A BRIEF HISTORY
OF SHARED MEMORY

S TEPHEN B ROOKES
C MU




A

‘¢ Revisionist history

A

¢ Rational reconstruction of early models

Al

3¢ Evolution of recent models

\\/
7N

A2
ZI\

A unifying framework

Al

¢ Fault-detecting trace semantics

A
N\

Some general results

A

¢ Soundness of fault-avoiding logics




\V/
7N

An abstract notion of state and action

Al
ZI\

A

¢ A recipe for constructing denotational models

A

¢ sequential programs

A

¢ shared memory parallel programs

A

¢ Designed to support compoditional reasoning

A

% fault-avoiding correctness

Al

% rely/guarantee properties




A state model is a tuple (S, A, =, #)
with
S = (S, ¥) states

A actionds
— C S x A xS" footprint
ST=S U {error)

and
X:SxS—S compatibility
HFCcAxA tndependence

satisfying natural axioms ...




Al

% (S, X) i a partial commutative monoid...

OXT = TXO
PX(OTXT) = (pXO)XT

Alx
I\

oo With unique decompodition

0X0; = 0XR0y, = 0= Oy




A

¢ Succesosful action has unique cause

For all g, A

at most one O such that
oMo, 0-0%®0
1 J5% e 2

S

¢ Fadure ts irrevocable

A
If 01 X O9 — error,

A
then O1 = error




¢ Independence implies non-interfering footprints
ANEN & O Al o' & O'2>\—2’ op¥
& 0 =01XT] = 09&XTo
implies
31, 7). 0/&T| = 09&XTY’

& 09'XTy = 01XT’
& 07XT = 09’ XTy’

o Symmetry
AL A2 implies Ao A




For any state model we can derive an enabling relation

— al R e

[et O é o’ iff doy, o/, 0o €S.

O = 01009
& O =0/X0y
A
& 0120

A

A :
Let O = error it O = error or O = error




CONSEQUENCES

A
s RAM

Al

N

SAFETY MONOTONICITY




CONSEQUENCES

s« Independent actions don’t interfere

10



EXAMPLE

global transition traces

% S=(Ide = V) U {1} \

v o =0 = 1R¥0

v (01, T1) & (09, To) iff 01=T1=02=T»
< 3

cf. Park 1979

11



local transition traces
% S=Ide 4 V
e X disjoint union

% A={(0,T) | dom O = dom T}

(0, T)
w® O—T

(0, T) :
s« 01 = error ff O1'dom(0)= O'dom(07) C O

s (0, T1) :li (09, T9) itt dom(O'l)ﬂdom(O'Q)=@

of. LICS 1996

12



action traced, shared store

S = Ide —\ﬁrz Vv

% -&- disjoint union

A = {i=v, z=v |1 € Ide, v € V}

bS]
[i:v] 5 [i:v]

. . )
= B,

O — error ift 1€ dom(O)

S(i:=v H 1=v), ~(1:=v & 1:=v))

¢f. CONCUR 2002

13



actwon traces, shared mutable state
% S = Store x Heap
¢ -X®- disjoint union, componentwise

% A = Astore U {[]=v, [1]:=v, alloc(l,v), disp 1}

alloc (l V)

# ([(1[D~ <[] [1:v])
¢ (10D = LD

disp |

2 (s, h) = error it 1& dom(h)

# -(disp | # disp 1)
¢f. CONCUR 2004

14



pPermisIlond
S=Ide =~ Vx P, (P.DT)a permission algebra

-X- combines permissions, when compatible

={G=v,m), (=v, T) I Te P, ve V]

[i:(v,m) ] 5" [i:(v,m)]
[i: v, )] i, T

1=V, TT

« 0 — error it 1€ dom(O)

1VT

o error ff -dv. G, v,T)) €EC

(i=V,Tl'1) :I:t (i=V,Tl'2) When 1T1@'IT2 deﬁned
cf. UFPS 05

15



¢ A trace 1s a finite or infinite sequence of actions

. e 3 a
¢ K is (sequentially) executable iff 0. 0 = -
% Let & B iff op executable

 Let Tr(A) € & (A®) be sets of executable traces




¢ Given a state model > = (S, A, —, ﬁ—")

we can define a frace semantics

[-]
[-]

[-]

by structural

= Com > Te(h)
.+ Expine = Tr(A) x Vi
;¢ Expsoot = Tr(A) x Vil

induction

% [cl, 1is set of executable traces

17



S [[cl;cg]] = [[Cl]] [[CQ]]

- {aB l aelci], Belco] , & "B}

S [[While b do C]] =

( [[b]]true [[C]] )* [[b]]false o ﬂ:b]]

true

[c]H)w

18



{p}ciq} is vaLID iff
VoeS. Vaelcl . Vo

X . :
OFp &0 = 0 implies 0’ *# error & 0'F q

every funite execution of c,
from a Jtate vatisfying p,
1 error-free,
and ends in a ostate satisfying g

19



For all sequential programs,
[ci] = [col
implies
NCE YD o
{p}Clcil{q} valid it {p}C[c2]{q} valid

sequential commands with

the same executable traces
saltsfy the same formula,
in all sequential contexts

20



PARALLEL PROGRAMS

¢ c1lles shared memory

¢ with r when b do ¢ conditional critical region

¢ resource r in C local resource

r € Res = set of resource nameds




A = {tryr, acqr, rel r | r € Res]}

Each resource is exelusive

NA
Z\\J

Al
Ny

NA
N\

acquired by at most one process at a time
avatlable when not currently acquired

process must acquire betore release,

keeps trying when unavailable

22



WELL-RESOURCED

¢ A sequence X € (AUA)* is well-resourced itt

Vr. 0Macqr, rel r} < (acqr rel r)¥

23



KA
\§

R/
K\

Ability to do resource actions depends on
resource sets R held by process, Ro held by environment

These sets start empty and stay disjoint...

acqr

Ri = RiU(r} iff réRIUR
)

rel r

Ri = Ri-{r} if reRy
Ro

try r
Ri = R
1R2 1

24



Concurrent execution of non-independent actions

may yield unpredictable results

Introduce an action abort to model such races

Let AT =4t A U {abort}

abort

Define o — o iff o'=error

25



¢ Let Tr(A, ) be sets of well-resourced traces
over ATU A

Tr(A, Q) € (AT U A)™

¢ A parallel program will denote a set of
well-resourced traces

[-] : Com = Tr(A, A)

26



Al
Z\3

Al
&\

[cillco]l = [eid )l Tcol

X R! |RQB redource-dendilive, race-aetectmg fair merges

Can be characterized as a greatest fixed point

(>\10()R1|R2(>\2B) =
Al
MY Ry = R1,Y€E O(R,|1|R2(>\2B)}
Ao
U {hyl Re=R5, v € uoo i Bl

U L abort] m(NFEN) )

27



[with r when b do c] = wait* enter U wait®

¢ wait = {try r} U (acqr) [[b]]fl (rel r)

s enter = (acqr) [b]  [c](relr)

true

28



A
Z\§

[resource rinc] ={ x\rl| ae [c] }

X \r obtained by erasing {acqr, rel r, try r}

= [[c]]r ff o€ [c] and

X'r < (acqr (tryr)®rel r)®

resource not accesstble by environment

29



FAULT-AVOIDING
CORRECTNESS

DEFINITION

{p}ci{q} is vaLID iff
VoeS. Vaelcl . Vo

(0,4 - -
OFEp &0 = 0 implies 0 # error & O

(as before)

30



For all parallel programs,
[ci] = [
implies
VC. Vp,q.
{p}C[c1]{q} valid iff {p}C[c2]{q} valid

parallel commands with
the same traceds
saltsfy the same formula,
in all parallel contexts

31



EXAMPLES

... rational reconstruction

STATE MODEL > SEMANTICS

global SxS global transition traces
local SxS local transition traces
reads/writes store action traces
store+heap store/heap action traces
permissive state permissive action traces

Park 79
LICS 96
CONCUR’ 02
CONCUR’ 04
MFPS 05

32



N2
K\

A
K\

R
&\

A
I\

Validity of {p}c{q} depends only on the

executable traces of ¢

But the executable traces of cillco cannot be
derived from the executable traces of Cl and C9

So our semantic recipe for cillce includes
non-sequential traces

But how non-sequential do we need to be?

33



A

“¢ A rule for designing correct concurrent programs

“

... regard procesded as independent,
excepl when they synchronize”

A

¢ Suggests working with “almost sequential” traces...




... sequential except at synchronizationd

¢ A trace X 1s almodt sequential 1tt

X\{try,rel} = &1 (acq r1) &2 (acq ) ...

where each X, € A® is dequential

A

¢ The almost sequential traces of cillco are fair merges
of almoost vequential traces of c1 and c2

¢ Easy to adjust semantic clauses to obtain

just the almoost sequential traces

[[C]]ad C [l

35



(improved)
For all parallel programs,

[, - [,
implies
Ve
IClaill) valid +ff iG]l vabd

parallel commands with
the same almoot sequential traces
salisfy the same formulay,
in all parallel contexts

36



... Jame effect, same resource protocol,
in all contexts

% For &, B € A let o=~ iff

&l = 1Bl and VA. (dFEA & BHEN)

where lal = {(0,0") | 0 2 0]

% Extend to Tr(A, A) so that ox=f iff

=001 ... Ol 06 .
B=P101.. B On ...
where each o; € (AH)®, 0; € A
and Vn. X, = Bn

37



EQUIVALENT TRACE SETS

% Let T1=To iff
VaxeT:. dBeTy. a=p

and

VBeTy. AXeET). a=p

38



(improved again)

For all parallel programs,
[c1] = [eol
implies
VC. Vp,q.
{p}Clcil{q} valid ift {p}C[c2]{q} valid

parallel commands with
equivalent trace Jets

saltsfy the same formula,
in all parallel contexts

39



¢ Obtained from action trace model by quotient

RV
K\

K\

Traces have form

(O, 0'1’)X161 (01, 0'1’)X262

where each X is a read-only set

A

¢ For all parallel programs

[[Cl]]fd= [[cz]]f,, ift [[Cl]llf [[CQ:"W

of. MFPS 06

40



¢ For a vynchronization-free parallel program
the footstep traces form a non-deterministic
relation on states

Al

¢ Taming the combinatorial explosion

41



(hnal version)

For all parallel programs
[[Cl]]fa o [[CQ]]fd
implies
VC. Vp,q.
{p}Clcil{q} valid ift {p}C[c2]{q} valid

parallel commands with
the same footstep traces

salisfy the same formulay,
in all parallel contexts

42



Al
2\

A/
Z/\\

I
7\

Al
I\

NA
N

Semantic model 1s compositional and supports
reasoning about fault-avoiding partial correctness

But partial correctness properties of cillco
cannot be deduced from partial correctness properties

of c1 and o9

For a compositional logic, we need to work with
more general formulas

¢ tault-avoiding rely/guarantee properties

43



N/
Z\}

/A
K\}

/A
KZ\§

[~ {p}ciql

[ specifies protection rules and resource invariants

Rely/guarantee interpretation...

every hinite interactive execution of c,
in an environment that respects T,
from a state satisfying p,
respects |, is error-free,
and ends 1n a state satistying q

Implies fault-avoiding correctness

44



S

“¢ Separation logic
sequential pointer-programd

A

¢ Simple shared memory

dhared memory parallel, no pocnters

S

s¢ Concurrent separation logic

dhared memory parallel, pointers

Al

‘¢ Permissions logic

shared memory parallel, pointers

Reynolds

Owickt/Gries

O’ Hearn

Bornat et al

45



[H{p}cl{q} 1s vALID iff
Voes . Vaeld .Vo.

X S : ) s i
OFPpP &O'=r>0' 1mphes O Ferror &0 F q

every funite interactive execution of c,
tn an environment that respects |,
from a state satsfying p,
respects |, i1 error-free,
and ends in a state satusfying g

46



For all parallel programs
o], - e,
implies
Ve Y
[H{p}Clci]{q} valid it +{p}C[c2]{q} valid

parallel commands with
the same footstep traces

salisfy the same rely/guamn[ee formulay,
i all parallel contexts

47



Al
N\

S = Store x Heap

(s,h) Fp1Xpo ift sy, so. dh; L hoe.
s=s1Us2, h=h;¥hy,
(s,h1) Fp1 & (s2,h2) Fpo

Al
ws

Al
N

p 1s prectose it
V(s,h). d at most one h’ch
such that (s,h")F p

Q
K

% [ = r1(Xy):14,..., rn(Xn):In

X; disjoint, I; precise, ...




[ {pi}ailqi} T+ {p2}caiqe}

[ = {pi%p2}ci Il c2{qixqe}

provided
free(ci)Nwrites(c2) € owned(I)
free(co)Nwrites(c1) € owned(I)

free(p2, q2) Nwrites(c1) = &
free(p1, qi)Nwrites(cg) = &

49



REGION RULE

[ — {(pxDAb}c{qnl]}

[, r(X):I I {p}with r when b do c¢{q}

RESOURCE RULE

[, r(X):I F{p}c{q}

[ HpxI}with r when b do c{qxI}

50



\V/

% Each rule of concurrent separation logic 1s vahd

Al

Use semantic model to formalize

- local state
- ownership transfer

Proof reveals key role of precision

51



A
ZIN

Soundness proofs for

s Owicki-Gries

A

“¢ permissions logic

based on appropriate choice of state model

52



I
\\

Al
ZI\

A general, abstract notion of state model

\\/

A recipe for constructing semantic models

Al
ZI\

A

2¢ Suitable for compositional reasoning

Al

fault-avoiding partial correctness

N/A

‘¢ rely/guarantee partial correctness properties

Al

¢ Soundness prootfs for fault-avoiding logics

53



\

% Fault-avoiding logics

Al
Z\\y

\\/
7\

total correctness

Al
AN

A

¢ safety and liveness

Al

% Semantic models

Y
\

A
7

Al

¢ ftull abstraction?

\

Al
\\

Y
\

A
7

Synchronization
Al

“¢ other primitives

¢ abstract model?




