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Outline
 Revisionist history

 Rational reconstruction of early models

 Evolution of recent models

 A unifying framework

 Fault-detecting trace semantics 

 Some general results

 Soundness of fault-avoiding logics
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Framework

 An abstract notion of state and action

 A recipe for constructing denotational models

 sequential programs

 shared memory parallel programs

 Designed to support compositional reasoning

 fault-avoiding correctness
 rely/guarantee properties
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State and Action
Definition

⊗ : S × S ⇀ S    compatibility

satisfying natural axioms ...

S = (S, ⊗)             states
A                           actions

→ ⊆ S × A × S†    footprint

S† = S ∪ {error}+

with

and

A  state model  is a tuple (S, A, →, ♯)

♯ ⊆ A × A independence
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State axioms

 (S, ⊗) is a partial commutative monoid...

 ... with unique decomposition

σ⊗τ ≃ τ⊗σ 

σ⊗σ1  = σ⊗σ2  ⇒ σ1 = σ2

ρ⊗(σ⊗τ) ≃ (ρ⊗σ)⊗τ

5



Footprint axioms

 Successful action has unique cause

 Failure is irrevocable 

λ

λ

σ →σ’  , σ = σ  ⊗ σ 
λ

For all σ, λ 
at most one σ  such that

If      σ1 ⊗ σ2 → error, 

then  σ1 → error 

1

1 1 21
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Independence axioms
 Independence implies non-interfering footprints

 Symmetry

σ1 → σ1’  &   σ2→ σ2’
λ2λ1

 ∃τ1’, τ2’. 

σ = σ1⊗τ1 = σ2⊗τ2

implies

σ1’⊗τ1 = σ2⊗τ2’

σ2’⊗τ2 = σ1⊗τ1’
σ1’⊗τ1’ = σ2’⊗τ2’

&

&

&

 λ1♯λ2   & 

λ1♯λ2  implies λ2♯λ1
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Enabling
For any state model we can derive an enabling relation

⇒  ⊆  S† × A × S†

σ ⇒ σ’  iff  ∃σ1, σ1’, σ2 ∈ S.  

                                     σ = σ1⊗σ2 

                                &   σ’ = σ1’⊗σ2

                           &     σ1→σ1’ 

λ

λ

λ λ
Let σ ⇒ error  iff  σ → error  or  σ = error

Let
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consequences
  Frame

  Safety monotonicity

σ1 ⇒ τ1  ≠ error  
λ

implies

& σ1⊗σ2  ⇒ τλ

τ = τ1⊗σ2

 σ1 ⊗ σ2 ⇒ error    
implies

σ1 ⇒ error

λ

λ
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consequences

 Independent actions don’t interfere

σ ⇒ τ1  ,   σ ⇒ τ2
λ2λ1

 ∃τ. τ1 ⇒ τ  ,   τ2 ⇒ τλ1λ2

implies

If   λ1♯λ2    then
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EXAMPLE

  S = (Ide → V) ∪ {1}

  σ⊗1 = σ = 1⊗σ

  A = S×S    

 

                        

σ → τ
(σ, τ)

global transition traces

(σ1, τ1) ♯ (σ2, τ2)  iff  σ1=τ1=σ2=τ2

cf. Park 1979
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EXAMPLE

  S = Ide ⇀fin V

  -⊗-  disjoint union

  A = {(σ, τ) | dom σ = dom τ}    

 

 

 

σ → τ
(σ, τ)

σ1 → error
(σ, τ)

iff   σ1↾dom(σ)= σ↾dom(σ1) ⊂ σ

local transition traces

(σ1, τ1) ♯ (σ2, τ2)  iff  dom(σ1)∩dom(σ2)=∅

cf. LICS 1996
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EXAMPLE

  S = Ide ⇀fin V

  -⊗-  disjoint union

  A = {i=v, i:=v | i ∈ Ide, v ∈ V} 

                  

   [i:v] → [i:v’]

                        iff   i ∉ dom(σ)

  ¬(i:=v ♯ i=v’), ¬(i:=v ♯ i:=v’)

[i:v] → [i:v]
i=v

σ   →   error
i=v, i:=v’

i:=v’

action traces, shared store

cf. CONCUR 2002
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EXAMPLE

  S = Store × Heap

  -⊗-   disjoint union, componentwise

  A = Astore  ∪ {[l]=v, [l]:=v, alloc(l,v), disp l}

  ([ ],[ ]) →  ([ ], [l:v])

 ([ ], [l:v])  →  ([ ], [ ])

  (s, h)  →   error   iff  l ∉ dom(h)

   ¬(disp l ♯ disp l)

alloc(l,v)

disp l

disp l

action traces, shared mutable state

cf. CONCUR 2004
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Example
  S = Ide ⇀fin V × P                                             
  -⊗-  combines permissions, when compatible

  A ={(i=v, π ), (i:=v, ⊤) | π ∈ P, v ∈ V}   

  [i:(v,π)]  →  [i:(v,π)]

  [i:(v,⊤)] →  [i:(v’, ⊤)]

  σ  →  error  iff  i ∉ dom(σ)

  σ   → error  iff  ¬∃v. (i, (v,⊤)) ∈ σ  

  (i=v,π1)♯(i=v,π2) when π1⊕π2  defined 

i=v, π

i:=v’,⊤

permissions

   ,                 a permission algebra

i=v, π

i:=v’,⊤

      
( P,⊕,⊤) 

cf. MFPS’05
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Traces

 A trace is a finite or infinite sequence of actions

 α is (sequentially) executable iff ∃σ. σ ⇒ 

 Let α⌒β  iff  αβ executable

 Let Tr(A) ⊆ ℘( A∞ )  be sets of executable traces

α .
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Semantic recipe

 Given a state model  ∑ = (S, A, →, ♯)

〚c〛                   

〚-〛:   Com  → Tr(A) 
〚-〛:  Expint → Tr(A) × Vint 

〚-〛:  Expbool → Tr(A) × Vbool

by structural induction

∑

∑

∑

for sequential programs

we can define a trace semantics

∑ is set of executable traces
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semantic clauses

〚c1;c2〛=       

〚while b do c〛 =                            

(〚b〛 〚c〛)ωtrue(〚b〛 〚c〛)∗true false〚b〛 ∪

〚c1〛〚c2〛

= {αβ | α∈        , β∈         , α⌒β}〚c1〛 〚c2〛
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Fault-avoiding 
correctness

∀σ∈S. ∀α∈       . 〚c〛 ∀σ’.  

σ ⇒ σ’α
implies σ’ ≠ error & σ’     q ⊨⊨p  &  σ

every finite execution of c,     
from a state satisfying p, 

is error-free, 
and ends in a state satisfying q

Definition
{p}c{q} is valid iff 
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Validation Theorem

〚c1〛=〚c2〛

implies

∀C.  ∀p,q.  

{p}C[c1]{q} valid  iff  {p}C[c2]{q} valid

sequential commands with 
the same executable traces
satisfy the same formulas,
in all sequential contexts

For all sequential programs, 

20



Parallel programs

  c1||c2 

 with r when b do c

 resource r in c

shared memory

conditional critical region

local resource

r ∈ Res = set of resource names
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Resource actions

  Δ = {try r, acq r, rel r | r ∈ Res}

  Each resource is exclusive

 acquired by at most one process at a time

 available when not currently acquired

 process must acquire before release,           
keeps trying when unavailable
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well-resourced

 A sequence α ∈ (A∪Δ)∞  is well-resourced iff

∀r.  α↾{acq r, rel r} ≤ (acq r  rel r)ω

acquires before releases
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resource constraints
 Ability to do resource actions depends on                  
resource sets R1  held by process, R2  held by environment

 These sets start empty and stay disjoint...

R1  ⇒  R1 - {r}
rel r

R2 

iff    r ∉ R1 ∪ R2

iff    r ∈ R1

R1  ⇒  R1 ∪ {r}
acq r

R2 

R1  ⇒  R1

try r

R2 
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RACE CONDITIONS

 Concurrent execution of non-independent actions  

 Introduce an action abort to model such races

 Let 

 Define 

A† =def A ∪ {abort}

may yield unpredictable results

σ → σ’    iff   σ’=error
abort
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 Semantic recipe

Let  Tr(A, Δ) be sets of well-resourced traces 
over A† ∪ Δ

 A parallel program will denote a set of              

Tr(A, Δ) ⊆ ℘(A† ∪ Δ)∞

〚-〛:  Com → Tr(A, Δ)

well-resourced traces

for parallel programs
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Parallel composition

 

  Can be characterized as a greatest fixed point

||∅ ∅〚c1||c2〛=〚c1〛 〚c2〛

(λ1α)  ||  (λ2β) =   
R1 R2

{λ1γ |  R1 ⇒ R’1 , γ ∈ α   ||   (λ2β)}
R2

λ1

R2R’1

{λ2γ |  R2 ⇒ R’2 , γ ∈ (λ1α)  ||    β}
R1

λ2

R’2R1
∪

∪ { abort |  ¬(λ1♯λ2) } 

R1 R2
||α β                                                  fair merges resource-sensitive, race-detecting
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region

  

  

〚with r when b do c〛=   wait∗ enter  ∪  waitω

〚b〛false
wait = {try r} ∪ (acq r) (rel r)

true〚b〛enter = (acq r) (rel r)〚c〛
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local resource

   α \ r   obtained by erasing {acq r, rel r, try r}

                   iff                and   

〚resource r in c〛=  { α \ r |  α∈ 〚c〛r }

 α∈ 〚c〛r  α∈ 〚c〛

α↾r ≤ (acq r (try r)∞    rel r) ∞    

resource not accessible by environment
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Fault-avoiding 
correctness

∀σ∈S. ∀α∈       . 〚c〛 ∀σ’.  

σ ⇒ σ’α
implies σ’ ≠ error & σ’     q ⊨⊨p  &  σ

(as before)

{p}c{q} is valid iff

Definition
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Validation Theorem

〚c1〛=〚c2〛

implies

∀C.  ∀p,q.  

{p}C[c1]{q} valid  iff  {p}C[c2]{q} valid

parallel commands with 
the same traces

satisfy the same formulas,
in all parallel contexts

For all parallel programs, 
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examples
... rational reconstruction

global S×S global transition traces

local S×S local transition traces

reads/writes store action traces

store+heap store/heap action traces

permissive state permissive action traces

STATE MODEL SEMANTICS

Park ’79

LICS ’96

CONCUR’ 02

CONCUR’ 04

MFPS ’05
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Executable traces

 Validity of {p}c{q} depends only on the

 But the executable traces of c1||c2 cannot be  

 So our semantic recipe for c1||c2 includes     

 But how non-sequential do we need to be?

executable traces of c

derived from the executable traces of c1 and c2

non-sequential traces

33



Dijkstra’s principle

 A rule for designing correct concurrent programs

 Suggests working with “almost sequential” traces...

“... regard processes as independent,                   
except when they synchronize”
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Almost sequential

 A trace α is almost sequential iff                           

 The almost sequential traces of c1||c2  are fair merges

 Easy to adjust semantic clauses to obtain

α\{try,rel} = α1 (acq r1) α2 (acq r2) ...
where each αn ∈ A∞    is sequential 

〚c〛as ⊆〚c〛

... sequential except at synchronizations

of almost sequential traces of c1 and c2

just the almost sequential traces
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Validation Theorem

〚c1〛   = 〚c2〛

implies

∀C.  ∀p,q.  

{p}C[c1]{q} valid  iff  {p}C[c2]{q} valid

as as

(improved)

For all parallel programs,

parallel commands with 
the same almost sequential traces

satisfy the same formulas,
in all parallel contexts
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Equivalent traces

 For α, β ∈ A ∞   let α≈β iff

 Extend to Tr(A, Δ)   so that α≈β iff

... same effect, same resource protocol, 
in all contexts

|α| = |β|  and ∀λ. (α♯λ ⇔ β♯λ)

where |α| = {(σ,σ’) | σ ⇒ σ’}α

α = α1 δ1 ... αn δn ...
β = β1 δ1 ... βn δn ...

and      ∀n. αn ≈ βn  
where each  αi  ∈ (A†) ∞  , δi  ∈ Δ  +
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equivalent trace sets

 Let T1≈T2 iff

∀α∈T1. ∃β∈T2. α≈β

∀β∈T2. ∃α∈T1. α≈β
and
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Validation theorem

〚c1〛 〚c2〛≈
implies

∀C. ∀p,q.

{p}C[c1]{q} valid  iff  {p}C[c2]{q} valid

(improved again)

For all parallel programs,

parallel commands with 
equivalent trace sets

satisfy the same formulas,
in all parallel contexts
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Footstep traces

 Obtained from action trace model by quotient

 Traces have form

 For all parallel programs

(σ1, σ1’)X δ1 (σ1, σ1’)X δ2 ...
1 2

where each Xi is a read-only set

ifffs fs〚c1〛 〚c2〛= ≈〚c1〛 〚c2〛as as

cf. MFPS ’06
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Advantages

 For a synchronization-free parallel program       
the footstep traces form a non-deterministic 
relation on states

 Taming the combinatorial explosion
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Validation theorem

fs fs〚c1〛 〚c2〛  =

implies

∀C. ∀p,q.

{p}C[c1]{q} valid  iff  {p}C[c2]{q} valid

(final version)

For all parallel programs

parallel commands with 
the same footstep traces

satisfy the same formulas,
in all parallel contexts
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Compositionality
 Semantic model is compositional and supports

 But partial correctness properties of c1||c2         

 For a compositional logic, we need to work with                          

  fault-avoiding rely/guarantee properties

reasoning about fault-avoiding partial correctness

cannot be deduced from partial correctness properties
 of c1 and c2

more general formulas 
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Fault-avoiding logics

 Γ specifies protection rules and resource invariants

 Rely/guarantee interpretation...

 Implies fault-avoiding correctness 

      {p}c{q}⊢Γ

every finite interactive execution of c,                                 
in an environment that respects Γ,                                             

from a state satisfying p,                                                    
respects Γ, is error-free,                                                       

and ends in a state satisfying q
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Examples

Separation logic

 Simple shared memory

 Concurrent separation logic

 Permissions logic

sequential pointer-programs

shared memory parallel, no pointers

shared memory parallel, pointers

shared memory parallel, pointers

Reynolds

Owicki/Gries

O’Hearn

Bornat et al
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validity

every finite interactive execution of c,    
in an environment that respects Γ, 

from a state satisfying p, 
respects Γ, is error-free, 

and ends in a state satisfying q

Definition

Γ

∀σ ∈ S  . ∀α∈       . 〚c〛∀σ’.  

σ ⇒ σ’
α

implies σ’ ≠ error & σ’     q ⊨⊨p  &  σ
Γ

Γ⊢{p}c{q} is valid iff
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interactive validation

fs fs
〚c1〛 〚c2〛  =

implies

∀C. ∀Γ, p, q.

Γ⊢{p}C[c1]{q} valid  iff  Γ⊢{p}C[c2]{q} valid

theorem

For all parallel programs

parallel commands with 
the same footstep traces

satisfy the same rely/guarantee formulas,
in all parallel contexts
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separation logic
  S = Store × Heap

  (s,h) ⊨ p1✶p2    iff    ∃s1, s2. ∃h1 ⊥ h2.

 p is precise iff 

 Γ = r1(X1):I1,..., rn(Xn):In      

(s1,h1) ⊨ p1  &  (s2,h2) ⊨ p2

s = s1 ∪ s2 ,   h= h1 ⊎ h2 ,

∀(s,h). ∃ at most one h’⊆h  

Xj disjoint, Ij precise, ...

such that (s,h’)⊨ p
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parallel rule
      {p1}c1{q1}⊢Γ       {p2}c2{q2}⊢Γ

      {p1★p2}c1 || c2{q1★q2}⊢Γ

provided

free(c1)∩writes(c2) ⊆  owned(Γ)
free(c2)∩writes(c1) ⊆  owned(Γ)
free(p2 , q2)∩writes(c1) =  ∅
free(p1 , q1)∩writes(c2) =  ∅
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region rule

      {(p★I)∧b}c{q★I}⊢Γ
      {p}with r when b do c{q}⊢Γ, r(X):I

resource rule
 {p}c{q}⊢Γ, r(X):I

      {p★I}with r when b do c{q★I}⊢Γ
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Soundness

  Each rule of concurrent separation logic is valid

Use semantic model to formalize 
             - local state

                            - ownership transfer

Proof reveals key role of precision

THEOREM
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similarly...

  Soundness proofs for

 Owicki-Gries

 permissions logic

based on appropriate choice of state model
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Conclusions

 A general, abstract notion of state model

 A recipe for constructing semantic models

 Suitable for compositional reasoning

 fault-avoiding partial correctness

 rely/guarantee partial correctness properties

 Soundness proofs for fault-avoiding logics
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Future research

  Fault-avoiding logics

  total correctness

  safety and liveness 

  Semantic models

  full abstraction?

  Synchronization

  other primitives

  abstract model?
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