. LICS 1996
12

EXAMPLE

 S = Ide ⇀fin V

 -⊗- disjoint union

 A = {i=v, i:=v | i ∈ Ide, v ∈ V}

 [i:v] → [i:v’]

 iff i ∉ dom(σ)

 ¬(i:=v ♯ i=v’), ¬(i:=v ♯ i:=v’)

[i:v] → [i:v]
i=v

σ → error
i=v, i:=v’

i:=v’

action traces, shared store

cf. CONCUR 2002
13

EXAMPLE

 S = Store × Heap

 -⊗- disjoint union, componentwise

 A = Astore ∪ {[l]=v, [l]:=v, alloc(l,v), disp l}

 ([],[]) → ([], [l:v])

 ([], [l:v]) → ([], [])

 (s, h) → error iff l ∉ dom(h)

 ¬(disp l ♯ disp l)

alloc(l,v)

disp l

disp l

action traces, shared mutable state

cf. CONCUR 2004
14

Example
 S = Ide ⇀fin V × P
 -⊗- combines permissions, when compatible

 A ={(i=v, π), (i:=v, ⊤) | π ∈ P, v ∈ V}

 [i:(v,π)] → [i:(v,π)]

 [i:(v,⊤)] → [i:(v’, ⊤)]

 σ → error iff i ∉ dom(σ)

 σ → error iff ¬∃v. (i, (v,⊤)) ∈ σ

 (i=v,π1)♯(i=v,π2) when π1⊕π2 defined

i=v, π

i:=v’,⊤

permissions

 , a permission algebra

i=v, π

i:=v’,⊤

(P,⊕,⊤)

cf. MFPS’05
15

Traces

 A trace is a finite or infinite sequence of actions

 α is (sequentially) executable iff ∃σ. σ ⇒

 Let α⌒β iff αβ executable

 Let Tr(A) ⊆ ℘(A∞) be sets of executable traces

α .

16

Semantic recipe

 Given a state model ∑ = (S, A, →, ♯)

〚c〛

〚-〛: Com → Tr(A)
〚-〛: Expint → Tr(A) × Vint

〚-〛: Expbool → Tr(A) × Vbool

by structural induction

∑

∑

∑

for sequential programs

we can define a trace semantics

∑ is set of executable traces

17

semantic clauses

〚c1;c2〛=

〚while b do c〛 =

(〚b〛 〚c〛)ωtrue(〚b〛 〚c〛)∗true false〚b〛 ∪

〚c1〛〚c2〛

= {αβ | α∈ , β∈ , α⌒β}〚c1〛 〚c2〛

18

Fault-avoiding
correctness

∀σ∈S. ∀α∈ . 〚c〛 ∀σ’.

σ ⇒ σ’α
implies σ’ ≠ error & σ’ q ⊨⊨p & σ

every finite execution of c,
from a state satisfying p,

is error-free,
and ends in a state satisfying q

Definition
{p}c{q} is valid iff

19

Validation Theorem

〚c1〛=〚c2〛

implies

∀C. ∀p,q.

{p}C[c1]{q} valid iff {p}C[c2]{q} valid

sequential commands with
the same executable traces
satisfy the same formulas,
in all sequential contexts

For all sequential programs,

20

Parallel programs

 c1||c2

 with r when b do c

 resource r in c

shared memory

conditional critical region

local resource

r ∈ Res = set of resource names

21

Resource actions

 Δ = {try r, acq r, rel r | r ∈ Res}

 Each resource is exclusive

 acquired by at most one process at a time

 available when not currently acquired

 process must acquire before release,
keeps trying when unavailable

22

well-resourced

 A sequence α ∈ (A∪Δ)∞ is well-resourced iff

∀r. α↾{acq r, rel r} ≤ (acq r rel r)ω

acquires before releases

23

resource constraints
 Ability to do resource actions depends on
resource sets R1 held by process, R2 held by environment

 These sets start empty and stay disjoint...

R1 ⇒ R1 - {r}
rel r

R2

iff r ∉ R1 ∪ R2

iff r ∈ R1

R1 ⇒ R1 ∪ {r}
acq r

R2

R1 ⇒ R1

try r

R2

24

RACE CONDITIONS

 Concurrent execution of non-independent actions

 Introduce an action abort to model such races

 Let

 Define

A† =def A ∪ {abort}

may yield unpredictable results

σ → σ’ iff σ’=error
abort

25

 Semantic recipe

Let Tr(A, Δ) be sets of well-resourced traces
over A† ∪ Δ

 A parallel program will denote a set of

Tr(A, Δ) ⊆ ℘(A† ∪ Δ)∞

〚-〛: Com → Tr(A, Δ)

well-resourced traces

for parallel programs

26

Parallel composition

 Can be characterized as a greatest fixed point

||∅ ∅〚c1||c2〛=〚c1〛 〚c2〛

(λ1α) || (λ2β) =
R1 R2

{λ1γ | R1 ⇒ R’1 , γ ∈ α || (λ2β)}
R2

λ1

R2R’1

{λ2γ | R2 ⇒ R’2 , γ ∈ (λ1α) || β}
R1

λ2

R’2R1
∪

∪ { abort | ¬(λ1♯λ2) }

R1 R2
||α β fair merges resource-sensitive, race-detecting

27

region

〚with r when b do c〛= wait∗ enter ∪ waitω

〚b〛false
wait = {try r} ∪ (acq r) (rel r)

true〚b〛enter = (acq r) (rel r)〚c〛

28

local resource

 α \ r obtained by erasing {acq r, rel r, try r}

 iff and

〚resource r in c〛= { α \ r | α∈ 〚c〛r }

 α∈ 〚c〛r α∈ 〚c〛

α↾r ≤ (acq r (try r)∞ rel r) ∞

resource not accessible by environment

29

Fault-avoiding
correctness

∀σ∈S. ∀α∈ . 〚c〛 ∀σ’.

σ ⇒ σ’α
implies σ’ ≠ error & σ’ q ⊨⊨p & σ

(as before)

{p}c{q} is valid iff

Definition

30

Validation Theorem

〚c1〛=〚c2〛

implies

∀C. ∀p,q.

{p}C[c1]{q} valid iff {p}C[c2]{q} valid

parallel commands with
the same traces

satisfy the same formulas,
in all parallel contexts

For all parallel programs,

31

examples
... rational reconstruction

global S×S global transition traces

local S×S local transition traces

reads/writes store action traces

store+heap store/heap action traces

permissive state permissive action traces

STATE MODEL SEMANTICS

Park ’79

LICS ’96

CONCUR’ 02

CONCUR’ 04

MFPS ’05

32

Executable traces

 Validity of {p}c{q} depends only on the

 But the executable traces of c1||c2 cannot be

 So our semantic recipe for c1||c2 includes

 But how non-sequential do we need to be?

executable traces of c

derived from the executable traces of c1 and c2

non-sequential traces

33

Dijkstra’s principle

 A rule for designing correct concurrent programs

 Suggests working with “almost sequential” traces...

“... regard processes as independent,
except when they synchronize”

34

Almost sequential

 A trace α is almost sequential iff

 The almost sequential traces of c1||c2 are fair merges

 Easy to adjust semantic clauses to obtain

α\{try,rel} = α1 (acq r1) α2 (acq r2) ...
where each αn ∈ A∞ is sequential

〚c〛as ⊆〚c〛

... sequential except at synchronizations

of almost sequential traces of c1 and c2

just the almost sequential traces

35

Validation Theorem

〚c1〛 = 〚c2〛

implies

∀C. ∀p,q.

{p}C[c1]{q} valid iff {p}C[c2]{q} valid

as as

(improved)

For all parallel programs,

parallel commands with
the same almost sequential traces

satisfy the same formulas,
in all parallel contexts

36

Equivalent traces

 For α, β ∈ A ∞ let α≈β iff

 Extend to Tr(A, Δ) so that α≈β iff

... same effect, same resource protocol,
in all contexts

|α| = |β| and ∀λ. (α♯λ ⇔ β♯λ)

where |α| = {(σ,σ’) | σ ⇒ σ’}α

α = α1 δ1 ... αn δn ...
β = β1 δ1 ... βn δn ...

and ∀n. αn ≈ βn
where each αi ∈ (A†) ∞ , δi ∈ Δ +

37

equivalent trace sets

 Let T1≈T2 iff

∀α∈T1. ∃β∈T2. α≈β

∀β∈T2. ∃α∈T1. α≈β
and

38

Validation theorem

〚c1〛 〚c2〛≈
implies

∀C. ∀p,q.

{p}C[c1]{q} valid iff {p}C[c2]{q} valid

(improved again)

For all parallel programs,

parallel commands with
equivalent trace sets

satisfy the same formulas,
in all parallel contexts

39

Footstep traces

 Obtained from action trace model by quotient

 Traces have form

 For all parallel programs

(σ1, σ1’)X δ1 (σ1, σ1’)X δ2 ...
1 2

where each Xi is a read-only set

ifffs fs〚c1〛 〚c2〛= ≈〚c1〛 〚c2〛as as

cf. MFPS ’06

40

Advantages

 For a synchronization-free parallel program
the footstep traces form a non-deterministic
relation on states

 Taming the combinatorial explosion

41

Validation theorem

fs fs〚c1〛 〚c2〛 =

implies

∀C. ∀p,q.

{p}C[c1]{q} valid iff {p}C[c2]{q} valid

(final version)

For all parallel programs

parallel commands with
the same footstep traces

satisfy the same formulas,
in all parallel contexts

42

Compositionality
 Semantic model is compositional and supports

 But partial correctness properties of c1||c2

 For a compositional logic, we need to work with

 fault-avoiding rely/guarantee properties

reasoning about fault-avoiding partial correctness

cannot be deduced from partial correctness properties
 of c1 and c2

more general formulas

43

Fault-avoiding logics

 Γ specifies protection rules and resource invariants

 Rely/guarantee interpretation...

 Implies fault-avoiding correctness

 {p}c{q}⊢Γ

every finite interactive execution of c,
in an environment that respects Γ,

from a state satisfying p,
respects Γ, is error-free,

and ends in a state satisfying q

44

Examples

Separation logic

 Simple shared memory

 Concurrent separation logic

 Permissions logic

sequential pointer-programs

shared memory parallel, no pointers

shared memory parallel, pointers

shared memory parallel, pointers

Reynolds

Owicki/Gries

O’Hearn

Bornat et al

45

validity

every finite interactive execution of c,
in an environment that respects Γ,

from a state satisfying p,
respects Γ, is error-free,

and ends in a state satisfying q

Definition

Γ

∀σ ∈ S . ∀α∈ . 〚c〛∀σ’.

σ ⇒ σ’
α

implies σ’ ≠ error & σ’ q ⊨⊨p & σ
Γ

Γ⊢{p}c{q} is valid iff

46

interactive validation

fs fs
〚c1〛 〚c2〛 =

implies

∀C. ∀Γ, p, q.

Γ⊢{p}C[c1]{q} valid iff Γ⊢{p}C[c2]{q} valid

theorem

For all parallel programs

parallel commands with
the same footstep traces

satisfy the same rely/guarantee formulas,
in all parallel contexts

47

separation logic
 S = Store × Heap

 (s,h) ⊨ p1✶p2 iff ∃s1, s2. ∃h1 ⊥ h2.

 p is precise iff

 Γ = r1(X1):I1,..., rn(Xn):In

(s1,h1) ⊨ p1 & (s2,h2) ⊨ p2

s = s1 ∪ s2 , h= h1 ⊎ h2 ,

∀(s,h). ∃ at most one h’⊆h

Xj disjoint, Ij precise, ...

such that (s,h’)⊨ p

48

parallel rule
 {p1}c1{q1}⊢Γ {p2}c2{q2}⊢Γ

 {p1★p2}c1 || c2{q1★q2}⊢Γ

provided

free(c1)∩writes(c2) ⊆ owned(Γ)
free(c2)∩writes(c1) ⊆ owned(Γ)
free(p2 , q2)∩writes(c1) = ∅
free(p1 , q1)∩writes(c2) = ∅

49

region rule

 {(p★I)∧b}c{q★I}⊢Γ
 {p}with r when b do c{q}⊢Γ, r(X):I

resource rule
 {p}c{q}⊢Γ, r(X):I

 {p★I}with r when b do c{q★I}⊢Γ

50

Soundness

 Each rule of concurrent separation logic is valid

Use semantic model to formalize
 - local state

 - ownership transfer

Proof reveals key role of precision

THEOREM

51

similarly...

 Soundness proofs for

 Owicki-Gries

 permissions logic

based on appropriate choice of state model

52

Conclusions

 A general, abstract notion of state model

 A recipe for constructing semantic models

 Suitable for compositional reasoning

 fault-avoiding partial correctness

 rely/guarantee partial correctness properties

 Soundness proofs for fault-avoiding logics

53

Future research

 Fault-avoiding logics

 total correctness

 safety and liveness

 Semantic models

 full abstraction?

 Synchronization

 other primitives

 abstract model?

54

